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Abstract

This article is concerned with coupled coincidence points and common fixed points
for two mappings in metric spaces and cone metric spaces. We first establish a
coupled coincidence point theorem for two mappings and a common fixed point
theorem for two w-compatible mappings in metric spaces. Then, by using a
scalarization method, we extend our main theorems to cone metric spaces. Our
results generalize and complement several earlier results in the literature. Especially,
our main results complement a very recent result due to Abbas et al.

1 Introduction
Throughout this article, unless otherwise specified, we always suppose that N is the set

of positive integers and X is a nonempty set. In addition, for convenience, we denote

gx = g(x) for each x Î X and each mapping g : X ® X.

Recently, Abbas et al. [1] introduced the following concept of w-compatible

mappings:

Definition 1.1. The mappings g : X ® X and F : X × X ® X are called w-compatible

if g(F(x, y)) = F(gx, gy) whenever gx = F(x, y) and gy = F(y, x).

Moreover, they established several coupled coincidence point theorems and common

fixed point theorems for such mappings. The problem investigated in [1] is interesting.

In fact, recently, the existence of coupled fixed points, coupled coincidence points,

coupled common fixed points, and common fixed points for nonlinear mappings with

two variables has attracted more and more attention. For example, Bhashkar and

Lakshmikantham [2] investigated some coupled fixed point theorems in partially

ordered sets, and they also discussed an application of their result by investigating the

existence and uniqueness of the solution for a periodic boundary value problem; Sabet-

ghadam et al. [3] extended some results in [2] to cone metric spaces; Lakshmikantham

and Ćirić [4] proved several coupled coincidence and coupled common fixed point the-

orems for nonlinear contractive mappings in partially ordered complete metric spaces;

Karapinar [5] extended some results of [4] to cone metric spaces; Zoran and Mitrović
[6] considered this topic in normed spaces and established a coupled best approxima-

tion theorem; Ding et al. [7] established some coupled coincidence and coupled com-

mon fixed point theorems in partially ordered metric spaces under some generalized

contraction conditions; etc.
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The aim of this article is to make further studies on such problems, and to generalize

and complement some known results. Next, let us recall some related definitions:

Definition 1.2. [1]Let g : X ® X, F : X × X ® X be two mappings.

(I) (x, y) Î X × X is called a coupled coincidence point of F and g if gx = F(x, y) and

gy = F(y, x).

(II) (x, y) Î X × X is called a coupled fixed point of F if x = F(x, y) and y = F(y, x).

(III) x Î X is called a common fixed point of F and g if x = gx = F(x, x).

2 Metric spaces
Now, let us present one of our main results.

Theorem 2.1. Let (X, d) be a complete metric space. Assume that g : X ® X and F :

X × X ® X are two mappings satisfying

(H1) there exists a non-decreasing function j : [0,+∞) ® [0,+∞) such that

lim
n→∞ φn(t) = 0 for each t > 0, and

d(F(x, y), F(u, v)) ≤ φ[Mg
F(x, y, u, v)]

for all x, y, u, v Î X, where

Mg
F(x, y, u, v) = max

{
d(gx, gu), d(gy, gv), d(gx, F(x, y)), d(gu, F(u, v)), d(gy, F(y, x)) ,

d(gv, F(v, u)),
d(gx, F(u, v)) + d(gu, F(x, y))

2
,
d(gy, F(v, u)) + d(gv, F(y, x))

2

}
;

(H2) F(X × X) ⊆ g(X), and g(X) is a closed subset of X.

Then F and g have a coupled coincidence point in X.

Proof. First, let us present some properties about j which will be used in the sequel.

We claim that j(t) <t for each t > 0. In fact, if j(t0) ≥ t0 for some t0 > 0, then, since j
is non-decreasing, jn(t0) ≥ t0 for all n Î N, which contradicts the condition

lim
n→∞ φn(t0) = 0 .

Moreover, it is easy to see that j(0) = 0, and thus j(t) ≤ t for all t ≥ 0.

Take x0, y0 Î X. Since F(X × X) ⊆ g(X), one can construct two sequences {xn}, {yn} in

X such that

gxn = F(xn−1, yn−1), gyn = F(yn−1, xn−1), n = 1, 2, ....

For any fixed n Î N, by (H1), we have

d(gxn+1, gxn) = d(F(xn, yn), F(xn−1, yn−1)) ≤ φ(Mn), (2:1)

and

d(gyn+1, gyn) = d(F(yn, xn), F(yn−1, xn−1)) ≤ φ(Mn), (2:2)

where

Mn = max
{
d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1) ,

d(gxn−1, gxn+1)
2

,
d(gyn−1, gyn+1)

2

}
.
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Since

d(gxn−1, gxn+1)
2

≤ d(gxn−1, gxn) + d(gxn, gxn+1)
2

≤ max{d(gxn−1, gxn), d(gxn, gxn+1)}

and

d(gyn−1, gyn+1)
2

≤ d(gyn−1, gyn) + d(gyn, gyn+1)
2

≤ max{d(gyn−1, gyn), d(gyn, gyn+1)},

we have

Mn = max{d(gxn, gxn−1), d(gyn, gyn−1), d(gxn, gxn+1), d(gyn, gyn+1)}.

