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Let X be a real reflexive Banach space, let C be a closed convex subset of X , and let A
be an m-accretive operator with a zero. Consider the iterative method that generates the
sequence {xn} by the algorithm xn+1 = αn f (xn) + (1− αn)Jrnxn, where αn and γn are two
sequences satisfying certain conditions, Jr denotes the resolvent (I + rA)−1 for r > 0, and
let f : C → C be a fixed contractive mapping. The strong convergence of the algorithm
{xn} is proved assuming that X has a weakly continuous duality map.
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the Creative Commons Attribution License, which permits unrestricted use, distribution,
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1. Introduction

Let X be a real Banach space, let C be a nonempty closed convex subset of X , and let
T : C→ C be a nonexpansive mapping if for all x, y ∈ C, such that

‖Tx−Ty‖ ≤ ‖x− y‖. (1.1)

We use F(T) to denote the set of fixed points of T , that is, F(T)= {x ∈ C : x = Tx}. And
⇀ denotes weak convergence,→ denotes strong convergence. Recall that a self-mapping
f : C→ C is a contraction on C if there exists a constant β ∈ (0,1) such that

∥
∥ f (x)− f (y)

∥
∥≤ β‖x− y‖, x, y ∈ C. (1.2)

Browder [2] considered an iteration in a Hilbert space as follows. Fix u∈ C and define
a contraction Tt : C→ C by

Ttx = tu+ (1− t)Tx, x ∈ C, (1.3)

where t ∈ (0,1). Banach’s contraction mapping principle guarantees that Tt has a unique
fixed point xt in C.

Xu [7] defined the following one viscosity iteration for nonexpansive mappings in
uniformly smooth Banach space.
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2 Nonexpansive mappings

Theorem 1.1 [2, Theorem 4.1, page 287]. Let X be a uniformly smooth Banach space,
let C be a closed convex subset of X , T : C→ C is a nonexpansive mapping with F(T) �= φ,
and f ∈ ΠC, where ΠC denotes the set of all contractions on C. Then {xt} defined by the
following:

xt = t f
(

xt
)

+ (1− t)Txt, x ∈ C, (1.4)

converges strongly to a point in F (T). Define Q :ΠC → F(T) by

Q( f ) := lim
t→0

xt, f ∈
∏

C

, (1.5)

then Q(f) solves the variational inequality

〈

(I − f )Q( f ), J
(

Q( f )− p
)〉≤ 0, f ∈

∏

C

, p ∈ F(T). (1.6)

Xu [8] proved the strong convergence of {xt} defined by (1.3) in a reflexive Banach
space with a weakly continuous duality map Jϕ with gauge ϕ.

Recall that an operator A with D(A) and range R(A) in X is said to be accretive, if for
each xi ∈D(A) and yi ∈ Axi, (i= 1,2) such that

〈

y2− y1, J
(

x2− x1
)〉≥ 0, (1.7)

where J is the duality map from X to the dual space X∗ given by

J(x)= { f ∈ X∗ :
〈

x, f
〉= ‖x‖2 = ‖ f ‖2}, x ∈ X. (1.8)

An accretive operator A ism-accretive if R(I + λA)= X for all λ > 0.
Denote by Jr the resolvent of A for r > 0,

Jr = (I + rA)−1. (1.9)

It is known that Jr is a nonexpansivemapping fromX toC :=D(A) which will be assumed
convex.

Also in [8], Xu considered the following algorithm:

xn+1 = αnu+
(

1−αn
)

Jrnxn, n≥ 0, (1.10)

where u ∈ C is arbitrarily fixed, {αn} is a sequence in (0,1), and {rn} is a sequence of
positive numbers. Xu proved that if X is a reflexive Banach space with weakly continuous
duality mapping, then the sequence {xn} given by (1.10) converges strongly to a point in
F provided the sequences {αn} and {rn} satisfy certain conditions.

