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We consider a general quasi-variational inequality problem involving nonlinear, non-
convex and nondifferentiable term in uniformly smooth Banach space. Using retraction
mapping and fixed point method, we study the existence of solution of general quasi-
variational inequality problem and discuss the convergence analysis and stability of a
three-step iterative algorithm for general quasi-variational inequality problem. The the-
orems presented in this paper generalize, improve, and unify many previously known
results in the literature.
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1. Introduction

Many problems arising in physics, mechanics, elasticity and engineering sciences can be
formulated in variational inequalities involving nonlinear, nonconvex and nondifferen-
tiable term, see for example Baiocchi and Capelo [4], Duvaut and Lions [8] and Kikuchi
and Oden [15]. The proximal (resolvent) method used to study the convergence analy-
sis of iterative algorithms for variational inclusions, see [14, 20], cannot be adopted for
studying such classes of variational inequalities due to the presence of nondifferentiable
term.

There are some methods, for example projection method and auxiliary principle
method which can be used to study such classes of variational inequalities, see [7, 17—
19] and the relevent references cited therein. It is remarked that most of the work, us-
ing projection method and auxiliary principle method, has been done in the setting of
Hilbert space. Recently, Alber and Yao [3] and Chen et al. [6] studied some classes of co-
variational inequality and co-complementarity problems in Banach spaces. Therefore,
the study of other classes of variational inequalities using projection method and aux-
iliary principle method in the setting of Banach space remains an interesting problem.
Very recently, Chidume et al. [7] studied some classes of variational inequalities involving
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nonlinear, convex and nondifferentiable term, using auxiliary principle method in the set-
ting of reflexive Banach space.

In recent years, one step and two-step iteration algorithms (including Mann Iteration
and Ishikawa iteration processes as the most important cases) have been extensively stud-
ied by many authors to solve the nonlinear operator equations and variational inequality
problems in Hilbert spaces and Banach spaces, see for example [3, 6, 7, 12-14, 16, 18—
20, 23-25, 27, 28] and the references therein. Noor [21, 22] introduced and analyzed
three-step iterative methods to study the approximate solutions of variational inequali-
ties (inclusions) in Hilbert spaces by using the techniques of updating the solution and the
auxiliary principle. Further Xu and Noor [26] and Liu et al. [17] used three step iterative
algorithms to study nonlinear operator equations and variational inequality problems,
respectively. A similar idea goes back to the so called 8-schemes introduced by Glowinski
and Le Tallec [9] to find a zero of sum of two (or more) maximal monotone operators
by using the Lagrangian multiplier. Glowinski and Le Tallec [9] used three-step iterative
algorithms to find the approximate solutions of the elastoviscoplasticity problem, liquid
crystal theory, and eigenvalue computation, and they showed that three-step approxi-
mations perform better numerically. Haubruge et al. [11] studied the convergence anal-
ysis of three-step iterative algorithms of Glowinski and Le Tallec [9] and applied these
algorithms to obtain new splitting-type algorithms for solving variational inequalities,
separable convex programming, and minimization of a sum of convex functions. They
also proved that three-step iterations lead to highly parallelized algorithms under certain
conditions.

It has been shown in [11, 21, 22] that three step iterative algorithms are a natural
generalization of the splitting methods for solving partial differential equations (inclu-
sions). For applications of splitting and decomposition methods, see [9, 11, 21, 22] and
the references therein. Thus one can conclude that three-step iterative algorithms play
an important and significant part in solving various problems, which aries in pure and
applied sciences. On the other hand there are no such three-step iterative algorithm for
solving quasi-variational inequality problems in Banach spaces.

Motivated by these facts and the recent work going in this direction, we consider
a general quasi-variational inequality problem (in short, GQVIP) involving nonlinear,
nonconvex and nondifferentiable term, in uniformly smooth Banach space. Using sunny
retraction mapping, we establish that GQVIP is equivalent to some relations. Further,
using these relations, we suggest a three-step iterative algorithm for finding the approxi-
mate solution of GQVIP. Furthermore, using fixed point method, we prove the existence
of unique solution of GQVIP and discuss the convergence analysis and stability of the
three-step iterative algorithm. The theorems presented in this paper generalize, improve
and unify the results given in [5, 12, 13, 18, 24-27] and in the relevant references cited
therein.