Now, let us prove that for each n Î N,

Mn = max{d(gxn, gxn−1), d(gyn, gyn−1)}. (2:3)

We consider the following three cases:

Case I. If Mn = 0 or Mn = max{d(gxn, gxn-1), d (gyn, gyn-1)}, then (2.3) obviously

holds.

Case II. Mn = d(gxn, gxn+1) > 0.

Then, by (2.1),

d(gxn+1, gxn) ≤ φ(d(gxn, gxn+1)) < d(gxn, gxn+1), (2:4)

which is a contradiction.

Case III. Mn = d(gyn, gyn+1) > 0.

Similar to Case II, by (2.2), we get a contradiction.

Thus, in all cases, (2.3) holds for each n Î N. In addition, combining (2.1) and (2.2),

we get that for all n Î N:

Mn+1 = max{d(gxn+1, gxn), d(gyn+1, gyn)} ≤ φ(Mn) · · · ≤ φn(M1). (2:5)

Let ε > 0 be fixed. Since lim
n→∞ φn(M1) = 0, by (2.5), there exists N Î N such that for

all n >N,

Mn+1 < ε − φ(ε). (2:6)

Throughout the rest of this article, we denote

Mp
n = max{d(gxn+p, gxn), d(gyn, gyn+p)}

for each p Î N and each n Î N.

Let n >N be fixed. Let us show that for all p Î N:

Mp
n ≤ ε. (2:7)

By (2.6), we have

M1
n = Mn+1 < ε − φ(ε) < ε.
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By (2.5) and (2.6), we get

M2
n = max{d(gxn+2, gxn), d(gyn+2, gyn)}

≤ max{d(gxn+2, gxn+1), d(gyn+2, gyn+1)} + max{d(gxn+1, gxn), d(gyn+1, gyn)}
= Mn+2 +Mn+1

≤ φ(Mn+1) +Mn+1

≤ φ(ε) + ε − φ(ε) = ε.

Next, let us show that M3
n ≤ ε . By (H1), we have

M2
n+1 = max{d(gxn+3, gxn+1), d(gyn+3, gyn+1)}

= max{d(F(xn+2, yn+2), F(xn, yn)), d(F(yn+2, xn+2), F(yn, xn))}
≤ φ(an),

(2:8)

where

an = max
{
d(gxn+2, gxn), d(gyn, gyn+2), d(gxn+2, gxn+3), d(gyn+2, gyn+3), d(gxn, gxn+1),

d(gyn, gyn+1),
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2
,
d(gyn+2, gyn+1) + d(gyn, gyn+3)

2

}

= max
{
M2

n,Mn+3,Mn+1,
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2
,
d(gyn+2, gyn+1) + d(gyn, gyn+3)

2

}

≤ max
{
ε,

d(gxn+2, gxn+1) + d(gxn, gxn+3)
2

,
d(gyn+2, gyn+1) + d(gyn, gyn+3)

2

}
.

If

an =
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2
,

then by (2.5) and (2.8),

d(gxn+3, gxn+1) ≤ φ(an) ≤ an =
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2

≤ Mn+2 + d(gxn, gxn+3)
2

≤ φ(ε) + d(gxn, gxn+3)
2

,

which yields

d(gxn, gxn+3) ≤ d(gxn+3, gxn+1) + (gxn+1, gxn)

≤ φ(ε) + d(gxn, gxn+3)
2

+ ε − φ(ε)

= ε − φ(ε)
2

+
d(gxn, gxn+3)

2
,

i.e.,
d(gxn, gxn+3)

2
≤ ε − φ(ε)

2
. Thus,

an =
d(gxn+2, gxn+1) + d(gxn, gxn+3)

2
≤ Mn+2 + d(gxn, gxn+3)

2
≤ φ(ε)

2
+
d(gxn, gxn+3)

2
≤ ε.

If an =
d(gyn+2, gyn+1) + d(gyn, gyn+3)

2
, one can similarly show that an ≤ ε. Hence, in

all cases, an ≤ ε, so that M2
n+1 ≤ φ(ε) . Then, by (2.6), we get
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M3
n = max{d(gxn+3, gxn), d(gyn+3, gyn)}

≤ max{d(gxn+3, gxn+1), d(gyn+3, gyn+1)} + max{d(gxn+1, gxn), d(gyn+1, gyn)}
= M2

n+1 +Mn+1

≤ φ(ε) + ε − φ(ε) = ε.