The main purpose of this paper is to consider the following two iterations both in a
reflexive Banach space X which has a weakly continuous duality mapping:

xt = t f
(

xt
)

+ (1− t)Txt, t ∈ (0,1), (1.11)

xn+1 = αn f
(

xn
)

+
(

1−αn
)

Jrnxn, n≥ 0. (1.12)
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2. Preliminaries

In order to prove our main results, we need the following lemmas. The proof of Lemma
2.1 can be found in [5, 6]. Lemma 2.2 is an immediate consequence of the subdifferential
inequality of the function (1/2)‖ · ‖2.
Lemma 2.1. Let {an}n be a sequence of nonnegative real numbers such that

an+1 ≤
(

1−αn
)

an +αnβn, n≥ 0, (2.1)

where {αn}n ⊂ (0,1), and βn satisfy the conditions:
(i) limn→∞αn = 0,
(ii)

∑∞
n=1αn =∞,

(iii) limsupn→∞βn ≤ 0.
Then limn→∞ an = 0.

Lemma 2.2. Let X be an arbitrary real Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2
〈

y, J(x+ y)
〉

, x, y ∈ X. (2.2)

Recall that a gauge is a continuous strictly increasing function ϕ : [0,+∞)→ [0,+∞)
such that ϕ(0)= 0 and ϕ(t)→∞. Associated to a gauge ϕ is the duality map Jϕ : X → X∗

defined by

Jϕ(x)=
{

f ∈ X∗ :
〈

x, f
〉= ‖x‖ϕ(‖x‖), ‖ f ‖ = ϕ

(‖x‖)}, x ∈ X. (2.3)

Following Browder [3], we say that a Banach space X has a weakly continuous duality
map if there exists a gauge ϕ for which the duality map Jϕ is single valued and weak-to-
weak∗ sequentially continuous, that is, if {xn} is a sequence in X weakly convergent to a
point x, then the sequence {Jϕ(xn)} converges weakly∗ to Jϕ(x). It is known that �p has a
weakly continuous duality map for all 1 < p <∞. Set

Φ(t)=
∫ t

0
ϕ(τ)dτ, τ ≥ 0. (2.4)

Then

Jϕ(x)= ∂Φ
(‖x‖), x ∈ X , (2.5)

where ∂ denotes the subdifferential in the sense of convex analysis.
We also need the next lemma, and the first part of Lemma 2.3 is an immediate conse-

quence of the subdifferential inequality and the proof of the second part can be found in
[4].

Lemma 2.3. Assume that X has a weakly continuous duality map Jϕ with gauge ϕ.
(i) For all x, y ∈ X , there holds the inequality

Φ
(‖x+ y‖)≤Φ

(‖x‖)+ 〈y, Jϕ(x+ y)
〉

. (2.6)
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(ii) Assume a sequence {xn} in X is weakly convergent to a point x. Then there holds the
identity

limsup
n→∞

Φ
(∥
∥xn− y

∥
∥
)= limsup

n→∞
Φ
(∥
∥xn− x

∥
∥
)

+Φ
(‖y− x‖), x, y ∈ X. (2.7)

Lemma 2.4 is the resolvent identity which can be found in [1].

Lemma 2.4. For λ,μ > 0, there holds the identity

Jλx = Jμ

(
μ

λ
x+
(

1− μ

λ

)

Jλx
)

, x ∈ X. (2.8)

3. Main results

Theorem 3.1. Let X be a real reflexive Banach space and have a weakly continuous duality
mapping Jϕ with ϕ. SupposeC is a closed convex subset ofX , andT : C→ C is a nonexpansive
mapping, let f : C → C be a fixed contractive mapping. For t ∈ (0,1), {xt} is defined by
(1.11). Then T has a fixed point if and only if {xt} remains bounded as t→ 0+, and in this
case, {xt} converges strongly to a fixed point of T as t→ 0+.

