
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2010, Article ID 765206, 11 pages
doi:10.1155/2010/765206

Research Article
Regularization and Iterative Methods for
Monotone Variational Inequalities

Xiubin Xu1 and Hong-Kun Xu2

1 Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
2 Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

Correspondence should be addressed to Xiubin Xu, xxu@zjnu.cn

Received 16 September 2009; Accepted 23 November 2009

Academic Editor: Mohamed A. Khamsi

Copyright q 2010 X. Xu and H.-K. Xu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We provide a general regularization method for monotone variational inequalities, where the
regularizer is a Lipschitz continuous and strongly monotone operator. We also introduce an
iterative method as discretization of the regularization method. We prove that both regularization
and iterative methods converge in norm.

1. Introduction

Variational inequalities (VIs) have widely been studied (see the monographs [1–3]). A
monotone variational inequality problem (VIP) is stated as finding a point x∗ with the
following property:

x∗ ∈ C, 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1.1)

whereC is a nonempty closed convex subset of a real Hilbert spaceH with inner product 〈·, ·〉
and norm ‖ · ‖, respectively, and A is a monotone operator inH with domain dom(A) ⊃ C.

Recall that A is monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, ∀x, y ∈ dom(A). (1.2)

A typical example of monotone operators is the subdifferential of a proper convex
lower semicontinuous function.
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Variational inequality problems are equivalent to fixed point problems. As a matter of
fact, x∗ solves VIP (1.1) if and only if x∗ solves the following fixed point problem (FPP), for
any γ > 0,

x∗ = PC

(
I − γA

)
x∗, (1.3)

where PC is the metric (or nearest point) projection from H onto C; namely, for each x ∈ H,
PCx is the unique point in C with the property

‖x − PCx‖ = min
{∥∥x − y

∥
∥ : y ∈ C

}
. (1.4)

The equivalence between VIP (1.1) and FPP (1.3) is an immediate consequence of the
following characterization of PC:

Givenx ∈ H and z ∈ C; then z = PCx ⇐⇒ 〈
x − z, y − z

〉 ≤ 0, ∀y ∈ C. (1.5)

The dual VIP of (1.1) is the following VIP:

x∗ ∈ C, 〈Ax, x − x∗〉 ≥ 0, x ∈ C. (1.6)

The following equivalence between the dual VIP (1.6) and the primal VIP (1.1) plays
a useful role in our regularization in Section 2.

Lemma 1.1 (cf. [4]). Assume that A : C → H is monotone and weakly continuous along segments
(i.e., A((1 − t)x + ty) → Ax weakly as t → 0 for x, y ∈ C), then the dual VIP (1.6) is equivalent to
the primal VIP (1.1).

To guarantee the existence and uniqueness of a solution of VIP (1.1), one has to impose
conditions on the operator A. The following existence and uniqueness result is well known.

Theorem 1.2. IfA is Lipschitz continuous and strongly monotone, then there exists one and only one
solution to VIP (1.1).

However, if A fails to be Lipschitz continuous or strongly monotone, then the result
of the above theorem is false in general. We will assume that A is Lipschitz continuous, but
do not assume strong monotonicity of A. Thus, VIP (1.1) is ill-posed and regularization is
needed; moreover, a solution is often sought through iteration methods.

In the special case where A is of the form A = I − T , with T being a nonexpansive
mapping, regularization and iterative methods for VIP (1.1) have been investigated in
literature; see, for example, [5–19]; work related to variational inequalities of monotone
operators can be found in [20–25], and work related to iterative methods for nonexpansive
mappings can be found in [26–33].

The aim of this paper is to provide a regularization and its induced iteration method
for VIP (1.1) in the general case. The paper is structured as follows. In the next section we
present a general regularization method for VI (1.1) with the regularizer being a Lipschitz
continuous and strongly monotone operator. In Section 3, by discretizing the implicit method
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of the regularization obtained in Section 2, we introduce an iteration process and prove its
strong convergence. In the final section, Section 4, we apply the results obtained in Sections 2
and 3 to a convex minimization problem.

