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Abstract

Let X be a metric space and {T1, ..., TN} be a finite family of mappings defined on D ⊂
X. Let r : N ® {1,..., N} be a map that assumes every value infinitely often. The
purpose of this article is to establish the convergence of the sequence (xn) defined
by

x0 ∈ D; and xn+1 = Tr(n)(xn), for alln ≥ 0.

In particular, we extend the study of Bauschke [1] from the linear case of Hilbert
spaces to metric spaces. Similarly we show that the examples of convergence hold
in the absence of compactness. These type of methods have been used in areas like
computerized tomography and signal processing.
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1. Introduction
Many problems in mathematics [2] and physical sciences [3-5] uses a technique known

as finding common fixed point. Let X be a real Hilbert space and suppose T1,...,TN are

pairwise distinct self-mappings of some nonempty and closed subset D of X. Suppose

further that the fixed point set, Fix(Ti) = {x Î D : Ti(x) = x}, of each mapping Ti is

nonempty and that C = Fix(T1) ∩ · · · ∩ Fix(TN) �=� 0. The aim is to find a common fixed

point of these mappings. One frequently employed approach is the following:

Let r be a random mapping for {1,..., N}, i.e., a surjective mapping from N onto {1,...,

N} that takes each value in {1,...,N} infinitely often. Then generate a random

sequence (xn)n by taken x0 Î D arbitrary, and

xn+1 = Tr(n)(xn), for all n > 0,

and hope that this sequence converges to a point in C. We call it a random or

unrestricted product (resp. iteration). For products generated by using control
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sequence, there are many results: for instance, cyclic control arises when r(n) = n + 1

mod N (see, for example, [6]).

In general, this random product fails to have well convergence behavior. The first

positive results were done in the case, when D = X and each mapping Ti, is the projec-

tion onto nonempty, closed, and convex subset Ci of X; hence Fix(Ti) = Ci, i = 1,..., N.

The problem of finding a common fixed point is then the well-known Convex Feasibil-

ity Problem (see, for example, [6]). In [7], there are several interesting applications of

this problem. Some of the early known results in this case are:

1. Amemiya and Ando [8]: If each set Ci, is a closed subspace, then the random

product converges weakly to the projection onto C.

2. Bruck [9]: If some set Ci, is compact, then the random product converges in

norm to a point in C. If N = 3 and each set Ci, is symmetric, then the random pro-

duct converges weakly to some point in C.

3. Dye [10]: If the sets Ci, are finite-dimensional subspaces, then the random pro-

duct converges in norm to a point in C.

4. Dye and Reich [11]: If the sets Ci, have a common weak internal point or if N =

3, then the random product converges weakly to a point in C.

5. Youla [12]: If the sets Ci, have a common “inner point”, then the random pro-

duct converges weakly to a point in C.

6. Aharoni and Censor [13], Flam and Zowe [14], Tseng [15], and Eisner et al. [16]:

If X is finite dimensional, then the random product converges in norm to a point

in C.

For more recent references, one can consult [17] and the references therein.

Dye et al. [18] were successful in their extension of Amemiya and Ando’s results

from Hilbert spaces to Banach spaces. In this study, we try to do the same by extend-

ing Bauschke’s results [1] from linear Hilbert spaces to nonlinear metric spaces.

2. Basic definitions and results
Definition 2.1. Let (X, d) be a metric space and D be a nonempty subset of X. The

mapping T : D ® D is said to be projective w.r.t. c0 Î Fix(T) whenever

(i) d(T(x), c) ≤ d(x, c), for any x Î D, and any c Î Fix(T);

(ii) for any bounded sequence (xn)n ⊂ D, we have

lim
n→∞[d(xn, c0) − d(T(xn), c0)] = 0 ⇒ lim

n→∞ d(xn, Fix(T)) = 0.

Moreover T is called a projective mapping if and only if T is projective w.r.t. any

point in Fix(T).

It is worth to mention that in [1] it is assumed that T is nonexpansive to be projec-

tive. In particular it is not immediate that T is continuous under our definition.

