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LetY be a finite connected complex and p : Y →N a fibration over a compact nilmanifold
N . For any finite complex X and maps f ,g : X → Y , we show that the Nielsen coincidence
number N( f ,g) vanishes if the Reidemeister coincidence number R(p f , pg) is infinite.
If, in addition, Y is a compact manifold and g is the constant map at a point a∈ Y , then
f is deformable to a map f̂ : X → Y such that f̂ −1(a)=∅.

1. Introduction

The celebrated Lefschetz-Hopf fixed point theorem states that if a selfmap f : X → X on a
compact connected polyhedron X has nonvanishing Lefschetz number L( f ), then every
map homotopic to f must have a fixed point. On the other hand, if L( f )= 0, f need not
be homotopic to a fixed point free map. A classical result of Wecken asserts that if X is a
triangulable manifold of dimension at least three, then the Nielsen number N( f ) is the
minimal number of fixed points of maps in the homotopy class of f . Thus, in this case, if
N( f )= 0, then f is deformable to be fixed point free. For coincidences of two maps f ,g :
X → Y between closed oriented triangulable n-manifolds, there is an analogous Lefschetz
coincidence number L( f ,g), and L( f ,g) �= 0 implies {x ∈ X | f ′(x)= g′(x)} �= ∅ for all
f ′ ∼ f and g′ ∼ g. Schirmer [14] introduced a Nielsen coincidence number N( f ,g) and
proved a Wecken-type theorem. While the theory of Nielsen fixed point (coincidence)
classes is useful in obtaining multiplicity results in fixed point (coincidence) theory and
in other applications, the computation of the Nielsen number remains one of the most
difficult and central issues.

One of the major advances in recent development in computing the Nielsen number
is a theorem of Anosov who proved that for any selfmap f :N →N of a compact nilman-
ifold N , N( f )= |L( f )|. By a nilmanifold, we mean a coset space of a nilpotent Lie group
by a closed subgroup. Thus, the computation of N( f ) reduces to that of the homologi-
cal trace L( f ). Anosov’s theorem does not hold in general for selfmaps of solvmanifolds
or infranilmanifolds. Meanwhile, the theorem has been generalized to coincidences for
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maps between closed oriented triangulable manifolds of the same dimension. In particu-
lar, coincidences of maps from amanifold to a solvmanifold or an infrasolvmanifold have
been studied (see, e.g., [8, 10, 15]).

In [9], it was shown that if f ,g : X → Y are maps from a finite complex X to a com-
pact nilmanifold Y , then R( f ,g)=∞ implies N( f ,g)= 0. This result is false in general,
for example, when Y is a solvmanifold (see, e.g., [8]). In this work, the main objective is
to generalize this result for more general spaces, in particular, for finite connected com-
plexes Y which fiber over a compact nilmanifold N . We should point out that such a
space Y necessarily fibers over the unit circle S1 as every nilmanifold does. The problem
of fibering a smooth manifold over S1 has been settled by Farrell [7] who identified an
obstruction which gives the necessary and sufficient condition for fibering over S1. Since
many spaces fiber over S1 (e.g., the mapping torus Tf of a pseudo-Anosov homeomor-
phism f : X → X on a hyperbolic surface X is a hyperbolic 3-manifold which fibers over
S1 (or mapping tori in general) or solvmanifolds), the class of spaces we consider here
enlarges the collection of known topological spaces for which calculation of N( f ,g) has
been studied. In the special case where g is a constant map, we give a sufficient condition
which implies that f is deformable to be root free. This work allows us to study situations
where the spaces are not necessarily aspherical or manifolds, and the maps need not be
fiber-preserving.

For classical Nielsen fixed point theory, the basic references are [4, 12].

2. Main results

Before we present our main results, we first review the appropriate generalization of the
classical Nielsen coincidence number using an index-free notion of essentiality due to
Brooks (see [1, 3]).

Let f ,g : X → Y be maps between finite complexes and Coin( f ,g) = {x ∈ X | f (x)=
g(x)}. Suppose x1,x2 ∈ Coin( f ,g). Then x1 and x2 are Nielsen equivalent as coincidences
with respect to f and g if there exists a path σ : [0,1]→ X such that σ(0)= x1, σ(1)= x2,
and f ◦ σ is homotopic to g ◦ σ relative to the endpoints. The equivalence classes of this
relation are called the coincidence classes. A coincidence class � is essential if for any
x ∈� and for any homotopies { ft}, {gt} of f = f0 and g = g0, there exist x′ ∈ Coin( f1,g1)
and a path γ : [0,1]→ X with γ(0) = x, γ(1) = x′ such that ft ◦ γ is homotopic to gt ◦ γ
relative to the endpoints. We say that x ∈ � is { ft},{gt}-related to a coincidence of f1
and g1.