Proof. Assume first that F(T) �= φ. Take u∈ F(T), it follows that

∥
∥xt −u

∥
∥= ∥∥t f (xt

)

+ (1− t)Txt −u
∥
∥

≤ t
∥
∥ f
(

xt
)−u

∥
∥+ (1− t)

∥
∥Txt −u

∥
∥

≤ tβ
∥
∥xt −u

∥
∥+ t

∥
∥ f (u)−u

∥
∥+ (1− t)

∥
∥xt −u

∥
∥

= (1− (1−β)t
)∥
∥xt −u

∥
∥+ t

∥
∥ f (u)−u

∥
∥.

(3.1)

Hence

∥
∥xt −u

∥
∥≤ 1

1−β

∥
∥ f (u)−u

∥
∥. (3.2)

Therefore, {xt} is bounded, so are {Txt} and { f (xt)}.
Next assume that {xt} is bounded as t → 0+. Assume tn → 0+ and {xtn} is bounded.

Since X is reflexive, we may assume that xtn ⇀ p for some p ∈ C. Since Jϕ is weakly con-
tinuous, we have by Lemma 2.3,

limsup
n→∞

Φ
(∥
∥xtn − x

∥
∥
)= limsup

n→∞
Φ
(∥
∥xtn − p

∥
∥
)

+Φ
(∥
∥x− p

∥
∥
)

, ∀x ∈ X. (3.3)

Put

g(x)= limsup
n→∞

Φ
(∥
∥xtn − x

∥
∥
)

, x ∈ X. (3.4)

It follows that

g(x)= g(p) +Φ
(‖x− p‖), x ∈ X. (3.5)
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Since

∥
∥xtn −Txtn

∥
∥= tn

1− tn

∥
∥ f (xtn)− xtn

∥
∥−→ 0, (3.6)

we obtain

g(Tp)= limsup
n→∞

Φ
(∥
∥xtn −Tp

∥
∥
)≤ limsup

n→∞
Φ
(∥
∥Txtn −Tp

∥
∥
)

≤ limsup
n→∞

Φ
(∥
∥xtn − p

∥
∥
)= g(p).

(3.7)

On the other hand, however,

g(Tp)= g(p) +Φ
(‖Tp− p‖). (3.8)

From (3.7) and (3.8), we get

Φ
(‖Tp− p‖)≤ 0. (3.9)

Hence Tp = p and p ∈ F(T).
Now we prove that {xt} converges strongly to a fixed point of T provided it remains

bounded when t→ 0.
Let {tn} be a sequence in (0,1) such that tn→ 0 and xtn ⇀ p as n→∞. Then the argu-

ment above shows that p ∈ F(T). We next show that xtn → p. As a matter of fact, we have
by Lemma 2.3,

Φ
(∥
∥xtn − p

∥
∥
)=Φ

(∥
∥tn
(

Txtn − p
)

+
(

1− tn
)(

f (xtn
)− p

)∥
∥
)

≤Φ
(

tn
∥
∥Txtn − p

∥
∥
)

+
(

1− tn
)〈

f
(

xtn
)− p, Jϕ

(

xtn − p
)〉

≤ tnΦ
(∥
∥xtn − p

∥
∥
)

+
(

1− tn
)〈

f
(

xtn
)− f (p), Jϕ

(

xtn − p
)〉

+
(

1− tn
)〈

f (p)− p, Jϕ
(

xtn − p
)〉

.

(3.10)

This implies that

Φ
(∥
∥xtn − p

∥
∥
)≤ 〈 f (xtn

)− f (p), Jϕ
(

xtn − p
)〉

+
〈

f (p)− p, Jϕ
(

xtn − p
)〉

≤ β
∥
∥xtn − p

∥
∥
∥
∥Jϕ
(

xtn − p
)∥
∥+

〈

f (p)− p, Jϕ
(

xtn − p
)〉

= βΦ
(∥
∥xtn − p

∥
∥
)