Example 2.1. Let X be a Hilbert space and Y be a closed subspace of X. Let P : X ®
Y be the orthogonal projection. Then Fix(P) = Y. For any x Î X and c Î Y, we have

‖x − c‖2 =
∥∥P(x) − c

∥∥2 + ∥∥x − P(x)
∥∥2.
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Let (xn)n be a bounded sequence such that lim
n→∞

[‖xn − c‖ − ∥∥P(xn) − c
∥∥]

= 0, for

some c Î Y. Then we have

lim
n→∞

∥∥xn − P(xn)
∥∥ = 0.

Since P(x) Î Fix(P), for any x Î X, we conclude that lim
n→∞ d(xn, Fix(P)) = 0. In other

words, P is a projective mapping. This example explains why the word projective is used

in the above definition.

More examples of projective mappings may be found in [1]. We have the following

result about projective mappings.

Proposition 2.1. Let (X, d) be a complete metric space and D be a nonempty and

closed subset of X. Let T : D ® D be a projective mapping. Then for any x Î D, the

iterates (Tn(x))n converge. Set P(x) = lim
n→∞ Tn(x). Then P : D ® Fix(T) is a retract which

satisfies

(i) P ∘ T = T ∘ P = P;

(ii) d(P(x), c) ≤ d(x, c), for any x Î D, and c Î Fix(T).

Moreover P is nonexpansive whenever T is nonexpansive.

Proof. Let x Î D and consider the iterates (Tn(x))n. Then from the assumptions on T,

we can see that (d (Tn(x), c))n is decreasing. So this sequence must be convergent. In

particular we must have lim
n→∞[d(Tn(x), c) − d(Tn+1(x), c)] = 0. Hence

lim
n→∞ d(Tn(x), Fix(T)) = 0. Let us show that (Tn(x))n is a Cauchy sequence. Indeed, for

any n <m in N, we have

d(Tn(x),Tm(x)) ≤ d(Tn(x), c) + d(c,Tm(x)) ≤ 2d(Tn(x), c),

for any c Î Fix(T), which implies

d(Tn(x),Tm(x)) ≤ d(Tn(x), c) + d(c,Tm(x)) ≤ 2d(Tn(x), Fix(T)).

Since lim
n→∞ d

(
Tn(x), Fix(T)

)
= 0, we conclude that (Tn(x))n is indeed a Cauchy

sequence. The completeness of X will imply that (Tn(x))n is convergent. Denote its

limit by P(x). It is easy to check that, since T is projective, Fix(T) is closed. Moreover

for each n ≥ 1, there exists cn Î Fix(T) such that

d(Tn(x), cn) ≤ d(Tn(x), Fix(T)) +
1
n
.

Therefore (cn)n also converges to P(x). Since Fix(T) is closed, we must have P(x) Î
Fix(T) which implies T ∘ P = P. The fact that P ∘ T = P is obvious from the properties

of the iterates. The last part (ii) follows from the fact

lim
n→∞ d(Tn(x), c) = inf

n≥0
d(Tn(x), c) = d(P(x), c),

for any x Î D and c Î Fix(T).

For a family of mappings, we have the following extension.

Definition 2.2. Let (X, d) be a metric space and D be a nonempty subset of X. Let T
be a family of mappings defined from D into D. The fixed point set of T is the set
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. We will say that T is projective w.r.t. c Î Fix(T ) if any T Î T is projective w.r.t. c.

Similarly, we will say that T is projective if and only if any T Î T is a projective map-

ping w.r.t. any point in Fix(T ).

In the proof of the previous proposition, we used some interesting properties of the

iterates. These properties are satisfied by what is known as Fejér sequences.

Definition 2.3. Let (X, d) be a metric space and D be a nonempty subset of X. A

sequence (xn)n ⊂ X is said to be Fejér monotone w.r.t. D if

d(xn+1, c) ≤ d(xn, c); for all c ∈ Dandn ≥ 0.

Note that if (xn)n is Fejér monotone then it is bounded, and (d(xn,D))n is monotone

decreasing.

Definition 2.4. Let (X, d) be a metric space. Let {C1,...,CN} be a finite family of none-

mpty subsets of X. We will say that {C1,...,CN} is boundedly regular, if for any bounded

sequence (xn)n ⊂ X we have

lim
n→∞ max

i=1,...,N
d(xn, ci) = 0 ⇒ lim

n→∞ d

(
xn,

N⋂
i=1

Ci

)
= 0.

We will say that {C1,..., CN} is innately boundedly regular if (Ci)iÎJ is boundedly regu-

lar for any nonempty subset J of {1,..., N}.

