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Using continuous selections, we establish some existence results about the zeros of weakly
continuous operators from a paracompact topological space into the dual of a reflexive
real Banach space.

Throughout the sequel, E denotes a reflexive real Banach space and E∗ its topological
dual. We also assume that E is locally uniformly convex. This means that for each x ∈ E,
with ‖x‖ = 1, and each ε > 0, there exists δ > 0 such that, for every y ∈ E satisfying ‖y‖ =
1 and ‖x− y‖ ≥ ε, one has ‖x + y‖ ≤ 2(1− δ). Recall that any reflexive Banach space
admits an equivalent norm with which it is locally uniformly convex [1, page 289]. For
r > 0, we set Br = {x ∈ E : ‖x‖ ≤ r}.

Moreover, we fix a topology τ on E, weaker than the strong topology and stronger than
the weak topology, such that (E,τ) is a Hausdorff locally convex topological vector space
with the property that the τ-closed convex hull of any τ-compact subset of E is still τ-
compact and the relativization of τ to B1 is metrizable by a complete metric. In practice,
the most usual choice of τ is either the strong topology or the weak topology provided E
is also separable.

The aim of this short paper is to establish the following result and present some of its
consequences.

Theorem 1. Let X be a paracompact topological space and A : X → E∗ a weakly continuous
operator. Assume that there exist a number r > 0, a continuous function α : X →R satisfying

∣∣α(x)∣∣≤ r
∥∥A(x)∥∥E∗ (1)

for all x ∈ X , a (possibly empty) closed set C ⊂ X , and a τ-continuous function g : C→ Br

satisfying

A(x)
(
g(x)

)= α(x) (2)
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for all x ∈ C, in such a way that, for every τ-continuous function ψ : X → Br satisfying
ψ|C = g, there exists x0 ∈ X such that

A
(
x0
)(
ψ
(
x0
)) �= α

(
x0
)
. (3)

Then, there exists x∗ ∈ X such that A(x∗)= 0.

For the reader’s convenience, we recall that a multifunction F : S→ 2V , between topo-
logical spaces, is said to be lower semicontinuous at s0 ∈ S if, for every open set Ω ⊆ V
meeting F(s0), there is a neighborhood U of s0 such that F(s)∩Ω �= ∅ for all s∈U . F is
said to be lower semicontinuous if it is so at each point of S.

The following well-known results will be our main tools.

Theorem 2 [3]. Let X be a paracompact topological space and F : X → 2B1 a τ-lower semi-
continuous multifunction with nonempty τ-closed convex values.

Then, for each closed set C ⊂ X and each τ-continuous function g : C → B1 satisfying
g(x)∈ F(x) for all x ∈ C, there exists a τ-continuous function ψ : X → B1 such that ψ|C = g
and ψ(x)∈ F(x) for all x ∈ X .

Theorem 3 [4]. Let X , Y be two topological spaces, with Y connected and locally connected,
and let f : X ×Y →R be a function satisfying the following conditions:

(a) for each x ∈ X , the function f (x,·) is continuous, changes sign in Y , and is identically
zero in no nonempty open subset of Y ;

(b) the set {(y,z) ∈ Y × Y : {x ∈ X : f (x, y) < 0 < f (x,z)} is open in X} is dense in
Y ×Y .

Then, the multifunction x → {y ∈ Y : f (x, y) = 0 and y is not a local extremum for
f (x,·)} is lower semicontinuous and its values are nonempty and closed.

Proof of Theorem 1. Arguing by contradiction, assume that A(x) �= 0 for all x ∈ X . For
each x ∈ X , y ∈ B1, put

f (x, y)= A(x)(y)− α(x)
r

,

F(x)= {z ∈ B1 : f (x,z)= 0
}
.

