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Abstract

In this paper, the existence, uniqueness and iterative approximations of fixed points
for contractive mappings of integral type in complete metric spaces are established.
As applications, the existence, uniqueness and iterative approximations of solutions
for a class of functional equations arising in dynamic programming are discussed.
The results presented in this paper extend and improve essentially the results of
Branciari (A fixed point theorem for mappings satisfying a general contractive
condition of integral type. Int. J. Math. Math. Sci. 29, 531-536, 2002), Kannan (Some
results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76, 1968) and several known
results. Four concrete examples involving the contractive mappings of integral type
with uncountably many points are constructed.
2010 Mathematics Subject Classfication: 54H25, 47H10, 49L20, 49L99, 90C39

Keywords: contractive mappings of integral type, complete metric space, fixed point
theorem, functional equation, dynamic programming, bounded solution

1. Introduction
Throughout this paper, we assume that ℝ = (-∞, + ∞), ℝ+ = [0, + ∞), N denotes the

set of all positive integers, opt stands for sup or inf, Z and Y are Banach spaces, S ⊆ Z

is the state space, D ⊆ Y is the decision space, B(S) denotes the Banach space of all

bounded real-valued functions on S with norm

‖ g ‖= sup{|g(x)| : x ∈ S} for any g ∈ B(S)

and

� = {ϕ :ϕ : R+ → R+satisfies that ϕ is Lebesgue integrable,

summable on each compact subset of R+

and
∫ ε

0
ϕ(t)dt > 0 for each ε > 0}

The famous Banach contraction principle is as follows.

Theorem 1.1. ([1]) Let f be a mapping from a complete metric space (X,d) into itself

satisfying

d(fx, fy) ≤ cd(x, y), ∀x, y ∈ X, (1:1)
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where c Î (0, 1) is a constant. Then f has a unique fixed point a Î X such that

limn®∞ fn x = a for each x Î X.

It is well known that the Banach contraction principle has a lot of generalizations

and various applications in many directions, see, for example, [2-30] and the references

cited therein. In 1962, Rakotch [29] extended the Banach contraction principle with

replacing the contraction constant c in (1.1) by a contraction function g and estab-

lished the result later.

Theorem 1.2. ([29]) Let f be a mapping from a complete metric space (X, d) into

itself satisfying

d(fx, fy) ≤ γ (d(x, y))d(x, y), ∀x, y ∈ X, (1:2)

where g : ℝ+ ® [0,1) is monotonically decreasing. Then f has a unique fixed point a Î
X such that limn®∞ fnx = a for each x Î X.

In 1968, Kannan [12] generalized the Banach contraction principle from continuous

mappings to noncontinuous mappings and proved the following fixed point theorem.

Theorem 1.3. ([12]) Let f be a mapping from a complete metric space (X, d) into

itself satisfying

d(fx, fy) ≤ c[d(x, fx) + d(y, fy)], ∀x, y ∈ X, (1:3)

where c ∈
(
0,

1
2

)
is a constant. Then f has a unique fixed point in X.

In 2002, Branciari [8] gave an integral version of the Banach contraction principles

and showed the following fixed point theorem.

Theorem 1.4. ([8]) Let f be a mapping from a complete metric space (X,d) into itself

satisfying∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (1:4)

where c Î (0, 1) is a constant and � Î F. Then f has a unique fixed point a Î X

such that limn®∞f
nx = a for each x Î X.

In recent years, there has been increasing interest in the study of fixed points and com-

mon fixed points of mappings satisfying contractive conditions of integral type. The

authors [2,3,9-11,28,30] and others continued the study of Branciari. In 2006, Aliouche [2]

proved a fixed point theorem using a general contractive condition of integral type in sym-

metric spaces. In 2007, Djoudi and Aliouche [9] obtained common fixed point theorems

of Gregus type for two pairs of weakly compatible mappings satisfying contractive condi-

tions of integral type, and Suzuki [30] proved that Theorem 1.4 previously is a corollary of

the Meir-Keeler fixed point theorem and that the Meir-Keeler contractions of integral

type are still Meir-Keeler contractions. In 2009, Pathak [28] bore out a general common

fixed point theorem of integral �-type for two pairs of weakly compatible mappings satis-

fying certain integral type implicit relations in symmetric spaces, and Jachymski [10] testi-

fied that most contractive conditions of integral type given recently by many authors

coincide with classical ones and got a new contractive condition of integral type which is

independent of classical ones. However, to the best of our knowledge, the concrete exam-

ples constructed in [8,10], which guarantee the existence of fixed points for the contractive
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mappings of integral type in complete metric spaces, include at most countably many

points.

On the other hand, by using various fixed point theorems, the authors [4-7,13-26]

studied the existence, uniqueness and iterative approximations of solutions, coinci-

dence solutions and nonnegative solutions for the functional equations arising in

dynamic programming below

f (x) = inf
y∈D

{H(x, y, f (T(x, y)))}, ∀x ∈ Z, (1:5)

f (x) = sup
y∈D

{H(x, y, f (T(x, y)))}, ∀x ∈ Z, (1:6)

f (x) = opt
y∈D

{u(x, y) +H(x, y, f (T(x, y)))}, ∀x ∈ Z, (1:7)

where x and y signify the state and decision vectors, respectively, T represents the

transformation of the process, and f(x) denotes the optimal return function with the

initial state x.