2. Preliminaries and formulation of problem

Throughout this paper, unless the contrary is stated, we assume that E is a real uni-
formly smooth Banach space equipped with norm || - [|; (-,-) is the dual pair between
E and its dual space E*; ] : E — E* be the normalized duality mapping defined by
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(J(x),x) = ||](x)||%* = ||x||i~ Vx € E and CC(E) be the family of all nonempty, closed
and convex subsets of E. We note that if E = H, a Hilbert space, then J becomes identity

mapping.
First we recall the following concepts and results which are needed in the sequel.

Definition 2.1. A single-valued mapping g : E — E is said to be
(1) k-strongly accretive if there exists a constant k > 0 such that

() —g),J(u—v)) =kllu—vl>, VuvekE (2.1)
(i) 8-Lipschitz continuous if there exists a constant § > 0 such that
llg(u) —g(»)|| <dllu—vll, VuveE. (2.2)

Definition 2.2. A mapping N(-,-,-): EXEXE — E is said to be
(1) a-strongly accretive in the first argument if there exists a constant « > 0 such that

(N(ty,-) =N, ), J(u—v)) = allu—v|*>, Vuv€EE; (2.3)

(ii) B-Lipschitz continuous in the first argument if there exists a constant f§ > 0 such
that

[IN(4,-,-) =N, )|| <Bllu—vl, Vu,veE. (2.4)

Definition 2.3 [2, 6, 10]. Let K C E be a nonempty closed convex set. A mapping Rg : E —
K is said to be
(1) retraction if

Ri = Rgs (2.5)
(ii) nonexpansive retraction if
[|[Rxu—Rev|| < llu—vl, VuveE; (2.6)
(iii) sunny retraction if
Rx (Rxu—t(u—Ryxu)) =Rgku, Vu€eE, tER. (2.7)

LEMMA 2.4 [6, 10]. A retraction Rk is sunny and nonexpansive if and only if

(u— Ry (u),] (Rg(u) —v)) =0, Vu,veE. (2.8)
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LemMmA 2.5 (2, 6, 10]. For all u,v € E, we have
@) Nu+vl> < lull>+2v,J(u+v)),

(i) (u — v,Ju — Jv) < 2d°pe(4llu — vll/d), where d = ([ull>+1vI[>)/2 pe(t) =
sup{((Nlull +1IvI)/2) =1 : llull = 1, Ivil =t} is called the modulus of smoothness
of E.

Definition 2.6 [23]. Let E be a Banach space; let T : E — E be a mapping, and let 4, € E.
Assume that u,; = f(T,u,) defines an iteration procedure which yields a sequence of
points {u,},—o < E. Suppose that F(T) = {u € H: T(u) = u} # & and that {u,},_, < E

Y]

converges to some x € F(T). Let {z,};o € Eand €, = ||zp41 — f(T,2,) . Iflim,_ €, =0
implies lim,_« z, = x, then the iteration procedure defined by u,+; = f(T,u,) is said to
be T-stable or stable with respect to T

LemMa 2.7 [16]. Let {a,}, {b,}, and {c,} be sequences of nonnegative real numbers satis-
fring

a1 = (1=Ay)an+b A+, Vn=0, (2.9)

where >, oAy = 00, {1,} C [0,1], lim,—c by, =0, >~ ¢y < 00. Then lim,, . a, = 0.

We remark that Lemma 2.7 is the particular case of Lemma 1 of Alber [1].

Let N:EXEXE — E and g,h,A,B,C : E — E be single-valued mappings and let K :
E — CC(E) be a set-valued mapping. We consider the following general quasi-variational
inequality problem (GQVIP): Find u € E such that g(u) € K(u) and

(h(g(u)),J (v —g(u))) +pb(u,v) — pb(u,g(u))

2.10
> (h(u),](v—gw))) — p(N(A(u),B(u),C(u)) — f,](v—g(w))), (210

Vv € K(u), where p >0 is a constant; f € E and b(+,-) : EX E — R is a nonlinear, non-
convex and nondifferentiable form satisfying the following conditions.