For examples on boundedly regular sets, the reader may consult [1]. In fact this

property is the one that weakens the compactness assumption used in many results.

Next, we define the concept of quasi-projection as introduced by Baillon and Bruck

[19].

Definition 2.5. Let (X, d) be a metric space and C be a nonempty subset of X. Let x0
Î X.

The quasi-projection of x0 onto C, denoted byQC(x0), is defined by

QC(x0) = {x ∈ C : d(x, c) ≤ d(x0, c), for any c ∈ C}.

Under the above assumptions, the definition of the projection is given by

PC(x0) = {c ∈ C : d(x0, c) = d(x0,C)}.

Clearly we have PC(x0) ⊂ QC(x0). And if x0 Î C, we have

PC(x0) = QC(x0) = {x0}.

3. Main results
Definition 3.1. Let (X, d) be a metric space and D be a nonempty subset of X. Let {T1,

... ,TN} be a finite family of mappings defined from D into D. A mapping T : D ® D is

called a full word if T can be written as a finite product of the mappings {T1, ..., TN},

where each Ti will occur at least once. The set of all full word mappings will be denoted

by ℱ. A mapping T : D ® D is called a M-word, where M Î {1, ..., N}, if T is a finite

product of the mappings {T1, ..., TN}, where at most M different {Ti1 , . . . ,TiM } occur in
this product for some {i1, ..., iM} ⊂ {1, ..., N}. The set of all M-words will be denoted by

WM.

Note that the identity map belongs to WM, for any M Î {1, ..., N}, and F ⊂ WN.
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Proposition 3.1. Let (X, d) be a complete metric space. Let {T1, ..., TN} be a finite

family of mappings defined from D into D, where D is a nonempty and closed subset of

X. Assume that {T1, ..., TN} are projective w.r.t. a common fixed point c Î D. Also

assume that {Fix(T1), ..., Fix(TN)} is innately boundedly regular. Let (xn)n be a bounded

sequence in D and (Wn)n ⊂ WNsuch that lim
n→∞ [d(xn, c) − d(Wn(xn), c)] = 0. Then

(∗) lim
n→∞ d(xn,Wn(xn)) = 0.

Moreover if (Wn)n ⊂ F , then lim
n→∞ d

(
xn,

N⋂
i=1

Fix(Ti)
)
= 0.

Proof Consider the following statement P(M), where M Î {1, ..., N}:

For any bounded sequence (xn)n ⊂ D and any sequence of words (Wn)n ⊂ WN such

that lim
n→∞

[
d(xn, c) − d(Wn(xn), c)

]
= 0 we must have

lim
n→∞ d(xn,Wn(xn)) = 0.

The proof will be done via an induction argument on M. First we prove P(M), when

M = 1. Assume it is not true. Then there exists a bounded sequence (xn)n ⊂ D, an i Î

{1, ..., N} and a sequence of words (Wn)n, where Wn = Tln
i such that

lim
n→∞

[
d(xn, c) − d(Wn(xn), c)

]
= 0

and lim
n→∞ d(xn,Wn(xn)) �= 0. Note that we have

d(Wn(xn), c) = d(Tln
i (xn), c) ≤ d(Ti(xn), c) ≤ d(xn, c), for any n ≥ 0,

where the last inequality holds, since Ti is projective w.r.t. c. Thus, we have

lim
n→∞

[
d(xn, c) − d(Ti(xn), c)

]
= 0, which implies that lim

n→∞ d(xn, Fix(Ti)) = 0. For any z Î

Fix(Ti ), we have

d(xn,Wn(xn)) = d(xn,T
ln
i (xn)) ≤ d(xn, z) + d(Tln

i (xn), z) ≤ 2d(xn, z).

Since z Î Fix(Ti) is arbitrary, we obtain d(xn,Wn(xn)) ≤ 2d(xn,Fix(Ti)). This is a con-

tradiction. Therefore, P(M) is true for M = 1. Assume P(M − 1), for M Î {2, ..., N}, is

true and let us prove that P(M) is also true. Let (xn)n ⊂ D be a bounded sequence and

(Wn)n ⊂ WN be any sequence of words such that lim
n→∞

[
d(xn, c) − d(Wn(xn), c)

]
= 0.