The purposes of this paper are both to study the existence, uniqueness and iterative

approximations of fixed points for three classes of contractive mappings of integral

type, respectively, under different from or weaker than the conditions in

[1-3,8-11,28,30], to construct four examples with uncountably many points to show

the superiority of the results presented in this paper and to show solvability of the

functional Equation (1.7) in B(S). Our results improve essentially Theorems 1.1-1.4.

2. Lemmas
The following lemmas play important roles in this paper.

Lemma 2.1. Let � Î F and {rn}nÎN be a nonnegative sequence with limn®∞rn = a.

Then

lim
n→∞

∫ rn

0
ϕ(t)dt =

∫ a

0
ϕ(t)dt.

The proof of Lemma 2.1 follows from Remark 2.1 in [27].

Lemma 2.2. Let � Î F and {rn}nÎN be a nonnegative sequence. Then

limn→∞
∫ rn
0 ϕ(t)dt = 0 if and only if limn®∞rn = 0.

The proof of Lemma 2.2 follows by Lemma 2.1 in [27].

Lemma 2.3. ([18]) Let E be a set, p and q :E ® ℝ be mappings. If optyÎE p(y) and

optyÎE q(y) are bounded, then∣∣∣∣∣opty∈E
p(t) − opt

y∈E
q(y)

∣∣∣∣∣ ≤ sup
y∈E

|p(y) − q(y)|.

3. Fixed point theorems for contractive mappings of integral type
In this section, we show the existence, uniqueness and iterative approximations of

fixed points for three classes of contractive mappings of integral type. For each x Î X

and n ≥ 0, put dn = d(fnx, fn+1x).

Theorem 3.1. Let f be a mapping from a complete metric space (X,d) into itself satis-

fying
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∫ d(fx,fy)

0
ϕ(t)dt ≤ α(d(x, y))

∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X, (3:1)

where � Î F and a : ℝ+ ® [0, 1) is a function with

lim sup
s→t

α(s) < 1, ∀t > 0.

Then f has a unique fixed point a Î X such that for each x Î X, limn®∞ fnx = a.

Proof. Let x be an arbitrary point in X. It follows from (3.1) and (3.2) that∫ dn

0
ϕ(t)dt =

∫ d(f nx,f n+1x)

0
ϕ(t)dt

≤ α(d(f n−1x, f nx))
∫ d(f n−1x,f nx)

0
ϕ(t)dt

= α(dn−1)
∫ dn−1

0
ϕ(t)dt

≤
∫ dn−1

0
ϕ(t)dt, ∀n ∈ N.

(3:2)

Now, we show that

dn ≤ dn−1, ∀n ∈ N. (3:3)

Suppose that (3.4) does not hold. That is, there exists some n0 Î N satisfying

dn0 > dn0−1· (3:4)

Since � Î F, it follows from (3.2), (3.3) and (3.5) that

0 <

∫ dn0

0
ϕ(t)dt ≤

∫ dn0−1

0
ϕ(t)dt ≤

∫ dn0

0
ϕ(t)dt

≤ α(dn0−1)
∫ dn0−1

0
ϕ(t)dt <

∫ dn0−1

0
ϕ(t)dt,

which means that∫ dn0−1

0
ϕ(t)dt <

∫ dn0−1

0
ϕ(t)dt,

which is a contradiction and hence (3.4) holds. Note that (3.4) yields that the

sequence {dn}nÎN is nonincreasing, which implies that there exists a constant c with

limn®∞ dn = c ≥ 0.

Next, we show that c = 0. Otherwise c > 0. Taking upper limit in (3.3) and using

(3.2), Lemma 2.1 and � Î F, we conclude that

0 <

∫ c

0
ϕ(t)dt

= lim sup
n→∞

∫ dn

0
ϕ(t)dt ≤ lim sup

n→∞

(
α(dn−1)

∫ dn−1

0
ϕ(t)dt

)

≤ lim sup
n→∞

α(dn−1) lim sup
n→∞

∫ dn−1

0
ϕ(t)dt

≤
(
lim sup

s→c
α(s)

)∫ c

0
ϕ(t)dt

∫ c

0
ϕ(t)dt,

Liu et al. Fixed Point Theory and Applications 2011, 2011:64
http://www.fixedpointtheoryandapplications.com/content/2011/1/64

Page 4 of 18



which is absurd. Therefore, c = 0, that is,

lim
n→∞ dn = 0. (3:5)

Now, we claim that {fnx}nÎN is a Cauchy sequence. Suppose that {fnx}nÎN is not a

Cauchy sequence, which means that there is a constant ε > 0 such that for each posi-

tive integer k, there are positive integers m(k) and n(k) with m(k) >n(k) >k such that

d(f m(k)x, f n(k)x) > ε.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satis-

fying the above inequality. It follows that

d(f m(k)x, f n(k)x) > ε and d(f m(k)−1x, f n(k)x) ≤ ε, ∀k ∈ N. (3:6)

Note that ∀k Î N

d(f m(k)x, f n(k)x) ≤ d(f n(k)x, f m(k)−1x) + dm(k)−1;

|d(f m(k)x, f n(k)+1x) − d(f m(k)x, f n(k)x)| ≤ dn(k);

|d(f m(k)+1x, f n(k)+1x) − d(f m(k)x, f n(k)+1x)| ≤ dm(k);

|d(f m(k)+1x, f n(k)+1x) − d(f m(k)+1x, f n(k)+2x)| ≤ dn(k)+1.