The Nielsen coincidence number N( f ,g) of f and g is defined to be the number of
essential coincidence classes. It is homotopy invariant, finite, and is a lower bound for
Coin( f ′,g′) for f ′ ∼ f , g′ ∼ g. By fixing base points in X and in Y , let f� and g� be
the homomorphisms induced by f and by g, respectively, on the fundamental groups.
The Reidemeister coincidence number R( f ,g) of f and g is the number of orbits of
the action of π1(X) on π1(Y) via σ • α 	→ g�(σ)α f�(σ)−1, where σ ∈ π1(X), α ∈ π1(Y).
It is homotopy invariant and is independent of the choice of the base points. Moreover,
N( f ,g) ≤ R( f ,g). When X and Y are closed oriented n-manifolds, a homological co-
incidence index I( f ,g;�) can be defined for each coincidence class �. It follows that
I( f ,g;�) �= 0 implies that � is essential. In fact, for n �= 2, I( f ,g;�) �= 0 if and only if �
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is essential. Thus, the Nielsen number generalizes the classical one [14] defined for ori-
ented n-manifolds. In the special case when g is a constant map, the induced homomor-
phism g� is trivial, so R( f ,g)= [π1(Y) : f�(π1(X))], the index of the subgroup f�(π1(X))
in π1(Y).

LetN be a compact nilmanifold and let �N denote the family of triples (Y , p,N) where
p is a fibration with base N , Y is a finite connected complex, and the typical fiber is path-
connected.

Theorem 2.1. Let (Y , p,N) ∈ �N . For any finite complex X and maps f ,g : X → Y , if
N( f ,g) > 0, then R(p f , pg) <∞.

Proof. Since p f , pg : X → N , it suffices to show, by [9, Theorem 3], that N( f ,g) > 0
implies N(p f , pg) > 0. First note that Coin( f ,g)⊆ Coin(p f , pg). Moreover, if x1, x2 are
Nielsen equivalent as coincidences with respect to f and g, then they are Nielsen equiva-
lent as coincidences with respect to p f and pg. Let � be an essential coincidence class of
f and g and let �′ be the unique coincidence class of p f and pg containing �. Suppose
{H′

t } is a homotopy of p f . Consider the following commutative diagram:

X ×{0} f

incl.

X

p

X × [0,1]
H′

N.

(2.1)

Since p is a fibration, there exists a homotopy H of f covering H′, that is, H′ = pH .
Now because N is a manifold, it follows from [1] that the effect of deforming f and g by
homotopies { ft}, {gt} can be achieved by deforming f and keeping the homotopy {gt}
constant. Since � is essential, every x ∈� is { ft},{gt}-related to a coincidence of H1 and
g with {gt} constant as g. Thus, x ∈�⊆�′ is {p ft},{pg}-related to a coincidence of H′

1

and pg. It follows that �′ is essential. The proof is complete. �

Remark 2.2. This result clearly generalizes [9, Theorem 3] in that, if Y is already a nil-
manifold, then we choose the fibration p to be the identity map. Furthermore, the impli-
cation N( f ,g) > 0 implies N(p f , pg) > 0 actually holds for any fibration p without any
other assumptions on N . Even when X = Y and g is the identity map, the Nielsen coin-
cidence theory need not be the same as the classical Nielsen fixed point theory in which
the identity map remains constant through homotopy. When the target is a manifold, the
Nielsen coincidence theory does reduce to that for fixed points (see, e.g., [1]). In order
to obtain the next result for fixed points as a consequence of Theorem 2.1, the ability to
deform only one of the maps is crucial.

Corollary 2.3. Let (Y , p,N)∈�N and let Y be a topological manifold. For any self-map
f : Y → Y , if R(p f , p)=∞, then N( f )= 0, where N( f ) denotes the classical Nielsen (fixed
point) number of f .
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Remark 2.4. If F is the typical fiber of p : Y → N , then the inclusion F↩Y induces an
injective homomorphism π1(F)→ π1(Y) since N is aspherical. This result is useful espe-
cially when π1(F) is not f�-invariant, that is, f is not homotopic to a fiber-preserving
map with respect to the fibration p.

