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Abstract

In this article, we present tripled coincidence point theorems for F: X3 ® X and g: X
® X satisfying weak �-contractions in partially ordered metric spaces. We also
provide nontrivial examples to illustrate our results and new concepts presented
herein. Our results unify, generalize and complement various known comparable
results from the current literature, Berinde and Borcut and Abbas et al.

1 Introduction
Fixed point theory has fascinated hundreds of researchers since 1922 with the cele-

brated Banach’s fixed point theorem. This theorem provides a technique for solving a

variety of applied problems in mathematical sciences and engineering. There exists a

last literature on the topic and this is a very active field of research at present. There

are great number of generalizations of the Banach contraction principle. Bhaskar and

Lakshmikantham [1] introduced the notion of coupled fixed point and proved some

coupled fixed point results under certain conditions, in a complete metric space

endowed with a partial order. Later, Lakshmikantham and Ćirić [2] extended these

results by defining the mixed g-monotone property. More accurately, they proved

coupled coincidence and coupled common fixed point theorems for a mixed g-mono-

tone mapping in a complete metric space endowed with a partial order. Karapınar

[3,4] generalized these results on a complete cone metric space endowed with a partial

order. For other results on coupled fixed point theory, we address the readers to

[5-13].

To make our exposition self contained, in this section we recall some previous nota-

tions and known results.

For simplicity, we denote from now on
X × X · · · X × X︸ ︷︷ ︸

k terms
by Xk, where k Î N and

X be a non-empty set.

Let (X, ≤) be a partially ordered set. According to [1], the mapping F: X2 ® X is said

to have mixed monotone property if F(x, y) is monotone non-decreasing in x and is

monotone non-increasing in y, that is, for any x, y Î X,

x1 ≤ x2 ⇒ F(x1, y) ≤ F(x2, y), for x1, x2 ∈ X,

y1 ≤ y2 ⇒ F(x, y2) ≤ F(x, y1), for y1, y2 ∈ X.
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An element (x, y) Î X2 is said to be a coupled fixed point of the mapping F: X2 ® X

if

F(x, y) = x and F(y, x) = y.

Theorem 1.1. ([1]) Let (X, ≤) be an ordered set such that there exists a metric d on X

such that (X, d) is complete. Let F: X2 ® X be a continuous mapping having the mixed

monotone property on X. Assume that there exists k Î [0, 1) with

d(F(x, y), F(u, v)) ≤ k
2
[d(x, u) + d(y, v)], for all u ≤ x, y ≤ u. (1:1)

If there exist x0, y0 Î X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then, there exist x,

y Î X such that x = F(x, y) and y = F(y, x).

Recently, Samet and Vetro [14] introduced the notion of fixed point of N-order as

natural extension of that of coupled fixed point and established some new coupled

fixed point theorems in complete metric spaces, using a new concept of F-invariant

set. Later, Berinde and Borcut [15] obtained existence and uniqueness of triple fixed

point results in a complete metric space, endowed with a partial order.

Again, let (X, ≤) be a partially ordered set. In accordance with [15], the mapping F:

X3 ® X is said to have the mixed monotone property if for any x, y, z Î X

x1, x2 ∈ X, x1 ≤ x2 ⇒ F(x1, y, z) ≤ F(x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

z1, z2 ∈ X, z1 ≤ z2 ⇒ F(x, y, z1) ≤ F(x, y, z2).

An element (x, y, z) Î X3 is called a tripled fixed point of F if

F(x, y, z) = x, F(y, x, y) = y and F(z, y, x) = z.

Berinde and Borcut [15] proved the following theorem.

Theorem 1.2. ([15]) Let (X, ≤) be a partially ordered set and (X, d) be a complete

metric space. Let F: X3 ® X be a mapping having the mixed monotone property on X.