Condition 2.8. (i) b(-,-) is linear in the first argument;
(ii) there exists a constant v > 0 such that

b(u,v) <v|ulllvll, Vu,veE; (2.11)

(iii) b(u,v) — b(u,w) < b(u,v —w), Vu,v € E.
Remark 2.9. (i) Condition 2.8(i)-(ii) implies that

=b(u,v) <»llullllvl, Vu,veE. (2.12)

Hence, we have |b(u,v)| < vllullllvll, Vu,v € E.
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(i1) Also Condition 2.8(i)—(iii) imply that

[b(u,v) — b(u,w)| <vllullllv-wl, Vu,v,w€EE, (2.13)

that is, b(u,v) is continuous with respect to the second argument.

2.1. Some special cases of GQVIP (2.10). (I) If f = ©, where © is the zero element
in E; N(u,v,w) = u, Vu,v,w € E, then GQVIP (2.10) reduces to the following quasi-
variational inequality problem: Find u € E such that g(u) € K(u) and

(h(g(w),J (v —g(u))) +pb(u,v) — pb(u,g(u))

(2.14)
> (h(u),] (v—gw)) —p(Aw),] (v-gw))), VveK(u),

which appears to be new. Problem (2.14) has been studied by Zeng [27] in the setting of
Hilbert space.

(II) If f =0©; b=0, a zero mapping, and N(u,v,w) = u+v, Yu,v,w € E, then
GQVIP (2.10) reduces to the following quasi-variational inequality problem: Find u € E
such that g(u) € K(u) and

(h(gw)),J (v —g(w)))

= (b (v—g()) —p{(A+BY) S (v—g(w)), WveKG), )

which appears to be new. Problem (2.15) has been studied by Verma [25] in the setting
of Hilbert space.

(I If f =0; b=0, and N(u,v,w) = u, Vu,v,w € E, then GQVIP (2.10) reduces to
the following quasi-variational inequality problem: Find u € E such that g(1) € K(u) and

(h(gw)),J (v —g(u)))

2.16
= (h(u),](v—g(u)) —p{Au),J (v—g(u))), VveK(u), (2.16)

which is also appears to be new. Problem (2.16) has been studied by Zeng [28] in the
setting of Hilbert space.

We remark that for the appropriate and suitable choices of mappings g, h, A, B, C,
N, b, K, the element f, and the underlying space E, one can obtain from GQVIP (2.10)
a number of known and new classes of variational and quasi-variational inequalities as
special cases in the literature.
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3. A three-step iterative algorithm
First we prove the following important lemma.

LemMa 3.1. Let t, p, A be positive parameters with t < 1 and let Condition 2.8 be held. Then
the following statements are equivalent:

(a) GQVIP (2.10) has a solution u € E with g(u) € K(u);

(b) there exists u € E such that g(u) € K(u) and

(u—®(w),] (v—g()) =0, VveKw), (3.1)
where the mapping © : E — E is defined by

(D(w),J(v)) = (u,J(v)) = (h(g(u )J v)) + (h(u),](v))

—p(N(A(u),B(u),C(u)) — f,J(v)) — pb(u,v), Yu,veE;
(3.2)
(¢) there exists u € E such that g(u) € K(u) and
g(u) = Rxqw [g(u) — Au+Ad(u)], (3.3)
where the mapping Ry is sunny retraction from E onto K (u);
(d) the mapping F : E — E defined by
F(u)=(1—t)u+t(u—g(u)+Rxw[g(u) —Au+Ad(u)]), (3.4)
for all v € E has a fixed point.
Proof. (a)=(b). Let (a) hold, that is, u € E such that g(1) € K(u) and
(h(gw),J (v —g(w))) +pb(u,v) — b(u,g(u)) 55
> (h(u),] (v—g(u))) — p(N (A(w), B(w),C(w) - f,] (v —g(w))), '
which can be rewritten as
(] (v—gw))) = (u,] (v —gw)) — (h(gw)),] (v —g(w))) + (h(w),] (v — g(u)))
—pb(u,v —g(u)) — p(N(A(w), B(u),C(w)) — f,] (v —g(u))).
(3.6)
By using (3.2), the preceding inequality becomes
(u—0(u),J(v—g(u)) =0, VveeE. (3.7)