+
〈

f (p)− p, Jϕ
(

xtn − p
)〉

,

(3.11)

that is,

Φ
(∥
∥xtn − p

∥
∥
)≤ 1

1−β

〈

f (p)− p, Jϕ
(

xtn − p
)〉

. (3.12)

Now noting that xtn ⇀ p implies Jϕ(xtn − p)⇀ 0, we get

Φ
(∥
∥xtn − p

∥
∥
)−→ 0. (3.13)

Hence xtn → p.
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We have proved for any sequence {xtn} in {xt : t ∈ (0,1)} that there exists a subse-
quence which is still denoted by {xtn} that converges to some fixed point p of T . To
prove that the entire net {xt} converges strongly to p, we assume there exists another
sequence {sn} ∈ (0,1) such that xsn → q, then q ∈ F(T). We have to show p = q. Indeed,
for u∈ F(T), it is easy to see that

〈

xt −Txt, Jϕ
(

xt −u
)〉=Φ

(∥
∥xt −u

∥
∥
)

+
〈

u−Txt, Jϕ
(

xt −u
)〉

≥Φ
(∥
∥xt −u

∥
∥
)−∥∥u−Txt

∥
∥ ·∥∥Jϕ

(

xt −u
)∥
∥

≥Φ
(∥
∥xt −u

∥
∥
)−Φ

(∥
∥xt −u

∥
∥
)= 0.

(3.14)

On the other hand, since

xt −Txt = t

1− t

(

f
(

xt
)− xt

)

, (3.15)

we get for t ∈ (0,1) and u∈ F(T),

〈

xt − f
(

xt
)

, Jϕ
(

xt −u
)〉≤ 0. (3.16)

Since the sets {xt −u} and {xt} are bounded and a Banach spaceX has a weakly contin-
uous duality map Jϕ, then Jϕ is single valued and weak-to-weak∗ sequentially continuous,
for any u∈ F(T), by xsn → q(sn→ 0), we have

∥
∥xsn − f

(

xsn
)− (q− f (q)

)∥
∥−→ 0

(

sn −→ 0
)

,
∣
∣
〈

xsn − f
(

xsn
)

, Jϕ
(

xsn −u
)〉− 〈q− f (q), Jϕ(q−u)

〉∣
∣

= ∣∣〈xsn − f
(

xsn
)− (q− f (q)

)

, Jϕ
(

xsn −u
)〉

+
〈

q− f (q), Jϕ
(

xsn −u
)− Jϕ(q−u)

〉∣
∣

≤ ∥∥xsn − f
(

xsn
)− (q− f (q)

)∥
∥
∥
∥Jϕ
(

xsn −u
)∥
∥

+
∣
∣
〈

q− f (q), Jϕ
(

xsn −u
)− Jϕ(q−u)

〉∣
∣ as sn −→ 0.

(3.17)

Therefore, we get

〈

q− f (q), Jϕ(q−u)= lim
sn→0

〈

xsn − f
(

xsn
)

, Jϕ
(

xsn −u
)〉≤ 0. (3.18)

Interchange p and u to obtain

〈

q− f (q), Jϕ(q− p)
〉≤ 0. (3.19)

Interchange q and u to obtain

〈

p− f (p), Jϕ(p− q)
〉≤ 0. (3.20)

This implies that

〈

(p− q)− ( f (p)− f (q)
)

, Jϕ(p− q)
〉≤ 0. (3.21)
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That is,

‖p− q‖ϕ(‖p− q‖)≤ β‖p− q‖ϕ(‖p− q‖). (3.22)

This is a contradiction, so we have p = q.
The proof is complete. �

Remark 3.2. Theorem 3.1 is proved in a weaker condition than [7, Theorem 4.1], and
the method of proof is different from [7], we introduce a continuous strict increasing
function.