Assume that there exist constants a, b, c Î [0, 1) such that a + b + c < 1 for which

d(F(x, y, z), F(u, v,w)) ≤ ad(x, u) + bd(y, v) + cd(z,w) (1:2)

for all x ≥ u, y ≤ υ, z ≥ w. Assume either

(I) F is continuous, or

(II) X has the following properties:

(i) if non-decreasing sequence xn ® x, then xn ≤ x for all n,

(ii) if non-increasing sequence yn ® y, then yn ≥ y for all n.

If there exist x0, y0, z0 Î X such that

x0 ≤ F(x0, y0, z0), y0 ≥ F(y0, x0, y0), and z0 ≤ F(x0, y0, z0)

then there exist x, y, z Î X such that

F(x, y, z) = x, F(y, x, y) = y, and F(z, y, x) = z.
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In this article, we establish tripled coincidence point theorems for F: X3 ® X and g:

X ® X satisfying nonlinear contractive conditions, in partially ordered metric spaces.

The presented theorems extend and improve some results in litterature.

2 Main results
We shall start this section by recalling the following basic notions, introduced by

[Abbas, Aydi and Karapınar, Tripled common fixed point in partially ordered metric

spaces, submitted]. In this respect, let us consider (X, ≤) a partially ordered set, F: X3

® X and g: X ® X two mappings. The mapping F is said to have the mixed g-mono-

tone property if for any x, y, z Î X

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F(x1, y, z) ≤ F(x2, y, z),

y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

z1, z2 ∈ X, gz1 ≤ gz2 ⇒ F(x, y, z1) ≤ F(x, y, z2).

An element (x, y, z) is called a tripled coincidence point of F and g if

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

while (gx, gy, gz) is said a tripled point of coincidence of mappings F and g. Moreover,

(x, y, z) is called a tripled common fixed point of F and g if

F(x, y, z) = gx = x, F(y, x, y) = gy = y, and F(z, y, x) = gz = z.

At last, mappings F and g are called commutative if

g(F(x, y, z)) = F(gx, gy, gz), ∀x, y, z ∈ X.

In the same paper, they proved the following result.

Theorem 2.1. Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, d) is a complete metric space. Assume there is a function �: [0, +∞) ®
[0, +∞) such that �(t) <t for each t > 0. Also suppose F: X3 ® X and g: X ® X are

such that F has the mixed g-monotone property and suppose there exist p, q, r Î [0, 1)

with p + 2q + r < 1 such that

d(F(x, y, z), F(u, v,w)) ≤ ϕ
(
pd(gx, gu) + qd(gy, gv) + rd(gz, gw)

)
, (2:1)

for any x, y, z Î X for which gx >gu, gυ ≥ gy and gz ≥ gw.

Suppose F(X3) ⊂ g(X), g is continuous and commutes with F. Suppose either

(a) F is continuous, or

(b) X has the following properties:

(i) if non-decreasing sequence gxn ® x (respectively, gzn ® z), then gxn ≤ x

(respectively, gzn ≤ z) for all n,

(ii) if non-increasing sequence gyn ® y, then gyn ≥ y for all n.

If there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F

(z0, y0, x0), then there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

that is, F and g have a tripled coincidence point.
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Before starting to introduce our results, let us consider the set of functions

� =
{
ϕ : [0, +∞) → [0, +∞)|ϕ(t) < t and lim

r→t+
ϕ(r) < t, t > 0

}
.

Our first main result is the following:

Theorem 2.2. Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X,d) is a complete metric space. Suppose F: X3 ® X and g: X ® X are

such that F has the mixed g-monotone property and F(X3) ⊂ g(X). Assume there is a

function � Î F such that

d(F(x, y, z), F(u, v,w)) + d(F(y, x, y), F(v, u, v)) + d(F(z, y, x), F(w, v, u))

≤ 3ϕ

(
d(gx, gu) + d(gy, gv) + d(gz, gw)

3

)
,

(2:2)

for any x, y, z, u, υ, w Î X for which gx ≥ gu, gυ ≥ gy and gz ≥ gw. Assume that F is

continuous, g is continuous and commutes with F. If there exist x0, y0, z0 Î X such that

gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F(z0, y0, x0), (2:3)

then there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

that is, F and g have a tripled coincidence point.