(4)

Also, set

X0 =
{
x ∈ X :

∣∣α(x)∣∣ < r
∥∥A(x)∥∥E∗}. (5)

Since A is weakly continuous, the function x → ‖A(x)‖E∗ , as a supremum of a family
of continuous functions, is lower semicontinuous. From this, it follows that the set X0

is open. For each x ∈ X0, the function f (x,·) is continuous and has no local, nonabso-
lute extrema, being affine. Moreover, it changes sign in B1 since A(x)(B1)= [−‖A(x)‖E∗ ,
‖A(x)‖E∗] (recall that E is reflexive). Since f (·, y) is continuous for all y ∈ B1, we then
realize that the restriction of f to X0×B1 satisfies the hypotheses of Theorem 3, B1 being
considered with the relativization of the strong topology. Hence, the multifunction F|X0

is lower semicontinuous. Consequently, since X0 is open, the multifunction F is lower
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semicontinuous at each point of X0. Now, fix x0 ∈ X \X0. So, |α(x0)| = r‖A(x0)‖E∗ . Let
y0 ∈ F(x0) and ε > 0. Clearly, since y0 is an absolute extremum of A(x0) in B1, one has
‖y0‖ = 1. Choose δ > 0 so that, for each y ∈ E satisfying ‖y‖ = 1 and ‖y− y0‖ ≥ ε, one
has ‖y + y0‖ ≤ 2(1− δ). By semicontinuity, the function x→ (‖A(x)‖E∗)−1 is bounded
in some neighborhood of x0, and so, since the functions α and A(·)(y0) are continuous,
it follows that

lim
x→x0

∣∣A(x)(y0)−α(x)/r
∣∣∥∥A(x)∥∥E∗ = 0. (6)

So, there is a neighborhood U of x0 such that
∣∣A(x)(y0)−α(x)/r

∣∣∥∥A(x)∥∥E∗ <
εδ
2

(7)

for all x ∈U . Fix x ∈U . Pick z ∈ E, with ‖z‖ = 1, in such a way that |A(x)(z)| = ‖A(x)‖E∗
and (

A(x)(z)− α(x)
r

)(
A(x)

(
y0
)− α(x)

r

)
≤ 0. (8)

From this choice, it follows, of course, that the segment joining y0 and zmeets the hyper-
plane (A(x))−1(α(x)/r). In other words, there is λ∈ [0,1] such that

A(x)
(
λz+ (1− λ)y0

)= α(x)
r

. (9)

So, if we put y = λz+ (1− λ)y0, we have y ∈ F(x) and

∥∥y− y0
∥∥= λ

∥∥z− y0
∥∥. (10)

We claim that ‖y− y0‖ < ε. This follows at once from (10) if λ < ε/2. Thus, assume λ≥
ε/2. In this case, to prove our claim, it is enough to show that

2(1− δ) <
∥∥z+ y0

∥∥ (11)

since (11) implies ‖z− y0‖ < ε. To this end, note that by (9), one has∣∣A(x)(y0)−α(x)/r
∣∣∥∥A(x)∥∥E∗ = λ

∣∣A(x)(z− y0
)∣∣∥∥A(x)∥∥E∗ , (12)

and so, from (7), it follows that ∣∣A(x)(z− y0
)∣∣∥∥A(x)∥∥E∗ < δ. (13)

Suppose A(x)(z)= ‖A(x)‖E∗ . Then, from (13), we get

1− δ <
A(x)

(
y0
)

∥∥A(x)∥∥E∗ . (14)
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On the other hand, we also have

1+
A(x)

(
y0
)

∥∥A(x)∥∥E∗ =
A(x)

(
z+ y0

)
∥∥A(x)∥∥E∗ ≤ ∥∥z+ y0

∥∥. (15)

So, (11) follows from (14) and (15). Now, suppose A(x)(z) = −‖A(x)‖E∗ . Then, from
(13), we get

1− δ <−A(x)
(
y0
)

∥∥A(x)∥∥E∗ . (16)

On the other hand, we have

1− A(x)
(
y0
)

∥∥A(x)∥∥E∗ = −
A(x)

(
z+ y0

)
∥∥A(x)∥∥E∗ ≤ ∥∥z+ y0

∥∥. (17)