From the definition of WM, there exists {i1, ..., iM} ⊂ {1, ..., N} such that each Wn is a

full word of {Ti1 , . . . ,TiM } Fix im Î {i1, ..., iM}. Then we have Wn = Ln ◦ Tim ◦ W∗
n where

Ln is a word generated by {Ti1 , . . . ,TiM } and W∗
n is a word generated by {Ti1,...,TiM }\{Tim}

for any n ≥ 0. Since

d(Wn(xn), c) ≤ d(Ti ◦ W∗
n(xn), c) ≤ d(W∗

n(xn), c) ≤ d(xn, c),

for any n ≥ 0, we obtain

lim
n→∞

[
d(xn, c) − d(W∗

n(xn), c
]
= 0 and lim

n→∞
[
d(W∗

n(xn), c) − d(Tim ◦ W∗
n(xn), c)

]
= 0.

Since (xn)n is bounded, we deduce that (W∗
n(xn))n is also bounded. Using the fact

that P(M − 1) is true and Tim is projective w.r.t. c, we conclude that
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lim
n→∞ d(xn,W∗

n(xn)) = 0 and lim
n→∞ d(W∗

n(xn), Fix(Tim)) = 0.

This will easily imply lim
n→∞ d(xn, Fix(Tim)) = 0. Since im was arbitrarily chosen in {i1,

..., iM}, we conclude that

lim
n→∞ max

im∈{i1,...,iM}
d(xn, Fix(Tim)) = 0.

Using the innately boundedness regularity of Fix(Tim), for im Î {1, ..., N}, we conclude

that

lim
n→∞ d

⎛
⎝xn,

iM⋂
i=i1

Fix(Ti)

⎞
⎠ = 0.

Obviously, we have
iM⋂
i=i1

Fix(Ti) ⊂ Fix(Wn), for any n ≥ 0. Hence we have

d(xn,Wn(xn)) ≤ 2d

⎛
⎝xn,

iM⋂
i=i1

Fix(Ti)

⎞
⎠ ,

which implies that lim
n→∞ d(xn,Wn(xn)) = 0. This concludes that P(M) is true for any

M Î {1, ..., N}. Therefore, we have proven that P(N) is true as well. This completes

the proof of the first part of our proposition. The second part follows easily from the

fact that for any i Î {1, ..., N}, we have lim
n→∞ d

(
xn, Fix(Ti)

)
= 0 and the innately bound-

edness regularity of Fix(Ti), for i Î {1, ..., N}.

Note that condition (*) first appeared in Dye and Reich [20] as the condition (S).

Next, we give the main result of this article.

Theorem 3.1. Let (X, d) be a complete metric space. Let {T1, ..., TN} be a finite family

of mappings defined from D into D, where D is a nonempty and closed subset of X.

Assume that {T1, ..., TN} are projective w.r.t. a common fixed point c Î D. Also Assume

that {Fix(T1), ..., Fix(TN)} is innately boundedly regular. Let r : N ® {1, ..., N} be a ran-

dom mapping which assumes each value infinitely often. Then the random sequence

(xn)n, defined by

x0 ∈ D; and xn+1 = Tr(n)(xn), for all n ≥ 0,

converges to a point inQC(x0), where C =
N⋂
i=1

Fix(Ti).

Proof. Since r is a random mapping, there exists a subsequence (xnk)k of (xn)n such

that Wk = Tr(nk+1−1) ◦ · · · ◦ Tr(nk) is a full word of {T1,....,TN}, for any k. It is easy to

check that (xn)n is Fejér monotone w.r.t. C. Our assumptions and Proposition 3.1 will

then imply lim
nk→∞ d(xnk ,C) = 0. Since (d(xn,C))n is decreasing, we conclude that

lim
n→∞ d(xn,C) = 0. As we did before, we can easily show that for any n <m, we have d

(xn, xm) < 2d(xn, C). Hence (xn)n is a Cauchy sequence which converges to a point ω Î
D. Since (xn)n is Fejér monotone w.r.t. C, we have
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d(ω, c) = lim
n→∞ d(xn, c) = inf

n≥0
d(xn, c)

for any c Î C. In particular, we have d(ω, c) ≤ d(x0, c) for any c Î C. Moreover since

C is closed and lim
n→∞ d(xn,C) = 0, we conclude that ω Î C. Putting everything together

we obtain that ω ÎQC(x0). This proves Theorem 3.1.
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