Proof. Let x0, y0, z0 Î X be such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F

(z0, y0, x0). We can choose x1, y1, z1 Î X such that

gx1 = F(x0, y0, z0), gy1 = F(y0, x0, y0) and gz1 = F(z0, y0, x0). (2:4)

This can be done because F(X3) ⊂ g(X). Continuing this process, we construct

sequences {xn}, {yn}, and {zn} in X such that

gxn+1 = F(xn, yn, zn), gyn+1 = F(yn, xn, zn), and gzn+1 = F(zn, yn, xn). (2:5)

By induction, we will prove that

gxn ≤ gxn+1, gyn+1 ≤ gyn, and gzn ≤ gzn+1. (2:6)

Since gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0), and gz0 ≤ F(z0, y0, x0), therefore by (2.4)

we have

gx0 ≤ gx1, gy1 ≤ gy0, and gz0 ≤ gz1.

Thus (2.6) is true for n = 0. We suppose that (2.6) is true for some n > 0. Since F

has the mixed g-monotone property, by gxn ≤ gxn+1, gyn+1 ≤ gyn, and gzn ≤ gzn+1, we

have that

gxn+1 = F(xn, yn, zn) ≤ F(xn+1, yn, zn)

≤ F(xn+1, yn, zn+1)

≤ F(xn+1, yn+1, zn+1) = gxn+2,
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gyn+2 = F(yn+1, xn+1, yn+1) ≤ F(yn+1, xn, yn+1)

≤ F(yn, xn, yn+1)

≤ F(yn, xn, yn) = gyn+1,

and

gzn+1 = F(zn, yn, xn) ≤ F(zn+1, yn, xn)

≤ F(zn+1, yn+1, xn)

≤ F(zn+1, yn+1, xn+1) = gzn+2.

That is, (2.6) is true for any n Î N. If for some k Î N

gxk = gxk+1, gyk = gyk+1, and gzk = gzk+1,

then, by (2.5), (xk, yk, zk) is a tripled coincidence point of F and g. From now on, we

assume that at least

gxn 	= gxn+1 or gyn 	= gyn+1 or gzn 	= gzn+1 (2:7)

for any n Î N. From (2.6) and the inequality (2.2)

d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)

= d(F(xn, yn, zn), F(xn−1, yn−1, zn−1)) + d(F(yn, xn, yn), F(yn−1, xn−1, yn−1))

+ d(F(zn, yn, xn), F(zn−1, yn−1, xn−1))

≤ 3ϕ

(
1
3
(d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)

)
.

For each n ≥ 1, take

δn :=
1
3
(d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)). (2:8)

One can write

δn+1 ≤ ϕ(δn) ∀n ≥ 1. (2:9)

By (2.7), we have δn > 0. Having in mind �(t) <t for each t > 0, so we have �(δn) <δn.

From (2.9), we get

δn+1 < δn ∀n ≥ 1,

that is, the sequence {δn} is non-negative and decreasing. Therefore, there exists

some δ ≥ 0 such that

lim
n→+∞ δn = lim

n→+∞
1
3

(
d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)

)
= δ+. (2:10)

We shall prove that δ = 0. Assume, on the contrary, that δ > 0. Then by letting n ®
+∞ in (2.9) we have

0 < δ = lim
n→+∞ δn+1 ≤ lim

n→+∞ ϕ(δn) = lim
r→δ+

δ(r) < δ,

which is a contradiction. Thus, δ = 0, and by (2.10), we get

lim
n→+∞ δn = 0. (2:11)
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We now prove that {gxn}, {gyn}, and {gzn} are Cauchy sequences in (X,d).