Hence (b) holds.
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(b)=(a). It is immediately followed by retracing the above steps and using Condition
2.8.
Since, for A >0,

Mu—0w),](v—gw)) = (g(u) — (g(u) = Au+A10(u)),/ (v —g(u))), VYu,v€E.
(3.8)

Therefore, from (3.8) and Lemma 2.4, it follows the statements (b) and (c) are equiv-
alent. Moreover, one can easily prove that for ¢ € (0,1], (¢) and (d) are equivalent. This
completes the proof. O

Based on the above lemma, we suggest the following three-step iterative algorithm for

finding the approximate solution of GQVIP (2.10).

3.1. Three-step iterative algorithm (TSIA) (3.1). Letg,h,A,B,C:E—E;K:E — CC(E).
Given uy € E, compute the sequence {u,} defined by the following iterative schemes:

Uni1 = (1= an) thn + @ (Vo — §(Vi) + Ri(u) [ (V) = AV +AD (Vi) ]) + @ty
Vi = (1= Bu)uC+Bn(wn — g(Wn) + Ri(w,) [§(Wn) = Awy +AD (W) ) + s
Wn = (1= yn)tin + Y (hn — g(ttn) + Rcu) [g (thn) — Aty +AD (1) ) + yuprs  (3.10)

(3.9)

forn =0,1,2,3,..., where @ is given by

(D (un)J (va)) = CunsJ (va)) = (h(g (un)),T (va)) + (h(utn) T (va))

_P<N(A(un))B(”n)’C(un)) _f)](vn» _Pb(”mvn)) Vv, € K(un)§
(3.11)

A >0 is a parameter; {p,}, {qn}, {n} are sequences of elements in E introduced to take
into account the possible inexact computations of the retraction points, and {a,}, {fn},
{yn} are the sequences of real numbers satisfying the condition

Day=0, 0<anfuys<1, Vn=0. (3.12)
i=0

4. Existence of solution, convergence analysis, and stability

In this section, first we establish the existence of unique solution for GQVIP (2.10) and
discuss the convergence analysis of TSIA (3.1).

THEOREM 4.1. Let E be a uniformly smooth Banach space with pg(t) < ct? for some constant
¢ >0. Let A be a positive parameter; let the mappings g,h,A,B,C : E — E be g-Lipschitz
continuous, m-Lipschitz continuous, r-Lipschitz continuous, s-Lipschitz continuous and &-
Lipschitz continuous, respectively; let g be p-strongly accretive; let the mapping N : E X E X
E — E be -Lipschitz continuous, o-Lipschitz continuous and t-Lipschitz continuous in the
first, second and third arguments, respectively, and be a-strongly accretive with respect to A
in the first argument, and let K : E — CC(E) be a set-valued mapping. Assume that for some
constant y >0,
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(@)
l|Rkw)(2) — Rk (2)|| < pllu—vll, Vu,v€E;

(ii) b(-,-) : E X E — R satisfy Condition 2.8 (i)—(iii);

(iif)
0:= /l[k+ip+w/1 —2poc+p2d2];
ir=v+os+1&; d? := 64cp*r?,
where

k=271 [\/1 —2p+64cq? +p+A2 — 2)Lp+64cq2] +m(q+1).

Further assume that Condition 4.2 or Condition 4.3 below hold.

Condition 4.2. For p >0,
pi<Al—k<1,
and one of the following conditions holds.
d>i,

la— (A1 = k)i >\/(1 S -k (@ - ),

a— (A1 —k)i

- 01 =0)* = (1- (1 -R)7) (@ - 7).

<

P d2— 2 d2— 2
d=1i,

a>A1—k)i,

p>(1- (A =k)*)2(a— (A" —k)i);

d<i,

ot _k)i_a‘ JE ) (1- 0710 + (A - K- a)’
- > .