(3:7)

In light of (3.6)-(3.8), we conclude that

ε = lim
k→∞

d(f n(k)x, f m(k)x) = lim
k→∞

d(f m(k)x, f n(k)+1x)

= lim
k→∞

d(f m(k)+1x, f n(k)+1x) = lim
k→∞

d(f m(k)+1x, f n(k)+2x).
(3:8)

In view of (3.1), we deduce that

∫ d(f m(k)+1x,f n(k)+2x)

0
ϕ(t)dt

≤ α
(
d(f m(k)x, f n(k)+1x)

) ∫ d(f m(k)x,f n(k)+1x)

0
ϕ(t)dt, ∀k ∈ N

(3:9)

Taking upper limit in (3.10) and by virtue of (3.2), (3.9), Lemma 2.1 and � Î F, we

get that

0 <

∫ ε

0
ϕ(t)dt = lim sup

k→∞

∫ d(f m(k)+1x,f n(k)+2x)

0
ϕ(t)dt

≤ lim sup
k→∞

α
(
d(f m(k)x, f n(k)+1x)

)
lim sup
k→∞

∫ d(f m(k)x,f n(k)+1x)

0
ϕ(t)dt

≤
(
lim sup

s→ε

α(s)
)∫ ε

0
ϕ(t)dt

<

∫ ε

0
ϕ(t)dt,

which is a contradiction. Thus, {fnx}nÎN is a Cauchy sequence. Since (X, d) is a com-

plete metric space, there exists a point a Î X such that limn®∞ fnx = a. By (3.1), (3.2)

and Lemma 2.2, we arrive at
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0 ≤
∫ d(f n+1x,fa)

0
ϕ(t)dt ≤ α(d(f nx, a))

∫ d(f nx,a)

0
ϕ(t)dt

≤
∫ d(f nx,a)

0
ϕ(t)dt → 0 as n → ∞,

which yields that

lim
n→∞

∫ d(f n+1x,fa)

0
ϕ(t)dt = 0,

which together with Lemma 2.2 gives that limn®∞ d(fn+1x, fa) = 0. Consequently, we

conclude immediately that

d(a, fa) ≤ d(a, f n+1x) + d(f n+1x, fa) → 0 as n → ∞,

which means that a = fa.

Finally, we prove that f has a unique fixed point in X. Suppose that f has another

fixed point b Î X\{a}. It follows from � Î F, (3.2) and (3.3) that

0 <

∫ d(a,b)

0
ϕ(t)dt =

∫ d(fa,fb)

0
ϕ(t)dt

≤ α(d(a, b))
∫ d(a,b)

0
ϕ(t)dt <

∫ d(a,b)

0
ϕ(t)dt,

(3:10)

which is a contradiction. This completes the proof.

Theorem 3.2. Let f be a mapping from a complete metric space (X, d) into itself satis-

fying ∫ d(fx,fy)

0
ϕ(t)dt ≤ α(d(x, y))

∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt, ∀x, y ∈ X,

(3:11)

where � Î F and a, b : ℝ+ ® [0, 1) are two functions with

a(t) + β(t) < 1, ∀t ∈ R+, lim sup
s→0+

β(s) < 1,

lim sup
s→t+

α(s)
1 − β(s)

< 1, ∀t > 0.
(3:12)

Then f has a unique fixed point a Î X such that for each x Î X, limn®∞ fnx = a.

Proof. Let x be an arbitrary point in X. By (3.11), we obtain that

∫ dn

0
ϕ(t)dt =

∫ d(f nx,f n+1x)

0
ϕ(t)dt

≤ α(d(f n−1x, f nx))
∫ d(f n−1x,f nx)

0
ϕ(t)dt

+ β(d(f n−1x, f nx))
∫ d(f nx,f n+1x)

0
ϕ(t)dt

= α(dn−1)
∫ dn−1

0
ϕ(t)dt + β(dn−1)

∫ dn

0
ϕ(t)dt, ∀n ∈ N,
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which together with (3.12) yields that

∫ dn

0
ϕ(t)dt ≤ α(dn−1)

1 − β(dn−1)

∫ dn−1

0
ϕ(t)dt ≤

∫ dn−1

0
ϕ(t)dt, ∀n ∈ N.

As in the proof of Theorem 3.1, we conclude similarly that the sequence {dn}nÎN is

nonincreasing and converges to 0.