So, in the present case, (11) is a consequence of (16) and (17). In such a manner, we have
proved that F is lower semicontinuous at x0. Hence, it remains proved that F is lower
semicontinuous in X with respect to the strong topology and so, a fortiori, with respect
to τ. Since F is also with nonempty τ-closed convex values and g/r is a τ-continuous
selection of it over the closed set C, by Theorem 2, F admits a τ-continuous selection ω
inX such thatω|C = g/r. At this point, if we put ψ = rω, it follows that ψ is a τ-continuous
function, from X into Br , such that ψ|C = g and A(x)(ψ(x))= α(x) for all x ∈ X , against
the hypotheses. This concludes the proof. �

Remark 4. From the proof, it clearly follows that if the assumption |α(x)| ≤ r‖A(x)‖E∗
for all x ∈ X is replaced by the more restrictive |α(x)| < r‖A(x)‖E∗ for all x ∈ X \A−1(0),
then the restrictions made on E and its norm become superfluous and, furthermore, the
continuity assumption onA can be weakened to supposing that the function x→ A(x)(y)
is continuous for each y in a dense subset of E. Likewise, essentially the same proof gives
the following version of Theorem 1, for r =∞.

Theorem 5. Let X be a paracompact topological space, Y a real Banach space, and A : X →
Y∗ an operator such that the set

{
y ∈ Y : x −→ A(x)(y) is continuous

}
(18)

is dense in Y . Assume that there exist a continuous function α : X → R, a (possibly empty)
closed set C ⊂ X , and a continuous function g : C → Y satisfying A(x)(g(x)) = α(x) for
all x ∈ C, in such a way that, for every continuous function ψ : X → Y satisfying ψ|C = g,
there exists x0 ∈ X such that A(x0)(ψ(x0)) �= α(x0). Then, there exists x∗ ∈ X such that
A(x∗)= 0.

Sketch of proof. Arguing by contradiction, assume that A−1(0)=∅. For each x ∈ X , put

F(x)= {y ∈ Y : A(x)(y)= α(x)
}
. (19)

Thanks to Theorem 3, the multifunction F is lower semicontinuous. Since F is also with
nonempty closed convex values and g is a continuous selection of it over the closed set C,



Biagio Ricceri 191

by Michael’s theorem, F admits a continuous selection ψ in X such that ψ|C = g, against
the hypotheses. �

We now point out an interesting alternative coming from Theorem 5. The spaces
C0(X ,Y) and C0(X) that will appear are considered with the sup-norm. We recall that
a subset D of a topological space S is a retract of S if there exists a continuous function
h : S→D such that h(s)= s for all s∈D.

Theorem 6. Let X be a compact Hausdorff topological space, Y a real Banach space, with
dim(Y)≥ 2, and A : X → Y∗ a continuous operator.

Then, at least one of the following assertions holds:

(a) there exists x∗ ∈ X such that A(x∗)= 0;
(b) there exists ε > 0 such that, for every Lipschitzian operator J : C0(X ,Y)→ C0(X),

with Lipschitz constant less than ε, the set

{
ψ ∈ C0(X ,Y) : A(x)

(
ψ(x)

)= J(ψ)(x)∀x ∈ X
}

(20)

is an unbounded retract of C0(X ,Y).

Proof. Assume that A(x) �= 0 for all x ∈ X . For each ψ ∈ C0(X ,Y) and x ∈ X , put

T(ψ)(x)= A(x)
(
ψ(x)

)
. (21)

Since A is continuous and bounded (due to the compactness of X), the function T(ψ)(·)
is continuous (see the proof of Theorem 12). So, T turns out to be a continuous linear op-
erator from C0(X ,Y) into C0(X). Due to Theorem 5 (applied taking C =∅), A−1(0) �=
∅ if (and only if) the operator T is not surjective. Thus, since we are supposing that
A−1(0) =∅, the operator T is surjective. Furthermore, note that T is not injective. In-
deed, if we fix any x0 ∈ X and choose y0 ∈ Y \ {0} so that A(x0)(y0) = 0 (recall that
dim(Y)≥ 2), by Theorem 5 again (applied taking C = {x0}), there is ψ ∈ C0(X ,Y) such
that T(ψ)= 0 and ψ(x0)= y0. Finally, set

