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We obtain common fixed points of a pair of mappings satisfying a generalized contractive type
condition in TVS-valued cone metric spaces. Our results generalize some well-known recent
results in the literature.

1. Introduction and Preliminaries

Many authors [1–16] studied fixed points results of mappings satisfying contractive type
condition in Banach space-valued cone metric spaces. In a recent paper [17] the authors
obtained common fixed points of a pair of mapping satisfying generalized contractive type
conditions without the assumption of normality in a class of topological vector space-valued
cone metric spaces which is bigger than that of studied in [1–16]. In this paper we continue
to study fixed point results in topological vector space valued cone metric spaces.

Let (E, τ) be always a topological vector space (TVS) and P a subset of E. Then, P is
called a cone whenever

(i) P is closed, nonempty, and P /= {0},
(ii) ax + by ∈ P for all x, y ∈ P and nonnegative real numbers a, b,

(iii) P ∩ (−P) = {0}.
For a given cone P ⊆ E, we can define a partial ordering ≤ with respect to P by x ≤ y

if and only if y − x ∈ P . x < y will stand for x ≤ y and x /=y, while x � y will stand for
y − x ∈ intP , where intP denotes the interior of P .
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Definition 1.1. Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a topological vector space-valued cone metric on X, and (X, d) is called a
topological vector space-valued cone metric space.

If E is a real Banach space then (X, d) is called (Banach space-valued) cone metric
space [9].

Definition 1.2. Let (X, d) be a TVS-valued cone metric space, x ∈ X and {xn}n≥1 a sequence in
X. Then

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
number N such that d(xn, x) � c for all n ≥ N. We denote this by limn→∞ xn = x
or xn → x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ Ewith 0 � c there is a natural
number N such that d(xn, xm) � c for all n,m ≥ N.

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Lemma 1.3. Let (X, d) be a TVS-valued cone metric space, P be a cone. Let {xn} be a sequence in
X,and {an} be a sequence in P converging to 0. If d(xn, xm) ≤ an for every n ∈ N with m > n, then
{xn} is a Cauchy sequence.

Proof. Fix 0 � c take a symmetric neighborhood V of 0 such that c + V ⊆ intP . Also, choose
a natural number n0 such that an ∈ V , for all n ≥ n0. Then d(xn, xm) ≤ an � c for every
m,n ≥ n0. Therefore, {xn}n≥1 is a Cauchy sequence.

Remark 1.4. LetA, B, C, D, E be nonnegative real numbers withA+B+C+D+E < 1, B = C,
or D = E. If F = (A + B +D)(1 − C −D)−1 and G = (A + C + E)(1 − B − E)−1, then FG < 1. In
fact, if B = C then

FG =
A + B +D

1 − C −D
· A + C + E

1 − B − E
=

A + C +D

1 − B − E
· A + B + E

1 − C −D
< 1, (1.1)

and if D = E,

FG =
A + B +D

1 − C −D
· A + C + E

1 − B − E
=

A + B + E

1 − C −D
· A + C +D

1 − B − E
< 1. (1.2)

2. Main Results

The following theorem improves/generalizes the results of [5, Theorems 1, 3, and 4] and [4,
Theorems 2.3, 2.6, 2.7, and 2.8].
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Theorem 2.1. Let (X, d) be a complete topological vector space-valued cone metric space, P be a cone
and m, n be positive integers. If a mapping T : X → X satisfies

d
(
Tmx, Tny

) ≤ Ad
(
x, y

)
+ Bd(x, Tmx) + Cd

(
y, Tny

)
+Dd

(
x, Tny

)
+ Ed

(
y, Tmx

)
(2.1)

for all x, y ∈ X, whereA, B, C, D, E are non negative real numbers withA+B+C+D+E < 1, B = C,
or D = E. Then T has a unique fixed point.

Proof. For x0 ∈ X and k ≥ 0, define

x2k+1 = Tmx2k,

x2k+2 = Tnx2k+1.
(2.2)

Then

d(x2k+1, x2k+2) = d(Tmx2k, T
nx2k+1)

≤ Ad(x2k, x2k+1) + Bd(x2k, T
mx2k) + Cd(x2k+1, T

nx2k+1)

+Dd(x2k, T
nx2k+1) + Ed(x2k+1, T

mx2k)

≤ [A + B]d(x2k, x2k+1) + Cd(x2k+1, x2k+2) +Dd(x2k, x2k+2)

≤ [A + B +D]d(x2k, x2k+1) + [C +D]d(x2k+1, x2k+2).