Next, we show that {fnx}nÎN is a Cauchy sequence. Suppose that {fnx}nÎN is not a

Cauchy sequence. It follows that there is a constant ε > 0 such that for each positive

integer k, there are positive integers m(k) and n(k) with m(k) >n(k) >k with

d(f m(k)x, f n(k)x) > ε.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satis-

fying the above inequality. It is easy to verify that (3.7)-(3.9) hold. By means of (3.9),

(3.11), (3.12), Lemma 2.1 and � Î F, we get that

0 <

∫ ε

0
ϕ(t)dt = lim sup

k→∞

∫ d(f m(k)+1x,f n(k)+2x)

0
ϕ(t)dt

≤ lim sup
k→∞

(
α(d(f m(k)x, f n(k)+1x))

∫ dm(k)

0
ϕ(t)dt

+β(d(f m(k)x, f n(k)+1x))
∫ dn(k)+1

0
ϕ(t)dt

)

≤ lim sup
k→∞

∫ dm(k)

0
ϕ(t)dt+ lim sup

k→∞

∫ dn(k)+1

0
ϕ(t)dt

= 0,

which is a contradiction. Hence, {fnx}nÎN is a Cauchy sequence. Since (X, d) is a

complete metric space, there exists a point a Î X such that limn®∞ fnx = a, which

means that limn®∞ d(fn+1x, fa) = d(a, fa). If d(a, fa) ≠ 0, by (3.11), (3.12) and Lemma

2.1, we infer that

0 <

∫ d(a,fa)

0
ϕ(t)dt = lim sup

n→∞

∫ d(f n+1x,fa)

0
ϕ(t)dt

≤ lim sup
n→∞

(
α(d(f nx, a))

∫ d(f nx,f n+1x)

0
ϕ(t)dt

)

+ lim sup
n→∞

(
β(d(f nx, a))

∫ d(a,fa)

0
ϕ(t)dt

)

=
(
lim sup β(s)

s→0+

) ∫ d(a,fa)

0
ϕ(t)dt

<

∫ d(a,fa)

0
ϕ(t)dt,

which is impossible. Thus, d(a, fa) = 0. That is, a = fa.

Finally, we prove that f has a unique fixed point in X. Suppose that f has another

fixed point b Î X\{a}. It follows from � Î F and (3.12) that
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0 <

∫ d(a,b)

0
ϕ(t)dt =

∫ d(fa,fb)

0
ϕ(t)dt

≤ α(d(a, b))
∫ d(a,fa)

0
ϕ(t)dt + β(d(a, b))

∫ d(b,fb)

0
ϕ(t)dt

= 0,

which is a contradiction. This completes the proof.

As in the proof of Theorem 3.2, we get similarly the below result.

Theorem 3.3. Let f be a mapping from a complete metric space (X, d) into itself

satisfying∫ d(fx,fy)

0
ϕ(t)dt

≤ γ (d(x, y))

(∫ d(x,fx)

0
ϕ(t)dt +

∫ d(y,fy)

0
ϕ(t)dt

)
, ∀x, y ∈ X,

(3:13)

where � Î F and γ : R+ → [0, 12 )is a function with

lim sup
s→t+

γ (s)
1 − γ (s)

< 1, ∀t > 0. (3:14)

Then f has a unique fixed point a Î X such that for each x Î X, limn®∞ fnx = a.

4. Remarks and illustrative examples
In this section, by constructing four nontrivial examples with uncountably many

points, we discuss and compare the fixed point theorems obtained in Section 3 with

the known results in Section 1.

Remark 4.1. If a(t) = c for all t Î ℝ+, where c Î (0,1) is a constant, then Theorem

3.1 changes into Theorem 1.4; furthermore, if �(t) = 1 for all t Î ℝ+, then Theorem

3.1 brings Theorem 1.1. The following example manifests that Theorem 3.1 extends

substantially Theorems 1.1 and 1.4.

Example 4.1. Let X = ℝ+ be endowed with the Euclidean metric d = | · |, f: X ® X,

a: ℝ+ ® [0,1) and � Î F be defined by

f (x) =
x

1 + x
, ∀x ∈ R+, ϕ(t) = 2t, ∀t ∈ R+

and

α(t) =

⎧⎪⎨
⎪⎩

1
2
, t = 0,
1

(1 + t)2
, ∀t ∈ (0, +∞).

It is obvious that (3.2) holds and

∫ d(fx,fy)

0
ϕ(t)dt =

(
x

1 + x
− y

1 + y

)2

=
(x − y)2

(1 + x)2(1 + y)2
≤ (x − y)2

1 + |x − y|)2

= α(d(x, y))
∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X.
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That is, the conditions of Theorem 3.1 are fulfilled. It follows from Theorem 3.1 that

f has a unique fixed point 0 Î X. But, we can neither invoke Theorem 1.1 nor Theo-

rem 1.4 to show the existence of a fixed point of f in X because (1.1) and (1.4) do not

hold.