Next two main results are about accretive operators, we consider the problem of find-
ing a zero of an m-accretive operator A in a reflexive Banach space X , 0∈ Ax. Denote by
F(A) the zero set of A, that is,

F(A) := {x ∈D(A) : 0∈ Ax
}= A−1(0). (3.23)

Theorem 3.3. Suppose that X is reflexive and has a weakly continuous duality map Jϕ with
gauge ϕ. Suppose that A is an m-accretive operator in X such that C =D(A) is convex with
F(A) �= φ, and f : C→ C is a fixed contractive map. Assume

(i) αn→ 0 and
∑∞

n=0αn =∞,
(ii) γn→∞.
Then the sequence {xn} defined by (1.12) converges strongly to a point in F(A).

Proof. First we prove {xt} is bounded. Indeed, take u∈ F(A), then

∥
∥xn+1−u

∥
∥≤ αn

∥
∥ f
(

xn
)−u

∥
∥+

(

1−αn
)∥
∥Jrnxn−u

∥
∥

≤ αnβ
∥
∥xn−u

∥
∥+αn

∥
∥ f (u)−u

∥
∥+

(

1−αn
)∥
∥xn−u

∥
∥

≤ (1− (1−β)αn
)∥
∥xn−u

∥
∥+αn

∥
∥ f (u)−u

∥
∥.

(3.24)

By induction, we get

∥
∥xn−u

∥
∥≤max

{
∥
∥x0−u

∥
∥,

1
1−β

∥
∥ f (u)−u

∥
∥

}

∀n≥ 0. (3.25)

This implies that {xn} is bounded, so are { f (xn)} and {Jrnxn}, and hence

∥
∥xn+1− Jrnxn

∥
∥= αn

∥
∥ f
(

xn
)− Jrnxn

∥
∥−→ 0. (3.26)

We next prove

limsup
n→∞

〈

f (p)− p, Jϕ
(

xn− p
)〉≤ 0, p ∈ F(A). (3.27)

By Theorem 3.1, put p = limt→0 xt, we take a subsequence {xnk} of {xn} such that

limsup
n→∞

〈

f (p)− p, Jϕ
(

xn− p
)〉= limsup

n→∞

〈

f (p)− p, Jϕ
(

xnk − p
)〉

. (3.28)
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Since X is reflexive, we may further assume that xnk ⇀ x̃. Moreover, since

∥
∥xn+1− Jrnxn

∥
∥−→ 0, (3.29)

we obtain

Jrnk−1xrnk−1 x. (3.30)

Taking the limit as k→∞ in the relation

[

Jrnk−1xrnk−1,Arnk−1xrnk−1
]∈A, (3.31)

we get [x,0]∈A, that is, x ∈ F(A). Hence by (3.28) and (3.18), we have

limsup
n→∞

〈

f (p)− p, Jϕ
(

xn− p
)〉= 〈 f (p)− p, Jϕ(x− p)

〉≤ 0. (3.32)

That is, (3.27) holds.
Finally, we prove that xn→ p.
We apply Lemma 2.3 to get

Φ
(∥
∥xn+1− p

∥
∥
)=Φ

(∥
∥
(

1−αn
)(

Jrnxn− p
)

+αn
(

f
(

xn
)− p

)∥
∥
)

=Φ
(∥
∥
(

1−αn
)(

Jrnxn− p
)

+αn
(

f
(

xn
)− f (p)

)

+αn
(

f (p)− p
)∥
∥)

≤Φ
(∥
∥
(

1−αn
)(

Jrnxn− p
)

+αn
(

f
(

xn
)− f (p)

)∥
∥
)

+αn
〈

f (p)− p, Jϕ
(

xn+1− p
)〉

≤ (1− (1−β)αn
)

Φ
(∥
∥xn− p

∥
∥) +αn

〈

f (p)− p, Jϕ
(

xn+1− p
)〉

.
(3.33)

Applying Lemma 2.1, we get

Φ
(∥
∥xn− p

∥
∥
)−→ 0. (3.34)

That is, ‖xn− p‖→ 0, that is, xn→ p.
The proof is complete. �

Theorem 3.4. Suppose that X is reflexive and has a weakly continuous duality map Jϕ with
gauge ϕ. Suppose that A is an m-accretive operator in X such that C =D(A) is convex with
F(A) �= φ, and f : C→ C is a fixed contractive map. Assume

(i) αn −→ 0,
∞
∑

n=0
αn =∞,

∞
∑

n=1

∣
∣αn+1−αn

∣
∣ <∞,

(ii) γn ≥ ε ∀n,
∞
∑

n=1

∣
∣γn+1− γn

∣
∣ <∞.