2. Regularization

Since VIP (1.1) is usually ill-posed, regularization is necessary, towards which we let B :
H → H be a Lipschitz continuous, everywhere defined, strongly monotone, and single-
valued operator. Consider the following regularized variational inequality problem:

xε ∈ C, 〈Axε + εBxε, x − xε〉 ≥ 0, x ∈ C. (2.1)

SinceA+ εB is strongly monotone, VI (2.1) has a unique solution which is denoted by xε ∈ C.
Indeed, VI (2.1) is equivalent to the fixed point equation

xε = PC

(
I − γ(A + εB)

)
xε ≡ Tεxε, (2.2)

where Tε = PC(I − γ(A + εB)) ≡ PC(I − γFε), with Fε = A + εB.
To analyze more details of VI (2.1) (or its equivalent fixed point equation (2.2)), we

need to impose more assumptions on the operators A and B. Assume that A and B are
Lipschitz continuous with Lipschiz constants L1, L2, respectively. We also assume that B is
β-strongly monotone; namely, there is a constant β > 0 satisfying the property

〈Bx1 − Bx2, x1 − x2〉 ≥ β‖x1 − x2‖2, x1, x2 ∈ H. (2.3)

Lemma 2.1. If γ is chosen in such a way that

0 < γ <
2εβ

(L1 + εL2)2
, (2.4)

then Tε is a contraction with contraction coefficient

√

1 − γ
[
2εβ − γ(L1 + εL2)2

]
< 1. (2.5)

Moreover, if

0 < γ <
2εβ

(L1 + εL2)2 + (ε2/4)
, (2.6)
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then

√

1 − γ
[
2εβ − γ(L1 + εL2)2

]
≤ 1 − 1

2
βεγ ; (2.7)

hence, Tε is a (1 − (1/2)βεγ)-contraction.

Proof. Noticing that Fε is (L1 + εL2)-Lipschitzian and εβ-strongly monotone, we deduce that,
for x, y ∈ H,

∥
∥Tεx − Tεy

∥
∥2 =

∥
∥PC(I − γFε)x − PC(I − γFε)y

∥
∥2

≤ ∥
∥(I − γFε)x − (I − γFε)y

∥
∥2

=
∥∥(x − y) − γ(Fεx − Fεy)

∥∥2

=
∥∥x − y

∥∥2 − 2γ〈x − y, Fεx − Fεy〉 + γ2
∥∥Fεx − Fεy

∥∥2

≤
(
1 − γ

[
2εβ − γ(L1 + εL2)2

])∥∥x − y
∥∥2

.

(2.8)

It turns out that if γ satisfies (2.4), then Tε is a contraction with coefficient given by the left
side of (2.5).

Finally, it is straightforward that (2.7) holds provided that γ satisfies (2.6).

Below we always assume that γ satisfies (2.6) so that Tε is a (1 − (1/2)βεγ)-contraction
from C into itself. Therefore, for such a choice of γ , Tε has a unique fixed point in C which is
denoted as xε whose asymptotic behavior when ε → 0 is given in the following result.

Theorem 2.2. Assume that

(a) A : C → H is monotone on C and weakly continuous along segments in C (i.e., A((1 −
t)x + ty) → Ax weakly as t → 0 for x, y ∈ C),

(b) B is β-monotone on H,

(c) the solution set S of VI (1.1) is nonempty.

For ε ∈ (0, 1), let xε be the unique solution of the regularized VIP (2.1). Then, as ε → 0, xε converges
in norm to a point ξ in S which is the unique solution of the VIP

ξ ∈ S, 〈Bξ, x − ξ〉 ≥ 0, ∀x ∈ S. (2.9)

Therefore, if one takes B to be the identity operator, then the regularized solution (xε) of the
corresponding regularized VIP (2.1) converges in norm to the minimal norm point of the solution
set S.