Suppose that (1.1) holds. It follows that there exists a constant c Î (0,1) satisfying

d(fx, fy) =
|x − y|

(1 + x)(1 + y)
≤ c|x − y|, ∀x, y ∈ X,

which gives that

1
(1 + x)(1 + y)

≤ c, ∀x, y ∈ X with x �= y,

which yields that c ≥ 1, which is absurd.

Suppose that (1.4) holds. It follows that there exists some constant c Î (0,1) satisfying∫ d(fx,fy)

0
ϕ(t)dt =

(
x

x + 1
− y

y + 1

)2

≤ c(x − y)2

= c
∫ d(x,y)

0
ϕ(t)dt, ∀x, y ∈ X,

which yields that

1

(x + 1)2(y + 1)2
≤ c, ∀x, y ∈ X with x �= y,

which means that

1 = lim
(x,y)→(0,0)

x�=y

1

(x + 1)2(y + 1)2
≤ c < 1,

which is a contradiction.

Remark 4.2. In case �(t) = 1 for all t Î ℝ+, then Theorem 3.1 reduces to a result,

which generalizes Theorem 1.2. The following example reveals that Theorem 3.1 is a

proper generalization Theorem 1.2.

Example 4.2. Let X = ℝ+ be endowed with the Euclidean metric d = | · |, f: X ® X,

a: ℝ+® [0,1) and � Î F be defined by

f (x) =
1

1 + x
, ∀x ∈ R+, ϕ(t) = 2t, ∀t ∈ R+

and

α(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3
, t = 0,
1

1 + t,
∀t ∈ (0, 1],

t

1 + t
, ∀t ∈ (1, +∞).

It is easy to see that (3.2) holds. In order to verify (3.1), we have to consider three

possible cases as follows:
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Case 1. x, y Î X with x = y. It is clear that

∫ d(fx,fy)

0
ϕ(t)dt = 0 = α(d(x, y))

∫ d(x,y)

0
ϕ(t)dt;

Case 2. x, y Î X with 0 < |x - y| ≤ 1. Note that

∫ d(fx,fy)

0
ϕ(t)dt =

(
1

1 + x
− 1

1 + y

)2

=
(x − y)2

(1 + x)2(1 + y)2

≤ (x − y)2

(1 + x)(1 + y)
≤ (x − y)2

1 + |x − y|

= α(d(x, y))
∫ d(x,y)

0
ϕ(t)dt;

Case 3. x,y Î X with |x - y| > 1. It follows that

∫ d(fx,fy)

0
ϕ(t)dt =

(
1

1 + x
− 1

1 + y

)2

=
(x − y)2

(1 + x)2(1 + y)2

≤ (x − y)2

(1 + x)(1 + y)
≤ (x − y)2

1 + |x − y|

≤ |x − y|3
1 + |x − y| = α(d(x, y))

∫ d(x,y)

0
ϕ(t)dt.

Hence, (3.1) holds. Consequently, the conditions of Theorem 3.1 are satisfied.

It follows from Theorem 3.1 that f has a unique fixed point
√
5−1
2 ∈ X.

However, Theorem 1.2 is useless in guaranteeing the existence of a fixed point of f in

X. Otherwise, suppose that the conditions of Theorem 1.2 are fulfilled. Notice that g: ℝ
+ ® [0,1) is monotonically decreasing. It follows that limt®∞+ g(t) exists and belongs to

[g(1), g(0)] ⊂ [0,1). Using (1.2), we infer that

|x − y|
(1 + x)(1 + y)

= d(fx, fy) ≤ γ (d(x, y))d(x, y)

= |x − y|γ (|x − y|), ∀x, y ∈ X,

which implies that

1
(1 + x)(1 + y)

≤ γ (|x − y|), ∀x, y ∈ X with x �= y,

which yields that

1 = lim
(x,y)→(0,0)

x�=y

1
(1 + x)(1 + y)

≤ lim
(x,y)→(0,0)

x�=y

γ (|x − y|)

= lim
t→0+

γ (t) ≤ γ (0) < 1,

which is impossible.

Remark 4.3. In case �(t) = 1 and g(t) = h for all t Î ℝ+, then Theorem 3.3 comes

into being Theorem 1.3. The below example demonstrates that Theorem 3.3 is indeed

a proper extension of Theorem 1.3.
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Example 4.3. Let X = [0, 4] be endowed with the Euclidean metric

d = | · |, f : X → X, γ : R+ → [0, 12 ) and � Î F be defined by

f (x) =

{
0, ∀x ∈ [0, 2)\{1},
x

2 + x
, ∀x ∈ {1} ∪ [2, 4],

γ (t) =

⎧⎪⎨
⎪⎩

1
3
, t = 0

1
2
e − t2

36
, ∀t ∈ (0, +∞),

and

ϕ(t) = et, ∀t ∈ R+,

respectively. It is obvious that (3.14) holds and (3.13) is equivalent to

ed(fx,fy) − 1 ≤ γ (d(x, y))(ed(x,fx) + ed(y,fy) − 2, ∀x, y ∈ X. (4:1)

Note that x and y in (4.1) are symmetric, (4.1) holds for all x = y Î X and

γ (d(x, y)) <
1
2
, ∀x, y ∈ X. (4:2)