2 —d2 2 —d2

Condition 4.3. For p >0,

max{1,pi} < A -k,

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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and one of the following conditions holds:

d>i,

a— (A1 — k)i \/(oc—(/l—l—k)i)z—(1—(A—1—k)2)(d2—i2)
P dz— 2 < d2— 2 ;
d=1,
a< (AN —k)i,
p< (A=K -1)2(A" -K)i-a);
d<i,

(A1~ k)i—a >\/(()H K1) (@),
\/(i2 —d) (1= (1 =K)?) + (O —K)i— @)’

2 —d2

A1 —k)i-a
P= 22— g2

(4.9)

(4.10)

(4.11)

Then GQVIP (2.10) has a unique solution u € E. Further, the sequence {u,} generated

by TSIA (3.1), converges strongly to u provided that
ii}gﬁﬂ)’nHPnH = rlll_r{}oﬁannH = gljgllrnll =0.
Proof. From (3.4), (4.1) and Lemma 2.4, we estimate ||F(u) — F(v)|[:

[E () = F0)]| = [|(1 = )u+ £(u - g() + R [g(#) — A+ AD()])
+(1—t)v+t(v—g(¥) + Riy [g(v) = v+ Ad(w)]) |
<(I=t)llu—vll+t|u—v-(gu)—g)||
+ || Ricqu [¢ (1) — A+ AD(u) ] = Ricu [g(v) = v + A ()] |
+ ]| Rk [g(v) = v +AD(v)] = R [g(v) = Av +20(v) ]|
<(@=Dllu=vi+tllu—v-(gw)-gW)l
+1]lg(u) = g(v) = A1 = v) + A(D(w) = ©(v))|[ + tullu — v

<(A-Dllu—vil+t|ju—v-(gu) —g)||

+1llg(u) — g(v) = Mu — v)| |+ A[|@(w) — ©()|| + tullu — vl

(4.12)

(4.13)
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Now since g is p-strongly accretive and g-Lipschitz continuous then by using Lemma
2.5, we have

[[u=v = (g(w) — )|
< llu—=vI* = 2(g(w) —g),] (u—v — (g(u) —g(v))))
= llu—vlI*> = 2(g(u) —g(v),J(u—v)) (4.14)
+2(g(w) —g(),J(u—v) = J(u—v—(gu) —g(v))))

< (1-2p+64cg?) llu—vl?
and similarly, we have
llg() — g(v) = A(u = v)|| < /A2 = 2Ap + 64cq?|lu —v|. (4.15)
Now, using (2.14), Condition 2.8(i), and Remark 2.9(ii), we have

[©(u) - o)
= [{(@(u) = @), ] (P(u) - D())) |
= [{(u=v,J(@(u) = ©(v))) = pb(u,®(1) = ©(v)) + pb (v, D(11) — D(v))
— (h(g(w)) = h(g)),J (@) = @) + (h() — h(v),] (D(u) — ©(v)))
= p(N(A(u), B(u),C(u)) = N (A(v),B(v),C(v)),] (®(u) = ©())) |
< [(u—v—(h(g(w) —h(g»)) + (h(u) = h(v))
= pIN(A(w), B(),C(1)) =N (A(v),B(v), C(v)) |, ] (®(u) = ()} |

+p|b(u—v,d(u) - O()) |
< (Jlu—v—p[N(A(u),B(),C(1)) — N(A(v),B(v),C(")]||

+[[h(g(w)) = h(@)] + |[h(u) = ()| ]) || @) — D]
+p|b(u—v,D(u) - O(v)) |
< (|lu=v—p[N(A(w),B(u),C(u)) = N(A(v),B(v),C(»)) ]|

+ (g () =h(gW)[+11h(w) = kW) + prllu=vI) | () — D).
(4.16)
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Now, since g and h are g-Lipschitz continuous and m-Lipschitz continuous, respec-
tively, the preceding inequality reduces to

||@(u) = ®()|| < ||u—v—p[N(A(u),B(u),C(u)) — N(A(v),B(v),C(v))]]|

+ (m(g+1)+py)llu—vl. (4.17)
Next, we have the following estimate:
||1/l 2 P[N(A(H),B(u),C(u)) _ N(A(V)yB(V),C(V))]H
< ||u—v—p[N(A(),B(u),C(w)) — N(A(v),B(u),C(w))]]|
(4.18)