To prove Theorem 2.2, we first prove the boundedness of the net (xε).
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Lemma 2.3. Assume that A is monotone on C. Assume conditions (b) and (c) in Theorem 2.2. Then
(xε) is bounded; indeed, for any x∗ ∈ S,

‖x∗ − xε‖ ≤ 1
β
‖Bx∗‖, ∀ε ∈ (0, 1). (2.10)

Proof. We have (2.1) holds for all x ∈ C. In particular, for x∗ ∈ S, we have

〈Axε + εBxε, x
∗ − xε〉 ≥ 0. (2.11)

It turns out that

〈Axε, x
∗ − xε〉 + ε〈Bxε, x

∗ − xε〉 ≥ 0. (2.12)

Since A is monotone and B is β-strongly monotone, we have

〈Ax∗, x∗ − xε〉 ≥ 〈Axε, x
∗ − xε〉,

〈Bx∗, x∗ − xε〉 ≥ 〈Bxε, x
∗ − xε〉 + β‖x∗ − xε‖2.

(2.13)

Substituting them into (2.12)we obtain

εβ‖x∗ − xε‖2 ≤ 〈Ax∗, x∗ − xε〉 + ε〈Bx∗, x∗ − xε〉. (2.14)

However, since x∗ ∈ S, 〈Ax∗, x∗ − xε〉 ≤ 0. We therefore get from (2.14) that

‖x∗ − xε‖2 ≤ 1
β
〈Bx∗, x∗ − xε〉. (2.15)

Now (2.10) follows immediately from (2.15).

Proof of Theorem 2.2. Since (xε) is bounded by Lemma 2.3, the set of weak limit points as ε →
0 of the net (xε), ωw(xε), is nonempty. Pick a ξ ∈ ωw(xε) and let (εn) be a null sequence in the
interval (0, 1) such that xεn → ξ weakly as n → ∞. We first show that ξ ∈ S. To see this we
use the equivalent dual VI of (2.1):

xε ∈ C, 〈Ax + εBx, x − xε〉 ≥ 0, x ∈ C. (2.16)

Thus, we have, for all x ∈ C and n,

〈Ax + εnBx, x − xεn〉 ≥ 0. (2.17)
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Taking the limit as n → ∞ yields that

〈Ax, x − ξ〉 ≥ 0, ∀x ∈ C. (2.18)

It turns out that ξ ∈ S.
We next prove that the sequence {xεn} actually converges to ξ strongly. Replacing in

(2.15) x∗ with ξ gives

‖ξ − xεn‖2 ≤
1
β
〈Bξ, ξ − xεn〉, x ∈ C. (2.19)

Now it is straightforward from (2.19) that the weak convergence to ξ of {xεn} implies strong
convergence to ξ of {xεn}.

The relation (2.15) particularly implies that, for ε > 0,

〈Bx∗, x∗ − xε〉, x∗ ∈ S, (2.20)

which in turns implies that every point ξ ∈ ωw(xε) ⊂ S solves the VIP

ξ ∈ S, 〈Bx∗, x∗ − ξ〉 ≥ 0, ∀x∗ ∈ S, (2.21)

or equivalently, the VIP

ξ ∈ S, 〈Bξ, x∗ − ξ〉 ≥ 0, ∀x∗ ∈ S. (2.22)

However, since B is strongly monotone, the solution to VIP (2.22) is unique. This has shown
that the unique solution ξ of VIP (2.22) is the strong limit of the net {xε}.

Finally, if B is the identity operator, then VIP (2.22) is reduced to

〈ξ, x∗ − ξ〉 ≥ 0, ∀x∗ ∈ S. (2.23)

This is equivalent to

‖ξ‖2 ≤ 〈x∗, ξ〉, ∀x∗ ∈ S, (2.24)

which immediately implies that ‖ξ‖ ≤ ‖x∗‖ for all x∗ ∈ S and hence ξ is the minimal norm of
S.