In order to verify (3.13), by (4.1) and (4.2) we need only to show that

ed(fx,fy) ≤ γ (d(x, y))(ed(x,fx) + ed(y,fy)), ∀x, y ∈ Xwith x > y. (4:3)

Now, we have to consider the below six possible cases:

Case 1. x, y Î X with 4 ≥ x >y ≥ 2. It follows that

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e

2(x − y)
(2 + x)(2 + y)

e

x2 + x
2 + x

+
e

y2 + y

2 + y

≤ e

2(x − y)
(2 + x)(2 + y)

2e

x2 + x

2(2 + x) e

y2 + y

2(2 + y)

=
1
2
e

4(x − y) − [(x2 + x)(2 + y) + (y2 + y)(2 + x)]
2(x + 2)(y + 2)

=
1
2
e

−2(x − y)2 + 2x − 6y(x + 1) − xy(x + y)
2(x + 2)(y + 2)

≤ 1
2
e
−

(x − y)2

(x + 2)(y + 2) ≤ 1
2
e
−
(x − y)2

36 = γ (d(x, y));

Case 2. x, y Î X with 4 ≥ x ≥ 2 > y ≥ 0 and y ≠ 1. It is clear that

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e

x
2 + x

e

x2 + x

2 + x + ey

≤ e

x
2 + x

2e

x2 + x

2(2 + x) e

y
2

=
1
2
e

x − x2 − 2y − xy
2(2 + x) ≤ 1

2
e

x − x2 − 2y − xy
12

≤ 1
2
e
−
(x − y)2

36 = γ (d(x, y));
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Case 3. x; y Î X with 4 ≥ x ≥ 2 and y = 1. It follows that

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e

2(x − 1)
3(2 + x)

e

x2 + x

2 + x + e

2
3

≤ e

2(x − 1)
3(2 + x)

2e

x2 + x

2(2 + x) e

1
3

=
1
2
e

4(x − 1) − [3(x2 + x) + 2(2 + x)]
6(x + 2 ≤ 1

2
e
−
(x − 1)2

3(x + 2)

≤ 1
2
e
−
(x − y)2

36 = γ (d(x, y));

Case 4. x, y Î X with 2 >x >y ≥ 0, x ≠ 1 and y ≠ 1. Notice that

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e0

ex + ey
≤ 1

2e

x
2 e

y
2

=
1
2
e
−
x + y
2

≤ 1
2
e
−
(x − y)2

36 = γ (d(x, y));

Case 5. x, y Î X with x = 1 >y ≥ 0. Obviously

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e

1
3

e

2
3 + ey

≤ e

1
3

e

2
3 + 1

<
(2.72)

1
3

(2.718)

2
3 + 1

<
1.396
2.94

<
1

2 × 1.05
<

1
2
e
−
1
36

≤ 1
2
e
−
(x − y)2

36 = γ (d(x, y));

Case 6. x, y Î X with 2 >x > 1 = y. Notice that

ed(fx,fy)

ed(x,fx) + ed(y,fy)
=

e

1
3

ex + e

2
3

<
e

1
3

e + e

2
3

≤ e

1
3

2e

1
2 e

1
3

=
1
2
e
−
1
2

<
1
2
e
−
1
36 ≤ 1

2
e
−
(x − y)2

36 = γ (d(x, y)).

Hence, (3.13) holds. That is, the conditions of Theorem 3.3 are satisfied. It follows

from Theorem 3.3 that f has a unique fixed point in X. However, it is easy to verify

that for x0 = 1 and y0 = 0

d(f x0, f y0) =
1
3
�

2c
3

= c(d(x0, f x0) + d(y0, f y0)), ∀c ∈
[
0,

1
2

)
,

which yields that (1.3) in Theorem 1.3 does not hold.

Next, we construct an example with uncountably many points to explain Theorem

3.2.
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Example 4.4. Let X = [1,3] be endowed with the Euclidean metric d = |; · |, f: X ®
X, a, b: ℝ+ ® [0,1) and � Î F be defined by

f (x) =
{
1, ∀x ∈ [1, 2),
x
2 , ∀x ∈ [2, 3],

and

ϕ(t) = 2t, α(t) =
t2

(1 + t)2
,β(t) =

2t

(1 + t)2,
∀t ∈ R+.

It is easy to see that (3.12) holds. In order to verify (3.11), we have to consider the

below five possible cases:

Case 1. x, y Î X with 3 ≥ x ≥ y ≥ 2. Note that∫ d(fx,fy)

0
ϕ(t)dt =

(x − y)2

4
≤ (x − y)2

(1 + x − y)2
x2

4

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt;

Case 2. x, y Î X with x Î [2,3] and y Î [1, 2). It follows that∫ d(fx,fy)

0
ϕ(t)dt =

(
x
2

− 1
)2

≤ (x − y)2

4
≤ (x − y)2

(1 + x − y)2
x2

4

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt;

Case 3. x, y Î X with x, y Î [1, 2). Notice that fx = fy = 1. It follows that∫ d(fx,fy)

0
ϕ(t)dt =0 ≤ α(d(x, y))

∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt, ∀x, y ∈ X;

Case 4. x, y Î X with 3 ≥ y >x ≥ 2. Note that∫ d(fx,fy)

0
ϕ(t)dt =

(y − x)2

4
≤ y − x

2
≤ 2(y − x)

(1 + y − x)2
y2

4

= β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt;
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Case 5. x, y Î X with x Î [1, 2) and y Î [2,3]. Note that∫ d(fx,fy)

0
ϕ(t)dt =

( y

2
− 1

)2
≤ y − x

2
≤ 2(y − x)

(1 + y − x)2
y2

4

≤ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt

≤ α(d(x, y))
∫ d(x,fx)

0
ϕ(t)dt

+ β(d(x, y))
∫ d(y,fy)

0
ϕ(t)dt,

that is, (3.11) holds. Thus, all the conditions of Theorem 3.2 are satisfied. It follows

from Theorem 3.2 that f has a unique fixed point 1 Î X.

5. Applications
In this section, by using the fixed point theorems obtained in Section 3, we study sol-

vability of the functional Equation (1.7) in B(S).

Theorem 5.1. Let u: S × D ® ℝ, T : S × D ® S, H : S × D × ℝ ® ℝ, � Î F and a :

ℝ+ ® [0, 1) satisfy (3.2),

u and H are bounded (5:1)

and ∫ |H(x,y,g(T(x,y)))−H(x,y,h(T(x,y)))|

0
ϕ(t)dt ≤ α(‖ g − h ‖)

∫ ‖g−h‖

0
ϕ(t)dt,

∀(x, y, g, h) ∈ S × D × B(S) × B(S).

(5:2)

Then the functional Equation (1.7) has a unique solution w Î B(S) and {Anz}nÎN con-

verges to w for each z Î B(S), where the mapping A is defined by

Az(x) = opt
y∈D

{u(x, y) +H(x, y, z(T(x, y)))}, ∀x ∈ S. (5:3)

Proof. It follows from (5.1) that there exists M > 0 satisfying

sup{|u(x, y)|, |H(x, y, t)| : (x, y, t) ∈ S × D × R} ≤ M. (5:4)

It is easy to see that A is a self-mappings in B(S) by (5.3), (5.4) and Lemma 2.3.

Using Theorem 12.34 in [31] and � Î F, we conclude that for each ε > 0, there

exists δ > 0 satisfying∫
C

ϕ(t)dt < ε, ∀C ⊆ [0, 2M] with m(C) ≤ δ, (5:5)

where m(C) denotes the Lebesgue measure of C.

Let x Î S,h,g Î B(S). Suppose that optyÎD = infyÎD. Clearly, (5.3) implies that there

exist y, z Î D satisfying

Ag(x) > u(x, y) +H(x, y, g(T(x, y))) − δ;

Ah(x) > u(x, z) +H(x, z, h(T(x, z))) − δ;

Ag(x) ≤ u(x, z) +H(x, z, g(T(x, z)));

Ah(x) ≤ u(x, y) +H(x, y, h(T(x, z))).
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Put

H1 = H(x, y, g(T(x, y))), H2 = H(x, y, h(T(x, y))),

H3 = H(x, z, g(T(x, z))), H4 = H(x, z, h(T(x, z))).

It is easy to verify that

Ag(x) − Ah(x) > H(x, z, g(T(x, y))) − H(x, y, h(T(x, z))) − δ

≥ −max{|H(x, y, g(T(x, y))) − H(x, y, h(T(x, y)))|,
|H(x, z, g(T(x, z))) − H(x, z, h(T(x, z)))|} − δ

= −max{|H1 − H2|, |H3 − H4|} − δ

and

Ag(x) − Ah(x) < H(x, z, g(T(x, y))) − H(x, y, h(T(x, z))) + δ

≤ max{|H(x, y, g(T(x, y))) − H(x, y, h(T(x, y)))|,
|H(x, z, g(T(x, z))) − H(x, z, h(T(x, z)))|} + δ

= max{|H1 − H2|, |H3 − H4|} + δ,

which yield that

|Ag(x) − Ah(x)| < max{|H1 − H2|, |H3 − H4|} + δ. (5:6)

Similarly, we infer that (5.6) holds also for optyÎD = supyÎD. Combining (5.2), (5.5)

and (5.6), we arrive at∫ |Ag(x)−Ah(x)|

0
ϕ(t)dt

≤
∫ max{|H1−H2|,|H3−H4|}+δ

0
ϕ(t)dt

= max
{∫ |H1−H2|+δ

0
ϕ(t)dt,

∫ |H3−H4|+δ

0
ϕ(t)dt

}

= max
{∫ |H1−H2|

0
ϕ(t)dt +

∫ |H1−H2|+δ

|H1−H2|
ϕ(t)dt,

∫ |H3−H4|

0
ϕ(t)dt +

∫ |H3−H4|+δ

|H3−H4|
ϕ(t)dt

}

≤ max
{∫ |H1−H2

0
ϕ(t)dt,

∫ |H3−H4|

0
ϕ(t)dt

}

+max
{∫ |H1−H2|+δ

|H1−H2|
ϕ(t)dt,

∫ |H3−H4|+δ

|H3−H4

ϕ(t)dt
}

≤ α(‖ g − h ‖)
∫ ‖g−h‖

0
ϕ(t)dt + ε,

which means that∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤ α(‖ g − h ‖)

∫ ‖g−h‖

0
ϕ(t)dt + ε,

letting ε ® 0+ in the above inequality, we deduce that∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤ α(‖ g − h ‖)

∫ ‖g−h‖

0
ϕ(t)dt.