Suppose, on the contrary, that at least one of {gxn}, {gyn}, and {gzn} is not a Cauchy

sequence. So, there exists ε > 0 for which we can find subsequences {gxn(k)}, {gxm(k)} of

{gxn}, {gyn(k)}, {gym(k)} of {gyn}, and {gzn(k)}, {gzm(k)} of {gzn} with n(k) >m(k) ≥ k such that

d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) + d(gzn(k), gzm(k)) ≥ ε. (2:12)

Additionally, corresponding to m(k), we may choose n(k) such that it is the smallest

integer satisfying (2.12) and n(k) >m(k) ≥ k. Thus,

d(gxn(x)−1, gxm(k)) + d(gyn(k)−1, gym(k)) + d(dzn(k)−1, gzm(k)) < ε. (2:13)

By using triangle inequality and having in mind (2.12) and (2.13)

ε ≤ tk = d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) + d(gzn(k), gzm(k))

≤ d(gxn(k), gxn(k)−1) + d(gxn(k)−1, gxm(k)) + d(gyn(k), gyn(k)−1)

+ d(gyn(k)−1, gym(k)) + d(gzn(k), gzn(k)−1) + d(gzn(k)−1, gzm(k))

< d(gxn(k), gxn(k)−1) + d(gyn(k), gyn(k)−1) + d(gzn(k), gzn(k)−1) + ε.

(2:14)

Letting k ® ∞ in (2.14) and using (2.11)

lim
k→∞

tk = lim
k→∞

d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) + d(gzn(k), gzm(k)) = ε. (2:15)

Again by triangle inequality,

tk = d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) + d(gzn(k), gzm(k))

≤ d(gxn(k), gxn(k)+1) + d(gxn(k)+1, gxm(k)+1) + d(gxm(k)+1, gxm(k))

+ d(gyn(k), gyn(k)+1) + d(gyn(k)+1, gym(k)+1) + d(gym(k)+1, gym(k))

+ d(gzn(k), gzn(k)+1) + d(gzn(k)+1, gym(k)+1) + d(gzm(k)+1, gzm(k))

≤ δn(k)+1 + δm(k)+1 + d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1)

+ d(gzn(k)+1, gzm(k)+1).

(2:16)

Since n(k) >m(k), then

gxn(k) ≥ gxm(k), gyn(k) ≤ gym(k), gzn(k) ≥ gzm(k). (2:17)

Take (2.17) in (2.2) to get

d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1) + d(gzn(k)+1, gzm(k)+1)

= d(F(xn(k), yn(k), zn(k)), F(xm(k),ym(k), zm(k))

+ d(F(yn(k), xn(k), yn(k)), F(ym(k), xm(k), ym(k))

+ d(F(zn(k), yn(k), xn(k)), F(zm(k), ym(k), xm(k)))

≤ 3ϕ

(
1
3
[d(gxn(k), gxm(k)) + d(gyn(k), gym(k)) + d(gzn(k), gzm(k))]

)

= 3ϕ

(
tk
3

)
.
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Combining this in (2.16), we obtain that

tk ≤ δn(k)+1 + δm(k)+1 + d(gxn(k)+1, gxm(k)+1) + d(gyn(k)+1, gym(k)+1)

+ d(gzn(k)+1, gzm(k)+1)

≤ δn(k)+1 + δm(k)+1 + 3ϕ

(
tk
3

)
.

Letting k ® ∞ and having in mind (2.11) and (2.15), we get

ε ≤ 3 lim
k→+∞

ϕ

(
1
3
tk

)
= 3 lim

r→
(1
3
t

)
+

φ(r) < 3
(
1
3

ε

)
= ε,

which is a contradiction. This shows that {gxn}, {gyn}, and {gzn} are Cauchy sequences

in (X, d).