ε = 1
sup‖ϕ‖C0(X)≤1 dist

(
0,T−1(ϕ)

) . (22)

Due to this choice, by [5, Théorème 2], for every Lipschitzian operator J : C0(X ,Y)→
C0(X), with Lipschitz constant less than ε, the set

Γ := {ψ ∈ C0(X ,Y) : T(ψ)= J(ψ)
}

(23)

turns out to be a retract of C0(X ,Y). Moreover, from the proof of [5, Théorème 2], it
follows that the multifunction ψ → T−1(J(ψ)) is a multivalued contraction, and so, since
its values are closed and unbounded, the set of its fixed points (which agrees with Γ) is
unbounded too by [7, Corollary 9]. �

We now indicate two reasonable ways to apply Theorem 1. The first one is based on
the Tychonoff fixed point theorem.
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Theorem 7. Assume that E is a separable Hilbert space with inner product 〈·,·〉. Let r > 0
and let A : Br → E be a continuous operator from the weak to the strong topology. Assume
that there exist a weakly continuous function α : Br →R satisfying |α(x)| ≤ r‖A(x)‖ for all
x ∈ Br , and a weakly continuous function g : C→ Br such that

〈
A(x),g(x)

〉= α(x), g(x) �= x, (24)

for all x ∈ C, where

C = {x ∈ Br :
〈
A(x),x

〉= α(x)
}
. (25)

Then, there exists x∗ ∈ Br such that A(x∗)= 0.

Proof. Identifying E with E∗, we apply Theorem 1 taking X = Br , with the relativization
of the weak topology of E, and taking τ as the weak topology of E. Due to the kind
of continuity we are assuming for A, the function x→ 〈A(x),x〉 turns out to be weakly
continuous (see the proof of Theorem 12), and so the set C is weakly closed. Now, let
ψ : Br → Br be any weakly continuous function such that ψ|C = g. By the Tychonoff fixed
point theorem, there is x0 ∈ Br such that ψ(x0)= x0. Since g has no fixed points in C, it
follows that x0 /∈ C, and so

〈
A
(
x0
)
,ψ
(
x0
)〉= 〈A(x0),x0〉 �= α

(
x0
)
. (26)

Hence, all the assumptions of Theorem 1 are satisfied and the conclusion follows from it.
�

It is worth noticing the following consequences of Theorem 7.

Theorem 8. Let E andA be as in Theorem 7. Assume that for each x ∈ Br , with ‖A(x)‖ > r,

∥∥∥∥∥A
(

rA(x)∥∥A(x)∥∥
)∥∥∥∥∥≤ r. (27)

Then, the operator A has either a zero or a fixed point.

Proof. Define the function α : Br →R by

α(x)=


∥∥A(x)∥∥2 if

∥∥A(x)∥∥≤ r,

r
∥∥A(x)∥∥ if

∥∥A(x)∥∥ > r.
(28)

Clearly, the function α is weakly continuous and satisfies |α(x)| ≤ r‖A(x)‖ for all x ∈ Br .
Put C = {x ∈ Br : 〈A(x),x〉 = α(x)}. Note that if x ∈ C, then ‖A(x)‖ ≤ r. Indeed, other-
wise, we would have 〈A(x),x〉 = r‖A(x)‖, and so, necessarily, x = rA(x)/‖A(x)‖, against
(27). Hence, we have 〈A(x),A(x)〉 = α(x) for all x ∈ C. At this point, the conclusion fol-
lows at once from Theorem 7, taking g =A|C. �

Remark 9. It would be interesting to knowwhether Theorem 8 can be improved assuming
that A is a compact operator (i.e., continuous and with relatively compact range).
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Remark 10. Note that Theorem 8 can be compared with the classical Rothe’s theorem
which assures the existence of a fixed point of A provided that it is compact and maps
∂Br into Br . Theorem 8 tells us that, under a more severe continuity assumption (see,
however, Remark 9) and the condition A−1(0) = ∅, the key Rothe’s condition can be
remarkably weakened to

A
(⋃
λ>0

λA
(
A−1

(
E \Br

))∩ ∂Br

)
⊆ Br. (29)

Theorem 11. Let E and A be as in Theorem 7. Assume that there exists w ∈ Br , with
〈A(w),w〉 �= 0, such that 〈A(x),w〉 = 0 for all x ∈ Br satisfying 〈A(x),x〉 = 0.