In general, in order to prove that Mp
n ≤ ε , one can first show that Mp−1

n+1 ≤ φ(ε) , and

then by the inequality Mp
n ≤ Mp−1

n+1 +Mn+1 , the conclusion follows easily.

Now, we have proved that (2.7) holds for all p Î N, which means that {gxn} and {gyn}

are Cauchy sequences. Then, by the completeness of g(X), there exist x, y Î X such

that

lim
n→∞ gxn = gx, lim

n→∞ gyn = gy. (2:9)

By (H1) we have

d(F(x, y), gx) ≤ d(F(x, y), F(xn, yn)) + d(gxn+1, gx) ≤ φ(cn) + d(gxn+1, gx), (2:10)

and

d(F(y, x), gy) ≤ d(F(y, x), F(yn, xn)) + d(gyn+1, gy) ≤ φ(cn) + d(gyn+1, gy), (2:11)

where

cn = max
{
d(gx, gxn), d(gy, gyn), d(gx, F(x, y)), d(gy, F(y, x)), d(gxn , gxn+1),

d(gyn, gyn+1),
d(gx, gxn+1) + d(gxn, F(x, y))

2
,
d(gy, gyn+1) + d(gyn, F(y, x))

2

}
.

Now, we claim that gx = F(x, y) and gy = F(y, x). In fact, if this is not true, then

max{d(gx, F(x, y)), d(gy, F(y, x))} > 0,

which, together with (2.9), yield that cn = max{d(gx, F(x, y)), d(gy, F(y, x))} when n is

sufficiently large. Letting n ® ∞ in (2.10) and (2.11), it follows that

d(F(x, y), gx) ≤ φ(cn) < max{d(gx, F(x, y)), d(gy, F(y, x))}

and

d(F(y, x), gy) ≤ φ(cn) < max{d(gx, F(x, y)), d(gy, F(y, x))}.

This is a contradiction. Thus, gx = F(x, y) and gy = F(y, x), i.e., (x, y) is a coupled

coincidence point of F and g.

Example 2.2. Let X = [2,+∞), d(x, y) = |x-y|, F(x, y) = x + y, g(x) = x2, and φ(t) =
t
2
.

It is easy to verify that all the assumptions of Theorem 2.1 are satisfied. So F and g

have a coupled coincidence point. In fact, we have F(2, 2) = g(2).

If F and g are w-compatible, we have the following result:

Theorem 2.3. Suppose that all of the assumptions of Theorem 2.1 are satisfied, and F

and g are w-compatible. Then F and g have a unique common fixed point.

Proof. We give the proof in 3 steps.

Long et al. Fixed Point Theory and Applications 2012, 2012:66
http://www.fixedpointtheoryandapplications.com/content/2012/1/66

Page 5 of 9



Step 1. We claim that if

gx1 = F(x1, y1), gy1 = F(y1, x1), gx2 = F(x2, y2), gy2 = F(y2, x2),

then gx1 = gx2 = gy1 = gy2. In fact, by (H1), we have

d(gx1, gx2) = d(F(x1, y1), F(x2, y2)) ≤ φ(ω)

and

d(gy1, gy2) = d(F(y1, x1), F(y2, x2)) ≤ φ(ω),

where ω = Mg
F(x1, y1, x2, y2) = Mg

F(y1, x1, y2, x2) = max{d(gx1, gx2), d(gy1, gy2)} . Then,
it follows that

ω = max{d(gx1, gx2), d(gy1, gy2)} ≤ φ(ω),

which gives that ω = 0, i.e., gx1 = gx2 and gy1 = gy2.

By a similar argument, in the case of

gx1 = F(x1, y1), gy1 = F(y1, x1), gx2 = F(x2, y2), gy2 = F(y2, x2),

one can also show that gx1 = gy2 and gy1 = gx2. Then, it follows that

gx1 = gy1 = gx2 = gy2.

Step 2. By Theorem 2.1, (x, y) is a coupled coincidence point of F and g, i.e., gx = F

(x, y) and gy = F(y, x). Then, by Step 1, we have gx = gy. Let u = gx = gy. Since F

and g are w-compatible, we have

gu = g(gx) = g(F(x, y)) = F(gx, gy) = F(u, u).

Again by Step 1, one obtains gu = gx. Thus u = gx = gu = F(u, u), i.e., u is a common

fixed point of F and g.

Step 3. Let v = gv = F(v, v). By Step 1, one can deduce that gv = gu. So u = gu = gv

= v, which means that u is the unique common fixed point of F and g.