Since X is complete, there exist x, y, z Î X such that

lim
n→+∞ gxn = x, lim

n→+∞ gyn = y and lim
n→+∞ gzn = z. (2:18)

From (2.18) and the continuity of g.

lim
n→+∞ g(gxn) = gx, lim

n→+∞ g(gyn) = gy, and lim
n→+∞ g(gzn) = gz. (2:19)

From the commutativity of F and g, we have

g(gxn+1) = g(F(xn, yn, zn)) = F(gxn, gyn, gzn),

g(gyn+1) = g(F(yn, xn, yn)) = F(gyn, gxn, gyn),

g(gzn+1) = g(F(zn, yn, xn)) = F(gzn, gyn, gxn).

(2:20)

Now we shall show that gx = F(x, y, z), gy = F(y, x, y), and gz = F(z, y, x).

Suppose that F is continuous. Letting n ® +∞ in (2.20), therefore by (2.18) and

(2.19), we obtain

gx = lim
n→+∞ g(gxn+1) = lim

n→+∞ F(gxn, gyn, gzn)

= F
(
lim

n→+∞ gxn, lim
n→+∞ gyn, lim

n→+∞ gzn
)
= F(x, y, z),

gy = lim
n→+∞ g(gyn+1) = lim

n→+∞ F(gyn, gxn, gyn)

= F
(
lim

n→+∞ gyn, lim
n→+∞ gxn, lim

n→+∞ gyn
)
= F(y, x, y),

and

gz = lim
n→+∞ g(gzn+1) = lim

n→+∞ F(gzn, gyn, gxn)

= F
(
lim

n→+∞ gzn, lim
n→+∞ gyn, lim

n→+∞ gxn
)
= F(z, y, x).

We have proved that F and g have a tripled coincidence point.

Corollary 2.3. Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X,d) is a complete metric space. Suppose F: X3 ® X and g: X ® X are

such that F has the mixed g-monotone property and F(X3) ⊂ g(X). Assume there exists

a Î [0,1) such that
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d(F(x, y, z), F(u, v,w)) + d(F(y, x, y), F(v, u, v)) + d(F(z, y, x), F(w, v, u))

≤ α(d(gx, gu) + d(gy, gv) + d(gz, gw)),

for any x, y, z, u, υ, w Î X for which gx ≥ gu, gυ ≥ gy, and gz ≥ gw. Assume that F is

continuous, g is continuous and commutes with F. If there exist x0, y0, z0 Î X such that

gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0), and gz0 ≤ F(z0, y0, x0),

then there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

that is, F and g have a tripled coincidence point.

Proof. It follows by taking �(t) = at in Theorem 2.2.

In the following theorem, we omit the continuity hypothesis of F. We need the fol-

lowing definition.

Definition 2.1. Let (X, ≤) be a partially ordered set and d be a metric on X. We say

that (X, d,≤) is regular if the following conditions hold:

(i) if a non-decreasing sequence (xn) is such that xn ® x, then xn ≤ x for all n,

(ii) if a non-increasing sequence (yn) is such that yn ® y, then y ≤ yn for all n.

Theorem 2.4. Let (X, ≤) be a partially ordered set and d be a metric on X such that

(X, d, ≤) is regular. Suppose that there exist � Î F and mappings F: X3 ® X and g: X

® X such that (2.2) holds for any x, y, z, u, υ, w Î X for which gx ≥ gu, gυ ≥ gy and gz

≥ gw. Suppose also that (g(X), d) is complete, F has the mixed g-monotone property and

F(X3) ⊂ g(X). If there exist x0, y0, z0 Î X such that gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0),

and gz0 ≤ F(z0, y0, x0), then there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

that is, F and g have a tripled coincidence point.