Remark 2.4. In Theorem 2.2, we have proved that if the solution set S of VIP (1.1) is nonempty,
then the net (xε) of the solutions of the regularized VIPs (2.1) is bounded (and hence
converges in norm). The converse is indeed also true; that is, the boundedness of the net
(xε) implies that the solution set S of VIP (1.1) is nonempty. As a matter of fact, suppose that
(xε) is bounded and M > 0 is a constant such that ‖xε‖ ≤ M for all ε ∈ (0, 1).
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By Lemma 1.1, we have

xε ∈ C, 〈Ax + εBxε, x − xε〉 ≥ 0, x ∈ C. (2.25)

Since (xε) is bounded, we can easily see that every weak cluster point ξ of the net (xε) solves
the VIP

ξ ∈ C, 〈Ax, x − ξ〉 ≥ 0, x ∈ C. (2.26)

This is the dual VI to the primal VI (2.1); hence ξ is a solution of VI (2.1) by Lemma 1.1.

3. Iterative Method

From the fixed point equation (2.2), it is natural to consider the following iteration method
that generates a sequence {xn} according to the recursion:

xn+1 = PC

(
xn − γn(Axn + εnBxn)

)
, n = 0, 1, . . . , (3.1)

where the initial guess x0 ∈ C is selected arbitrarily, and {γn} and {εn} are two sequences of
positive numbers in (0, 1). Put in another way, xn+1 ∈ C is the unique solution in C of the
following VIP:

〈xn − γn(Axn + εnBxn) − xn+1, x − xn+1〉 ≤ 0, x ∈ C. (3.2)

Theorem 3.1. Assume that

(a) A is L1-Lipschitz continuous and monotone on C,

(b) B is L2-Lipschitz continuous and β-monotone on H,

(c) the solution set S of VI (1.1) is nonempty.

Assume in addition that

(i) 0 < γn < βεn/((L1 + εnL2)
2 + (ε2n/4)),

(ii) εn → 0 as n → ∞,

(iii)
∑∞

n=1 εnγn = ∞,

(iv) limn→∞(|γn − γn−1| + |εnγn − εn−1γn−1|)/(εnγn)2 = 0,

then the sequence {xn} generated by the algorithm (3.1) converges in norm to the unique solution of
VI (2.9).

To prove Theorem 3.1, we need a lemma below.

Lemma 3.2 (cf. [20]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − βn

)
an + βnσn, n ≥ 0, (3.3)
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where {βn} and {σn} are real sequences such that
(i) βn ∈ (0, 1) for all n, and

∑∞
n=1 βn = ∞;

(ii) lim supn→∞σn ≤ 0,

then limn→∞an = 0.

Proof of Theorem 3.1. Let Tn = PC(I − γnFn), where Fn = A + εnB. By assumption (i) and
Lemma 2.1, Tn is a contraction and has a unique fixed point which is denoted by zn. Moreover,
by Theorem 2.2, {zn} converges in norm to the unique solution ξ of VI (2.9). Therefore, it
suffices to prove that ‖xn+1 − zn‖ → 0 as n → ∞.

To see this, observing that Tn is a (1 − (1/2)βεnγn)-contraction, we obtain

‖xn+1 − zn‖ = ‖Tnxn − Tnzn‖

≤
(
1 − 1

2
βεnγn

)
‖xn − zn‖

≤
(
1 − 1

2
βεnγn

)
‖xn − zn−1‖ + ‖zn − zn−1‖.

(3.4)

However, we have

‖zn − zn−1‖ = ‖Tnzn − Tn−1zn−1‖
≤ ‖Tnzn − Tnzn−1‖ + ‖Tnzn−1 − Tn−1zn−1‖

≤
(
1 − 1

2
βεnγn

)
‖zn − zn−1‖ +

∥∥(I − γnFn

)
zn−1 −

(
I − γn−1Fn−1

)
zn−1

∥∥

=
(
1 − 1

2
βεnγn

)
‖zn − zn−1‖ +

∥∥(γn − γn−1
)
Azn−1 +

(
εnγn − εn−1γn−1

)
Bzn−1

∥∥.