+plIN (A(v), B(u), C(w)) = N (A(v), B(v), C(w)) |
+plIN(A(),B(),C(w)) = N(A(v), B(v),C())||.
Since N is a-strongly accretive with respect to A in the first argument, and N is -
Lipschitz continuous, o-Lipschitz continuous and 7-Lipschitz continuous with respect

to the first, second and third arguments, respectively, we can easily obtain the following
estimates:

|lu—v—p[N(A(w),B(u),C(u)) — N(A(),B(u),C(u))]||

(4.19)
< \/1 —2pa+64cp?rri|lu—vl;
[IN(A(v),B(u),C(u)) — N(A(v),B(v),C(w))|| < osllu—vl; (4.20)
[IN(A(v),B(v),C(u)) = N(A(v),B(v),C(W)|| < 7&llu— vl (4.21)
Combining (4.18)—(4.21), we have
|[u—v = p[N(A(u),B(1),C(u)) = N(A(v), B(v),C())]]]
(4.22)

< <\/1 —2pa+64cp?fprr2 +p(os+ Tf)) =]l

From (4.17) and (4.22), we have

[|@(u) — d(v)|| < <\/1 —2pa+64cp?frr2+p(v+os+1E) +m(g+ 1)>|Iu—v||. (4.23)

From (4.13)—(4.15) and (4.23), we have

||[F(u) —F(v)|| < (1 - t+t[\/1 —2p+64cq2+\/)tz —2Ap+64cq? +u+Am(g+1)

+Ap(v+os+1E) +)L\/1 - 2poc+64cp2/32r2]> lu—vl|

=(1-t(1-0))llu—vl.
(4.24)
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Now,

<1 1-2patprd>< (A1 —k)—ip

2 (4.25)
= p*(d*-2)-2p(a- A =k)i)< (A" -k) -1

From either Condition 4.2 or Condition 4.3, and (4.25), it follows that 6 < 1. Since
t € (0,1], it follows from (4.24) that F is a contraction mapping. Therefore, by Banach
contraction principle, F has a unique fixed point u in E. Thus it follows from Lemma 3.1
that GQVIP (2.10) has a unique solution u in E. Further, we observe that u satisfies
u=(1-ay,)u+a,(u—g(u)+Riwlgu) — Au+1d(u)]);
u=(1-Pn)u+pu(u—gu)+Rxuwlg(u) — Au+10(u)]); (4.26)
u=(1=yy)u+yn(u—g(u)+Rxwlgu) —Au+10(u)]),

forallm=0,1,2,3,....
Using (3.2), (4.26) and repeating the above arguments, we obtain

1@ (1) = ©(w)|| < (Y1 - 2pa+p2d2 + it m(q+ 1)) [y — ull. (4.27)

It follows from (3.10), (4.26), (4.27), and Lemma 2.4 that

wn = ull < (1= yu) [[un — ul[ + yallun — v = (g (un) — g))[[ + yall pul|
+ Yl | Ric ) (€ (t4n) = Atk +AD (un)) = Ry (g () — Au+ AD(w)) |
< (1= yutyn1 = 2p + 6400202 + yups) |t — ull + yal Ll
+ g () — g (1) = A1ty — u) [| + M| D (1) — D(w0)]]
< (1= (1= 0)yn)|lun — ul[+ yul | pall
< ||t — u|| + yul|pull, since (1—(1-0)y,) < 1.

(4.28)

By using similar arguments as above and (4.27), we have the following estimates:

va = ull < (1= Ba) |ttn = il [+ Ballwn — 1= (g (wn) = g()) [ + Ballnl|
+ Bl [Ricw) (& (Wn) = Awiy + A® () — Ricqu) (§(14) — Aut+ AD(w)) ||
< (1= Ba)l[tn — ul[ + OBullwn — ul| + Bulga]]
< (1= (1= 0)Bn)|[un — ul[+ 0Buynl pall + Ballgnll

< ||un — ull + OBnyul | pull + Ballgnll,  since (1-(1-0)B,) <1,
(4.29)
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and by using (4.29), we have
||un+1 - u“ = (1 _“n)”un - “|| +‘xn||vn —u- (g(Vn) _g(“))” +‘xﬂ||rn||
+ 0t || Ric(v,) (€ (Vi) = AV +A® (v)) = Ricy (g (1) — A+ AD(w)) ||
< (1= atn)| |ty — ul| + Oatu|[vn — ul| + atu] 1|

< (1= (1= 0)an)|un — ul| + & (6*Buynl|pall + 0Bullqnl | + ||7al]).