Proof. Proceeding exactly as in Theorem 2.2, we have that (gxn), (gyn), and (gzn) are

Cauchy sequences in the complete metric space (g(X), d). Then, there exist x, y, z Î X

such that gxn ® gx, gyn ® gy, and gzn ® gz. Since (gxn) and (gzn) are non-decreasing

and (gyn) is non-increasing, using the regularity of (X, d, ≤), we have gxn ≤ gx, gzn ≤ gz,

and gy ≤ gyn for all n ≥ 0. If gxn = gx, gyn = gy, and gzn = gz for some n ≥ 0, then gx =

gxn ≤ gxn+1 ≤ gx = gxn, gz = gzn ≤ gzn+1 ≤ gz = gzn, and gy ≤ gyn+1 ≤ gyn = gy, which

implies that gxn = gxn+1 = F(xn, yn, zn), gyn = gyn+1 = F(yn, xn, yn), and gzn = gzn+1 = F

(zn, yn, xn), that is, (xn, yn, zn) is a tripled coincidence point of F and g. Then, we sup-

pose that (gxn, gyn, gzn) ≠ (gx, gy, gz) for all n ≥ 0. Using the triangle inequality, (2.2)

and the property �(t) <t for all t > 0,

d(gx, F(x, y, z))

≤ d(gx, gxn+1) + d(gxn+1, F(x, y, z))

= d(gx, gxn+1) + d(F(x, y, z), F(xn, yn, zn))

≤ d(gx, gxn+1) + 3ϕ

(
1
3
[d(gxn, gx) + d(gyn, gy) + d(dzn, gz)]

)
< d(gx, gxn+1) + d(gxn, gx) + d(gyn, gy) + d(gzn, gz).

(2:21)
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Taking n ® ∞ in the above inequality we obtain that d(gx,F(x, y, z)) = 0, so gx = F(x,

y, z).

Analogously, we find that

F(y, x, y) = gy, F(z, y, x) = gz,

thus, we have proved that F and g have a tripled coincidence point.

Corollary 2.5. Let (X, ≤) be a partially ordered set and suppose there is a metric d on

X such that (X, ≤,d) is regular. Suppose F: X3 ® X and g: X ® X are such that F has

the mixed g-monotone property and F(X3) ⊂ g(X). Assume there exists a Î [0,1) such

that

d(F(x, y, z), F(u, v,w)) + d(F(y, x, y), F(v, u, v)) + d(F(z, y, x), F(w, v, u))

≤ α(d(gx, gu) + d(gy, gv) + d(gz, gw)),

for any x, y, z, u, υ, w Î X for which gx ≥ gu, gυ ≥ gy, and gz ≥ gw. Suppose also that

(g(X), d) is complete. If there exist x0, y0, z0 Î X such that

gx0 ≤ F(x0, y0, z0), gy0 ≥ F(y0, x0, y0) and gz0 ≤ F(z0, y0, x0),

then there exist x, y, z Î X such that

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

that is, F and g have a tripled coincidence point.

Proof. It follows by taking �(t) = at in Theorem 2.4.

Now, we shall prove the existence and the uniqueness of a tripled common fixed

point theorem. For a product X3 = X × X × X of a partial ordered set (X, ≤), we define

a partial ordering in the following way: For all (x, y, z), (u, υ, r) Î X3

(x, y, z) ≤ (u, v, r) ⇔ x ≤ u, y ≥ v and z ≤ r. (2:22)

We say that (x, y, z) and (u, υ, w) are comparable if

(x, y, z) ≤ (u, v, r) or (u, v, r) ≤ (x, y, z).

Also, we say that (x, y, z) is equal to (u, υ, r) if and only if x = u, y = υ and z = r.

Theorem 2.6. In addition to hypothesis of Theorem 2.2, suppose that for all (x, y, z)

and (u, υ, r) in X3, there exists (a, b, c) in X3 such that (F(a, b, c), F(b, a, b), F(c, b, a))

is comparable to (F(x, y, z), F(y, x, y), F(z, y, x)) and (F(u, υ, r), F(υ, u, υ), F(r, υ, u)).