(3.5)

Since {zn} is bounded, it turns out that, for an appropriate constant M > 0,

‖zn − zn−1‖ ≤
∣∣γn − γn−1

∣∣ +
∣∣εnγn − εn−1γn−1

∣∣

εnγn
M. (3.6)

Substituting (3.6) into (3.4) and setting βn = (1/2)βεnγn, we get

‖xn+1 − zn‖ ≤ (
1 − βn

)‖xn − zn−1‖ + βnσn, (3.7)

where

σn =

∣∣γn − γn−1
∣∣ +

∣∣εnγn − εn−1γn−1
∣∣

(
εnγn

)2 M′, (3.8)

withM′ = 2M/β. Assumptions (iii) and (iv) assure that
∑∞

n=1 βn = ∞ and σn → 0 as n → ∞,
respectively. Therefore, we can apply lemma to (3.7) to conclude that ‖xn+1 −zn‖ → 0; hence,
xn → ξ in norm.
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Remark 3.3. Assume 0 < ε ≤ γ < 1 satisfy 2ε + γ < 1, then it is not hard to see that for an
appropriate constant a > 0,

εn :=
1

(n + 1)ε
, γn :=

a

(n + 1)γ
, n ≥ 0 (3.9)

satisfy the assumptions (i)–(iv) of Theorem 3.1.

4. Application

Consider the constrained convex minimization problem:

min
x∈C

ϕ(x), (4.1)

where C is a closed convex subset of a real Hilbert space H and ϕ : H → R is a real-valued
convex function. Assume that ϕ is continuously differentiable with a Lipschitz continuous
gradient:

∥∥∇ϕ(x) − ∇ϕ
(
y
)∥∥ ≤ L

∥∥x − y
∥∥, ∀x, y ∈ H, (4.2)

where L is a constant.
It is known that the minimization (4.1) is equivalent to the variational inequality

problem:

x∗ ∈ C, 〈∇ϕ(x∗), x − x∗〉 ≥ 0, ∀x ∈ C. (4.3)

Therefore, applying Theorems 2.2 and 3.1, we get the following result.

Theorem 4.1. Assume the Lipschitz continuity (4.2) for the gradient ∇ϕ.
(a) For ε ∈ (0, 1), let xε ∈ C be the unique solution of the regularized VIP

xε ∈ C, 〈∇ϕ(xε) + εxε, x − xε〉 ≥ 0, ∀x ∈ C. (4.4)

Equivalently, xε ∈ C is the unique solution in C of the regularized minimization problem:

min
x∈C

{
ϕ(x) +

1
2
ε‖x‖2

}
. (4.5)

Then, as ε → 0, xε remains bounded if and only if (4.1) has a solution, and in this case, xε converges
in norm to the minimal norm solution of (4.1).

(b) Assume that (4.1) has a solution. Assume in addition that

(i) 0 < γn < εn/((L + εn)
2 + (ε2n/4)),

(ii) εn → 0 as n → ∞,
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(iii)
∑∞

n=1 εnγn = ∞,

(iv) limn→∞(|γn − γn−1| + |εnγn − εn−1γn−1|)/(εnγn)2 = 0.

Starting x0 ∈ C, one defines {xn} by the iterative algorithm

xn+1 = PC

(
xn − γn

(∇ϕ(xn) + εnxn

))
. (4.6)

Then {xn} converges in norm to the minimum-norm solution of the constrained minimization problem
(4.1).

Proof. Apply Theorems 2.2 and 3.1 to the case whereA = ∇ϕ and B = I is the identity operator
to get the conclusions in (a) and (b).
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