3 Applications to cone metric spaces
In this section, by a scalarization method used in [7], we apply our main results in

metric spaces to cone metric spaces, and obtain some new theorems.

In the following, we always suppose that E is a Banach space, P is a convex cone in E

with int P �=� 0,� is the partial ordering induced by P, (X, r) is a cone metric space

with the underlying cone P, e Î intP, and ξe : E ® ℝ is defined by

ξe(y) = inf{r ∈ R : y ∈ re − P}, y ∈ E.

In addition, x ≫ y stands for x - y Î intP.

First, let us recall some definitions about cone metric space.

Definition 3.1. [8]Let X be a nonempty set and P be a cone in a Banach space E.

Suppose that a mapping d : X × X ® E satisfies:
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(d1) θ ≼ r(x, y) for all x,y Î X and r(x, y) = θ if and only if x = y, where θ is the

zero element of P;

(d2) r(x, y) = r(y, x) for all x, y Î X;

(d3) r(x, y) ≼ r(x, z) + r(z, y) for all x, y, z Î X.

Then r is called a cone metric on X and (X, r) is called a cone metric space.

Definition 3.2. Let (X, r) be a cone metric space. Let {xn} be a sequence in X and x Î
X. If ∀c ≫ θ, there exists N Î N such that for all n >N, r(xn, x) ≪ c, then we say that

{xn} converges to x, and we denote it by lim
n→∞ xn = x or xn ® x, n ® ∞. If ∀c ≫ θ, there

exists N Î N such that for all n, m >N, r(xn, xm) ≪ c, then {xn} is called a Cauchy

sequence in X. In addition, (X, r) is called complete cone metric space if every Cauchy

sequence is convergent.

Recall that it has been of great interest for many authors to study fixed point theo-

rems in cone metric spaces, and there is a large literature on this topic. We refer the

reader to [1,3,5,7,9-28] and the references therein for some recent developments on

this topic.

Next, let us recall some notations and basic results about the scalarization function ξe.

Lemma 3.3. [[7], Lemma 1.1] The following statements are true:

(i) ξe(·) is positively homogeneous and continuous on E;

(ii) y, z Î E with y ≼ z implies ξe (y) ≤ ξe (z);

(ii) ξe (y + z) ≤ ξe (y) + ξe (z) for all y, z Î E.

Combining Theorems 2.1 and 2.2 of [7] and, we have the following results:

Theorem 3.4. Let (X, r) be a cone metric space with underlying cone P. Then, ξe ○ r
is a metric on X. Moreover, if (X, r) is complete, then (X, ξe ○ r) is a complete metric

space.

By using Theorems 2.1 and 2.3, one can deduce many results on cone metric spaces.

For example, we have the following theorem:

Theorem 3.5. Let (X, r) be a cone metric space with underlying cone P. Assume that

g:X ® X and F:X × X ® X are two mappings satisfying that F(X × X) ⊆ g(X), g(X) is a

complete cone metric space, and there exists a constant l Î (0,1) such that for each x,

y, u, v Î X, there is a z ∈ SgF(x, y, u, v)with

ρ(F(x, y), F(u, v)) � λz,

where

SgF(x, y, u, v) = co
{
ρ(gx, gu),ρ(gy, gv),ρ(gx, F(x, y)),ρ(gu, F(u, v)),ρ(gy, F(y, x)),

ρ(gv, F(v, u)),
ρ(gx, F(u, v)) + ρ(gu, F(x, y))

2
,
ρ(gy, F(v, u)) + ρ(gv, F(y, x))

2

}
,

and co denotes the convex hull. Then F and g have a coupled coincidence point in X.

Moreover, if F and g are w-compatible, then F and g have a unique common fixed

point.

Proof. Let d = ξe ○ r. By Theorem 3.4, d is a metric on X and (g(X), d) is a complete

metric space. Then, by Lemma 3.3, we have
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d(F(x, y), F(u, v)) ≤ λ · ξe(z) ≤ λ · Mg
F(x, y, u, v),

where Mg
F(x, y, u, v) is defined in Theorem 2.1. Now, letting

φ(t) = λt,

it is easy to see that all of the assumptions of Theorem 2.1 are satisfied. Thus F and

g have a coupled coincidence point in X. In addition, if F and g are w-compatible, by

Theorem 2.3, F and g have a unique common fixed point.

Remark 3.6. Theorem 3.5 is a complement of [[1], Theorem 2.4]. Moreover, Theo-

rem 3.5 extends some existing results. For example, one can deduce [[3], Theorem 2.2]

from Theorem 3.5. In addition, note that Theorems 3.4 and 3.5 are true and in the

context of tvs-cone metric spaces (for details see [23,28]).

Remark 3.7. It is needed to note that one can also get Theorem 3.5 by using the

method of Minkowski functional, which is introduced in [22].
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