Also, assume that � is non-decreasing. Then, F and g have a unique tripled common

fixed point (x, y, z), that is

x = gx = F(x, y, z), y = gy = F(y, x, y), and z = gz = F(z, y, x).

Proof. Due to Theorem 2.2, the set of tripled coincidence points of F and g is not

empty. Assume now, that (x, y, z) and (u,υ,r) are two tripled coincidence points of F

and g, that is,

F(x, y, z) = gx, F(y, x, y) = gy, and F(z, y, x) = gz,

F(u, v, r) = gu, F(v, u, v) = gv, and F(r, v, u) = gr.

We shall show that (gx, gy, gz) and (gu, gυ, gr) are equal.
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By assumption, there is (a, b, c) in X3 such that (F(a, b, c), F(b, a, b), F(c, b, a)) is

comparable to (F(x, y, z), F(y, x, y), F(z, y, x)) and (F(u, υ, r), F(υ, u, v), F(r, υ, u)).

Define the sequences {gan},{gbn}, and {gcn} such that a = a0, b = b0, c = c0 and

gan = F(an−1, bn−1, cn−1), gbn = F(bn−1, an−1, bn−1), gcn = F(cn−1, bn−1, an−1),

for all n. Further, set x0 = x, y0 = y, z0 = z and u0 = u, υ0 = υ, r0 = r, and similar

define the sequences {gxn},{gyn}, {gzn} and {gun},{gυn}, {grn}. Then,

gxn = F(x, y, z), gun = F(u, v, r),

gyn = F(y, x, y, ), gvn = F(v, u, v),

gzn = F(z, y, x), grn = F(r, v, u, ),

(2:23)

for all n ≥ 1. Since (F(x, y, z), F(y, x, y), F(z, y, x)) = (gx1, gy1, gz1) = (gx, gy, gz) is

comparable to (F(a, b, c), F(b, a, b), F(c, b, a)) = (ga1, gb1, gc1), then it is easy to show

that (gx, gy, gz) ≥ (ga1, gb1, gc1). Recursively, we get that

(gx, gy, gz) ≥ (gan, gbn, gcn) for all n ≥ 0. (2:24)

By (2.24) and (2.2), we have

d(gx, gan+1) + d(gbn+1, gy) + d(gz, gcn+1) = d(F(x, y, z), F(an, bn, cn))

+ d(F(bn, an, bn), F(y, x, y)) + d(F(z, y, x), F(cn, bn, an)

≤ 3ϕ

(
d(gx, gan) + d(gy, gbn) + d(gz, gcn)

3

)
.

(2:25)

Set

γn =
d(gx, gan) + d(gy, gbn) + d(gz, gcn)

3

From (2.25), we deduce that gn+1 ≤ �(gn). Since � is non-decreasing, it follows

γn ≤ ϕn(γ0).

From the definition of F, we get lim
n→+∞ ϕn(t) = 0 . Then, we have lim

n→+∞ γn = 0 . Thus,

lim
n→∞ d(gx, gan) = 0, lim

n→∞ d(gy, gbn) = 0, lim
n→∞ d(gz, gcn) = 0. (2:26)

By analogy, we show that

lim
n→∞ d(gu, gan) = 0, lim

n→∞ d(gv, gbn) = 0, lim
n→∞ d(gr, gcn) = 0. (2:27)

Combining (2.26) and (2.27) yields that (gx, gy, gz) and (gu, gυ, gr) are equal.

Since gx = F(x, y, z), gy = F(y, x, y), and gz = F(z, y, x), by the commutativity of F and

g, we have

g(gx) = g(F(x, y, z)) = F(gx, gy, gz),

g(gy) = g(F(y, x, y)) = F(gy, gx, gy),

g(gz) = g(F(z, y, x)) = F(gz, gy, gx).