(3.35)

Then {xn} defined by (1.12) converges strongly to a point in F(A).
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Proof. We only include the differences. We have

xn+1 = αn f
(

xn
)

+
(

1−αn
)

Jγnxn, xn = αn−1 f
(

xn−1
)

+
(

1−αn−1
)

Jγn−1xn−1. (3.36)

Thus,

xn+1− xn = αn f
(

xn
)

+
(

1−αn
)

Jγnxn−
(

αn−1 f
(

xn−1
)

+
(

1−αn−1
)

Jγn−1xn−1
)

= αn
(

f
(

xn
)− f

(

xn−1
))

+
(

αn−αn−1
)(

f
(

xn−1
)− Jγn−1xn−1

)

+
(

1−αn
)(

Jγnxn− Jγn−1xn−1
)

.

(3.37)

If γrn−1 ≤ γn, by Lemma 2.4, we get

Jγnxn = Jγn−1

(
γn−1
γn

xn +
(

1− γn−1
γn

)

Jγnxn

)

, (3.38)

we have

∥
∥Jγnxn− Jγn−1xn−1

∥
∥≤ γn−1

γn

∥
∥xn− xn−1

∥
∥+

(

1− γn−1
γn

)
∥
∥Jγnxn− xn−1

∥
∥

≤ ∥∥xn− xn−1
∥
∥+

(
γn− γn−1

γn

)
∥
∥Jγnxn− xn−1

∥
∥

≤ ∥∥xn− xn−1
∥
∥+

1
ε

∣
∣γn−1− γn

∣
∣
∥
∥Jγnxn− xn−1

∥
∥.

(3.39)

It follows from the above results that
∥
∥xn+1− xn

∥
∥≤ ∣∣αn−αn−1

∣
∣
∥
∥ f
(

xn−1
)− Jγn−1xn−1

∥
∥+

(

1−αn
)∥
∥xn− xn−1

∥
∥

+
1
ε

(

1−αn
)∣
∣γn−1− γn

∣
∣
∥
∥Jγnxn− xn−1

∥
∥+αnβ

∥
∥xn− xn−1

∥
∥

≤M
(∣
∣αn−αn−1

∣
∣+

∣
∣γn−1− γn

∣
∣
)

+
(

1− (1−β)αn
)∥
∥xn− xn−1

∥
∥,

(3.40)

where M > 0 is some appropriate constant. Similarly, we can prove the last inequality if
γn−1 ≥ γn. By assumptions (i) and (ii) and Lemma 2.1, we have

∥
∥xn+1− xn

∥
∥−→ 0. (3.41)

This implies that

∥
∥xn− Jγnxn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

∥
∥xn+1− Jγnxn

∥
∥. (3.42)

Since ‖xn+1− Jγnxn‖ = αn‖ f (xn)− Jγnxn‖→ 0. It follows from (3.42) that

∥
∥Aγnxn

∥
∥= 1

γn

∥
∥xn− Jγnxn

∥
∥≤ 1

ε

∥
∥xn− Jγnxn

∥
∥−→ 0. (3.43)

Now if {xnk} is a subsequence of {xn} converging weakly to a point x, then taking the
limit as k→∞ in the relation

[

Jγnk xnk ,Aγnk
xnk
]∈A, (3.44)
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we get [x,0] ∈ A, that is, x ∈ F(A). We therefore conclude that all weak limit points of
{xn} are zeros of A.

The rest of the proof follows from Theorem 3.3.
The proof is complete. �
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