Then, there exists x∗ ∈ Br such that A(x∗)= 0.

Proof. Apply Theorem 7 taking α(x)= 0 and g(x)=w for all x ∈ Br . �

The second application of Theorem 1 is based on connectedness arguments. For other
results of this type, we refer to [6] (see also [2]).

Theorem 12. Let X be a connected paracompact topological space and A : X → E∗ a weakly
continuous and locally bounded operator. Assume that there exist r > 0, a closed set C ⊂ X ,
a continuous function g : C → Br , and an upper semicontinuous function β : X → R, with
|β(x)| ≤ r‖A(x)‖E∗ for all x ∈ X , such that g(C) is disconnected,

β(x)≤ A(x)
(
g(x)

)
(30)

for all x ∈ C, and

A(x)(y) < β(x) (31)

for all x ∈ X \C and y ∈ Br \ g(C).
Then, there exists x∗ ∈ C such that A(x∗)= 0.

Proof. First, note that the function x → A(x)(g(x)) is continuous in C. To see this, let
x1 ∈ C and let {xγ}γ∈D be any net in C converging to x1. By assumption, there areM > 0
and a neighborhood U of x1 such that ‖A(x)‖E∗ ≤M for all x ∈ U . Let γ0 ∈ D be such
that xγ ∈U for all γ ≥ γ0. Thus, for each γ ≥ γ0, one has

∣∣A(xγ)(g(xγ))−A
(
x1
)(
g
(
x1
))∣∣

≤M
∥∥g(xγ)− g

(
x1
)∥∥+∣∣A(xγ)(g(x1))−A

(
x1
)(
g
(
x1
))∣∣ (32)

fromwhich, of course, it follows that limγ A(xγ)(g(xγ))= A(x1)(g(x1)). Next, observe that
the multifunction x→ [β(x),r‖A(x)‖E∗] is lower semicontinuous and that the function
x→ A(x)(g(x)) is a continuous selection of it in C. Hence, by Michael’s theorem, there
is a continuous function α : X →R such that α(x)= A(x)(g(x)) for all x ∈ C and β(x)≤
α(x)≤ r‖A(x)‖E∗ for all x ∈ X . Now, let ψ : X → Br be any continuous function such that
ψ|C = g. SinceX is connected, ψ(X) is connected too. But then, since g(C) is disconnected
and g(C)⊂ ψ(X), there exists y0 ∈ ψ(X) \ g(C). Let x0 ∈ X \C be such that ψ(x0)= y0.
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So, by hypothesis, we have

A
(
x0
)(
ψ
(
x0
))= A

(
x0
)(
y0
)
< β
(
x0
)≤ α

(
x0
)
. (33)

Hence, taking τ as the strong topology of E, all the assumptions of Theorem 1 are satisfied
and the conclusion follows from it. �

Remark 13. Observe that when X is first-countable, the local boundedness of A follows
automatically from its weak continuity. This follows from the fact that, in a Banach space,
any weakly convergent sequence is bounded.

It is worth noticing the corollary of Theorem 12 which comes out takingX = Br , β = 0,
and g = identity.

Theorem 14. Let E be a Hilbert space with inner product 〈·,·〉. Let r > 0 and let A : Br → E
be a continuous operator from the strong to the weak topology. Assume that the set C = {x ∈
Br : 〈A(x),x〉 ≥ 0} is disconnected and that, for each x, y ∈ Br \C, 〈A(x), y〉 < 0.

Then, there exists x∗ ∈ C such that A(x∗)= 0.
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