Denote gx = x’, gy = y’, and gz = z’. From the precedent identities,

gx′ = F(x′, y′, z′), gy′ = F(y′, x′, y′), and gz′ = F(z′, y′, x′),

Aydi et al. Fixed Point Theory and Applications 2012, 2012:44
http://www.fixedpointtheoryandapplications.com/content/2012/1/44

Page 10 of 12



that is, (x’, y’, z’) is a tripled coincidence point of F and g. Consequently, (gx’, gy’, gz’)

and (gx, gy, gz) are equal, that is, gx = gx’, gy = gy’, and gz = gz’.

We deduce gx’ = gx = x’, gy’ = gy = y’, and gz’ = gz = z’. Therefore, (x’, y’, z’) is a

tripled common fixed of F and g. Its uniqueness follows from Theorem 2.2.

3 Examples
Remark that Theorem 2.2 is more general than Theorem 2.1, since the contractive

condition (2.2) is weaker than (2.1), a fact which is clearly illustrated by the following

example.

Example 3.1. Let X = ℝ with d(x, y) = |x - y| and natural ordering and let g: X ® X,

F: X3 ® X be given by

g(x) =
n + 1
n

x, n = 1, 2, . . . , x ∈ X; F(x, y, z) = x, (x, y, z) ∈ X3.

It is clear that F is continuous and has the mixed g-monotone property. We now

take ϕ(t) =
n

n + 1
t . We shall show that (2.2) holds for all gx ≥ gu, gy ≤ gυ, and gz ≤ gw.

Let x, y, z, u, υ, and w such that gx ≥ gu, gy ≤ gυ, and gz ≤ gw, and by definition of g,

it means that x ≥ u, y ≤ υ and z ≤ w, so we have

d(F(x, y, z), F(u, v,w)) + d(F(y, x, y), F(v, u, v)) + d(F(z, y, x), F(w, v, u))

= |x − u| + ∣∣y − v
∣∣ + |z − w|

= 3ϕ

(
d(gx, gu) + d(gy, gv) + d(gz, gw)

3

)
.

which is the contractive condition (2.2). On the other hand, x0 = 0, y0 = 0, z0 = 0

satisfy (2.3). All the hypotheses of Theorem 2.2 are verified, and (0,0,0) is a tripled

coincidence point of F and g.

On the other hand, assume that (2.1) holds. Then, there exist p,q,r ≥ 0 such that p +

2q + r < 1 and � satisfying �(t) < t for each t > 0. If x >u, z = w and y = υ, we have

0 < |x − u| = d(F(x, y, z), F(u, v,w))

≤ ϕ(pd(gx, gu) + qd(gy, gv) + rd(gz, gw))

= ϕ

(
n + 1
n

p |x − u|
)

<
n + 1
n

p |x − u| ,

which implies p >
n

n + 1
for any n ≥ 1, and letting n ® +∞, we get p ≥ 1, that is a

contradiction. Thus, Theorem 2.1 is not applicable in this case.

Following example shows that Theorem 2.2 is more general than Theorem 1.2.

Example 3.2. Let X = ℝ be endowed with the usual ordering and the usual metric.

Consider g: X ® X and F: X3 ® X be given by the formulas

g(x) = x, F(x, y, z) =
3x − 6y + 3z

16
, for all x, y, z ∈ X

Take �: [0, ∞) ® [0, ∞) be given by ϕ(t) =
3t
4
for all t Î [0, ∞).

It is clear that all conditions of Theorem 2.2 are satisfied. Moreover, (0,0,0) is a

tripled coincidence point (also a common fixed point) of F and g.
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Now, for x = u, z = w and υ >y, we have

d(F(x, y, z), F(u, v,w) =
3
8
(v − y) >

1
3
(v − y) ≥ k

3
[d(x, u) + d(y, v)d(z,w)],

for any k Î [0,1), that is the result of Berinde and Borcut [15]given by Theorem 1.2 is

not applicable (for a = b = c =
k
3
).
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