Suppose the map g is the constant map at a point a ∈ Y and ā = p(a) ∈ N . We will
write N( f ;a) :=N( f ,g) and R(p f ; ā) := R(p f , pg). When Y is a manifold, N( f ;a) coin-
cides with the Nielsen root number defined in [2].

Theorem 2.5. Let (Y , p,N)∈�N and letX be a finite complex. Suppose f : X → Y is a map
such that R(p f ; ā)=∞. Then f is homotopic to a map f̂ : X → Y such that f̂ −1(a)=∅. If,
in addition, Y is a closed triangulable n-manifold, then the map f̂ can be chosen such that
dim f̂ (X)≤ n− 1.

Proof. Since R(p f ; ā) =∞ and N is a compact nilmanifold, [9, Theorem 3] asserts that
N(p f ; ā)= 0. It follows from [9, Theorem 4] that the composite map p f is homotopic to
a root-free map h : X →N such that h−1(ā)=∅. Let H̄ : X × [0,1]→N be this homotopy
with H̄0 = p f and H̄1 = h. Since p is a fibration, the covering homotopy theorem implies
that there exists a homotopyH : X × [0,1]→ Y such thatH0 = f and pH = H̄ . Evidently,
H−1

1 (a)=∅. We choose the lift of the homotopy H̄ starting from f .
Suppose now that Y is a closed triangulable n-manifold. By the argument above, we

have a map ϕ̂, homotopic to f such that ϕ̂−1(a)=∅. Without loss of generality, we may
assume that the point a lies in the interior of a maximal n-simplex of Y . Now one can
find a compact manifold K of codimension zero in Y with nonempty boundary such that

ϕ̂(X)⊂ intK . By collapsing K onto its (n− 1)-skeleton, ϕ̂ is homotopic to a map f̂ such

that dim f̂ (X)≤ n− 1 and a /∈ f̂ (X). �

Example 2.6. Let Y be the three-dimensional solvmanifold obtained by the relation on
R3 given by

(x, y,z)∼ (x+ a, (−1)a y + b, (−1)az+ c
)

(2.2)

for a,b,c ∈ Z. The projection p : Y → S1 on the first factor is a fibration. For any self-map
f : Y → Y of the form

[x, y,z] 	−→ [x,·,·], (2.3)

the maps p and p f coincide and thus induce the same epimorphism on fundamental
groups. Thus, R(p f , p) is simply the number of conjugacy classes of elements of π1(S1)∼=
Z, and is therefore infinite. By Corollary 2.3, we have N( f )= 0.

The map f is in fact fiber-preserving with an induced map, the identity on the base.
In general, every self-map of Y is homotopic to a fiber-preserving map with respect to p
so that an addition formula can be used to compute N( f ) as done in [11]. This example
shows the effectiveness of determining N( f )= 0 using our result.

Next, we give an example of a coincidence situation where the maps need not be fiber-
preserving.
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Example 2.7. The three-dimensional solvmanifold Y of Example 2.6 is also a flat mani-
fold whose fundamental group π1(Y)= π ⊂R3 �O(3) is given by an extension

0−→ Z
3 −→ π −→ Z2 −→ 0, (2.4)

where the action of Z2
∼= 〈A〉 on Z3 is given by



1 0 0
0 −1 0
0 0 −1


 ·


p
q
r


=




p
−q
−r


 . (2.5)

Here, A is the matrix given by

A=


1 0 0
0 −1 0
0 0 −1


 . (2.6)

The group π is generated by {(e1,I),(e2,I),(e3,I),(α,A)}, where e1, e2, e3 are the standard
basis for R3 and

α=



1
2
0
0


∈R

3. (2.7)

Consider a connected finite complexX such that π1(X)∼=G×〈e〉, whereG has a group
presentation given by G= 〈a,b,c,d | [a,b][c,d]= 1〉. For example, X can be chosen to be
the 3-manifold (T2#T2)× S1, that is, the cartesian product of the connected sum of two 2-
tori with the unit circle. The space X may be taken to be nonaspherical so that X need not
fiber over S1. Now let f : X → Y be a map whose induced homomorphism on π1 is given
by f� : π1(X)→ π via f�(a)= (e3,I), f�(b)= (e2,I)2, f�(c)= (e3,I)2, f�(d)= (e2,I)−1, and
f�(e)= (e2,I). It is easy to see that 〈(e1,I)〉 = p−1� (π1(S1)) and p� ◦ f� = 0. Thus, if a0 ∈ Y
and ā0 = p(a0), then R(p f ; ā0) =∞. It follows from Theorem 2.5 that N( f ;a0) = 0 and
hence f is homotopic to a root-free map.