Thus, Theorem 5.1 follows from Theorem 3.1. This completes the proof.
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Remark 5.1. Theorem 5.1 extends and unifies Theorem 2.1 in [7], Theorem 3.1 in

[18] and Theorem 3.2 in [25].

Theorem 5.2. Let u : S × D ® ℝ, T: S × D ® S, H : S × D × ℝ ® ℝ, � Î F and a,
b : ℝ+ ® [0, 1) satisfy (3.12), (5.1) and∫ |H(x,y,g(T(x,y)))−H(x,y,h(T(x,y)))|

0
ϕ(t)dt

≤ α(‖ g − h ‖)
∫ ‖g−Ag‖

0
ϕ(t)dt + β(‖ g − h ‖)

∫ d(h,Ah)

0
ϕ(t)dt,

∀(x, y, g, h) ∈ S × D × B(S) × B(S).

(5:7)

Then the functional Equation (1.7) has a unique solution w Î B(S) and {Anz}nÎN con-

verges to w for each z Î B(S), where the mapping A is defined by (5.3).

Proof. As in the proof of Theorem 5.1, by (3.12), (5.1), (5.3) and (5.7), we conclude

that (5.4)-(5.6) hold and∫ |Ag(x)−Ah(x)|

0
ϕ(t)dt

≤ max
{∫ |H1−H2|

0
ϕ(t)dt,

∫ |H3−H4|

0
ϕ(t)dt

}

+max
{∫ |H1−H2|+δ

|H1−H2|
ϕ(t)dt,

∫ |H3−H4|+δ

|H3−H4|
ϕ(t)dt

}

≤ α(‖ g − h ‖)
∫ ‖g−Ag‖

0
ϕ(t)dt + β(‖ g − h ‖)

∫ ‖h−Ah‖

0
ϕ(t)dt + ε,

which yields that∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤α(‖ g − h ‖)

∫ ‖g−Ag‖

0
ϕ(t)dt

+ β(‖ g − h ‖)
∫ ‖h−Ah‖

0
ϕ(t)dt + ε,

letting ε® 0+ in the above inequality, we infer that∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤α(‖ g − h ‖)

∫ ‖g−Ag‖

0
ϕ(t)dt

+ β(‖ g − h ‖)
∫ ‖h−Ah‖

0
ϕ(t)dt.

Thus, Theorem 5.2 follows from Theorem 3.2. This completes the proof.

Theorem 5.3. Let u : S × D ® ℝ, T : S × D ® S, H:S × D × ℝ ® ℝ, � Î F and

γ : R+ → [0, 12 )satisfy (3.14), (5.1) and

∫ |H(x,y,g(T(x,y)))−H(x,y,h(T(x,y)))|

0
ϕ(t)dt

≤ γ (‖ g − h ‖)
(∫ ‖g−Ag‖

0
ϕ(t)dt +

∫ ‖h−Ah‖

0
ϕ(t)dt

)
,

∀(x, y, g, h) ∈ S × D × B(S) × B(S).

(5:8)
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Then the functional Equation (1.7) has a unique solution w Î B(S) and {Anz}nÎN con-

verges to w for each z Î B(S), where the mapping A is defined by (5.3).

Proof. As in the proof of Theorem 5.1, by (3.14), (5.1), (5.3) and (5.8), we conclude

that (5.4)-(5.6) hold and∫ |Ag(x)−Ah(x)|

0
ϕ(t)dt

≤ max
{∫ |H1−H2|

0
ϕ(t)dt,

∫ |H3−H4|

0
ϕ(t)dt

}

+max
{∫ |H1−H2|+δ

|H1−H2|
ϕ(t)dt,

∫ |H3−H4|+δ

|H3−H4|
ϕ(t)dt

}

≤ γ (‖ g − h ‖)
(∫ ‖g−Ag‖

0
ϕ(t)dt+

∫ ‖h−Ah‖

0
ϕ(t)dt

)
+ ε,

which yields that

∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤ γ (‖ g − h ‖)

(∫ ‖g−Ag‖

0
ϕ(t)dt+

∫ ‖h−Ah‖

0
ϕ(t)dt

)
+ ε,

letting ε ® 0+ in the above inequality, we get that

∫ ‖Ag−Ah‖

0
ϕ(t)dt ≤ γ (‖ g − h ‖)

(∫ ‖g−Ag‖

0
ϕ(t)dt+

∫ ‖h−Ah‖

0
ϕ(t)dt

)
.

Thus, Theorem 5.3 follows from Theorem 3.3. This completes the proof.
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