(4.30)
Setting
an = ||ty — ul|; An = (1= 0)an;
by = (1= 0)""(6*Buynll pall + 0Bullgnll +[rall); (4.31)
¢, =0, Vn.

It follows from Lemma 2.7, (3.12), (4.12), and (4.30) that a,, — 0 as n — oo, that is,
u, — uas n — oo, This completes the proof. O

Finally, we discuss the stability of TSIA (3.1).

CoROLLARY 4.4. LetE, g, h, A, B, C, N, and K be same as in Theorem 4.1. Let the assump-
tions (4.1)—(4.3), (4.12), and either Condition 4.2 or Condition 4.3 of Theorem 4.1 hold. Let
{2y} be any sequence in E and let {8,} < [0, ) be defined as

8 = ||Zn+1 — (1= an)zy — ()’n _g()’n) +RK(yn)[g()’n) = AYn +/\q)(}’n)]) - ‘xn"n”’

(4.32)
where
Yn = (1 _ﬁn)zﬂ +/3)n(xn _g(xn) +RK(xn)[g(xn) — A%y +AD (x,) ]) +Buqn; (4.33)
Xn = (1= yn)zn + yn(zn — g(2u) + Rx(z,) [ (2n) = Azn +AD(24) ]) + yu P> '
foralln=0,1,2,3,..., and © is defined by (3.11).
If there exists w > 0 such that
o, =w, Vn=0, (4.34)
then
,11}?0 Zn=u, iff %ert}lo 6, =0. (4.35)

Proof. Using the arguments used in Theorem 4.1 for obtaining (4.28) and (4.29), we have

[ln = ull = (1= (1 = O)yn) 120 — ul[ + yul[pall < [l20 = ul[+ yall pall;

(4.36)
lyn—ull < (1-(1 - G)ﬁn)”Zn —ul +0,8n)’n||Pn|| +,8n||qn||’
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and

(1 = &) 20 + @ (yn — g (¥n) + Ric(y,) [ (¥n) = Ayn +AD () ]) + @t — |
S(1*0511)||Zn*M”"'e“n”yn*1’l||+0‘n||rn|| (4.37)
< (1= (1= 0)an)lzn — ul| + @ (6°Buynll pull + 0B84l lqnl | +I74l]).

Suppose that lim, .., 6, = 0.
Using (4.34) and (4.37), we estimate that

zwer = ul] < [[(1 = &) 20 + 6 (yn = & () + Ric() [ () = Ay AP () ]) + @ — |
+lzne1 = (1= 0tn) 2w =t (Y=g (yn) +Ric(y) [§ (¥n) = AynHA@ () ]) = atur|
< (1= (1= 0)atn) [z — ul| + @ (6% Buynl| pal
< (1= (1= 0)an) [z — ul| + 2 (6% Buyul | pall + OBullgall + [ 7al |+ @7 8).

+ 0Bullgnll + 17l + o, 00)

(4.38)
Setting
an=|lza—ully  Au=(1-0as
b = (1= 0) " (6*Buynllpal |+ OBullgull +1lral | + @ '8); (4.39)
=0, Vn.

It follows from Lemma 2.7, (3.12), (4.12), and (4.38) that a,, — 0 as n — oo, that is,
Zy — Uasn — oo,
Conversely, suppose that lim,—« z, = u. Then (4.38), (4.12) and (4.34) ensure that
Op < ||Zn+1 - u”
+[[(1 = atn)zn + an (yn = g (¥n) + Ric(y,) [§ (1) = Ayn +AD (yn) ) + cturn — i

<(1-01- 9)“n)||zn - ”” +0‘n(ﬁnyn||Pn|| +ﬁn||qn|| + ||rn||)
< llzner = ul[+ (1 = (1 = O)w) [z — ull + 6 Buyal | pall + OBl lgull + [[7all
— 0 asn— oo,

(4.40)

Hence, §,, — 0 as n — oo. This completes the proof. O
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