Let N be a compact nilmanifold of dimension k. Then, using a refined upper central
series, we obtain a sequence of S1-principal fibrations pi, i= 1, . . . ,k− 1,

S1 S1 S1 . . . S1

N pk−1
Nk−1 pk−2

Nk−2 . . . N2 p1
N1 = S1,

(2.8)

where Ni is a compact nilmanifold of dimension i. We should point out that not every
self-map of N is fiber-preserving with respect to these fibrations pi.

Let (Y , p,N) ∈ �N and let pk : Y → N be a fibration over a compact k-dimensional
nilmanifold N with an associated sequence of fibrations as in (2.8). If f ,g : X → Y , then
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we have the following commutative diagram:

X

gf

X

pkgpk f

X

pk−1 pkgpk−1pk f

. . . X

p1···pkgp1···pk f

Y pk
N pk−1

Nk−1 . . .
p1

N1.

(2.9)

With this setup, together with Theorem 2.1, we have the following theorem.

Theorem 2.8. Let f ,g : X → Y and let pk : Y →N be as in the previous discussion. Then

N( f ,g) > 0=⇒N
(
pk f , pkg

)
> 0

=⇒N
(
pk−1pk f , pk−1pkg

)
> 0

=⇒ ···
=⇒N

(
p1 ··· pk f , p1 ··· pkg

)
> 0

=⇒ R
(
p1 ··· pk f , p1 ··· pkg

)
<∞.

(2.10)

In particular, for any i, 1≤ i≤ k,

R
(
pi ··· pk f , pi ··· pkg

)=∞=⇒N( f ,g)= 0. (2.11)

Remark 2.9. Theorem 2.8 gives an algorithmic procedure of determining the vanishing
of N( f ,g). To begin, we consider R(p1 ··· pk f , p1 ··· pkg) whose calculation is done in
π1(N1) ∼= Z since N1 = S1. In case R(p1 ··· pk f , p1 ··· pkg) is finite, we then consider
R(p1 ··· pk−1 f , p1 ··· pk−1g) and π1(N2), and so forth.

The next example illustrates the usefulness of Theorem 2.8.

Example 2.10. Take Y to be the three-dimensional solvmanifold whose fundamental
group is the semidirect product π1(Y)= Z �θ Z2 where the action θ : Z2→ AutZ= {±1}
is given by

θ
((
sβ, tγ

))= (−1)γ. (2.12)

Here, we write Z∼= 〈δ〉 and Z2 ∼= 〈s〉× 〈t〉. The projection π1(Y)→ Z2 via (δα, (sβ, tγ)) 	→
(sβ, tγ) gives rise to a fibration p : Y → T2 of Y over the 2-torus. Let q : T2 → S1 be the
projection onto the second factor.

Take X to be the same space as in Example 2.7 so that π1(X)= G×〈e〉. Consider the
map f : X → Y whose induced homomorphism on fundamental groups is given by f�
such that f�(a)= (1,(1,1))= f�(b), f�(c)= (1,(1, t))= f�(d), and f�(e)= (δ, (1,1)).

Let a ∈ Y be a point. It is straightforward to check that R(qp f ;qp(a)) = 1 while
R(p f ; p(a)) =∞ since q�p� f�(π1(X)) ∼= 〈t〉 ∼= π1(S1) but p� f�(π1(X)) ∼= 1× 〈t〉 has in-
finite index in π1(T2) = 〈s〉 × 〈t〉. Thus, by Theorem 2.8, we conclude that N( f ;a) = 0
and hence f is deformable to be root-free by Theorem 2.5.
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3. Concluding remarks

The results in this paper rely on the ability to compute R(p f , pg) or more precisely to
determine whether R(p f , pg) is infinite or not. Since the Reidemeister number is com-
puted in the fundamental group of the target space, in this case, in a finitely generated
torsion-free nilpotent group, the computation is tractable especially employing power-
ful computer algebra software such as GAP. Computational aspects concerning infinite
polycyclic (and therefore, finitely generated nilpotent) groups have been studied in re-
cent years (see, e.g., [5, 6, 13]). The computation of the Reidemeister number will be the
objective of the sequel to this work.
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