(2.3)

It implies that

[1 − C −D]d(x2k+1, x2k+2) ≤ [A + B +D]d(x2k, x2k+1). (2.4)

That is,

d(x2k+1, x2k+2) ≤ Fd(x2k, x2k+1), (2.5)

where F = (A + B +D)/(1 − C −D).
Similarly,

d(x2k+2, x2k+3) = d(Tmx2k+2, T
nx2k+1)

≤ Ad(x2k+2, x2k+1) + Bd(x2k+2, T
mx2k+2) + Cd(x2k+1, T

nx2k+1)

+Dd(x2k+2, T
nx2k+1) + Ed(x2k+1, T

mx2k+2)

≤ Ad(x2k+2, x2k+1) + Bd(x2k+2, x2k+3) + Cd(x2k+1, x2k+2)

+D d(x2k+2, x2k+2) + Ed(x2k+1, x2k+3)

≤ [A + C + E]d(x2k+1, x2k+2) + [B + E]d(x2k+2, x2k+3),

(2.6)
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which implies

d(x2k+2, x2k+3) ≤ Gd(x2k+1, x2k+2), (2.7)

with G = (A + C + E)/(1 − B − E).
Now by induction, we obtain for each k = 0, 1, 2, . . .

d(x2k+1, x2k+2) ≤ F d(x2k, x2k+1)

≤ (FG)d(x2k−1, x2k)

≤ F(FG)d(x2k−2, x2k−1)

≤ · · · ≤ F(FG)kd(x0, x1),

d(x2k+2, x2k+3) ≤ Gd(x2k+1, x2k+2)

≤ · · · ≤ (FG)k+1d(x0, x1).

(2.8)

By Remark 1.4, for p < q we have

d
(
x2p+1, x2q+1

) ≤ d
(
x2p+1, x2p+2

)
+ d

(
x2p+2, x2p+3

)
+ d

(
x2p+3, x2p+4

)
+ · · · + d

(
x2q, x2q+1

)

≤
⎡

⎣F
q−1∑

i=p
(FG)i +

q∑

i=p+1

(FG)i
⎤

⎦d(x0, x1)

≤
[
F(FG)p

1 − FG
+
(FG)p+1

1 − FG

]

d(x0, x1)

≤ (1 + F)
[
(FG)p

1 − FG

]
d(x0, x1).

(2.9)

In analogous way, we deduced

d
(
x2p, x2q+1

) ≤ (1 + F)
[
(FG)p

1 − FG

]
d(x0, x1),

d
(
x2p, x2q

) ≤ (1 + F)
[
(FG)p

1 − FG

]
d(x0, x1),

d
(
x2p+1, x2q

) ≤ (1 + F)
[
(FG)p

1 − FG

]
d(x0, x1).

(2.10)

Hence, for 0 < n < m

d(xn, xm) ≤ an, (2.11)

where an = (1 + F)[(FG)p/(1 − FG)]d(x0, x1) with p the integer part of n/2.
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Fix 0 � c and choose a symmetric neighborhood V of 0 such that c + V ⊆ intP . Since
an → 0 as n → ∞, by Lemma 1.3, we deduce that {xn} is a Cauchy sequence. Since X is a
complete, there exists u ∈ X such that xn → u. Fix 0 � c and choose n0 ∈ N be such that

d(u, x2k) � c

3K
, d(x2k−1, x2k) � c

3K
, d(u, x2k−1) � c

3K
(2.12)

for all k ≥ n0, where

K = max
{

1 +D

1 − B − E
,

A + E

1 − B − E
,

C

1 − B − E

}
. (2.13)

Now,

d(u, Tmu) ≤ d(u, x2k) + d(x2k, T
mu)

≤ d(u, x2k) + d(Tnx2k−1, Tmu)

≤ d(u, x2k) +Ad(u, x2k−1) + Bd(u, Tmu) + Cd(x2k−1, Tnx2k−1)

+Dd(u, Tnx2k−1) + Ed(x2k−1, Tmu)

≤ d(u, x2k) +Ad(u, x2k−1) + Bd(u, Tmu) + Cd(x2k−1, x2k)

+Dd(u, x2k) + Ed(x2k−1, u) + Ed(u, Tmu)]

≤ (1 +D)d(u, x2k) + (A + E)d(u, x2k−1) + Cd(x2k−1, x2k) + (B + E)d(u, Tmu).
(2.14)

So,

d(u, Tmu) ≤ Kd(u, x2k) +Kd(u, x2k−1) +Kd(x2k−1, x2k)

� c

3
+
c

3
+
c

3
= c.

(2.15)

Hence

d(u, Tmu) � c

p
(2.16)

for every p ∈ N. From

c

p
− d(u, Tmu) ∈ intP (2.17)

being P closed, as p → ∞, we deduce −d(u, Tmu) ∈ P and so d(u, Tmu) = 0. This implies that
u = Tmu.
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Similarly, by using the inequality,

d(u, Tnu) ≤ d(u, x2k+1) + d(x2k+1, T
nu), (2.18)

we can show that u = Tnu, which in turn implies that u is a common fixed point of
Tm, Tn and, that is,

u = Tmu = Tnu. (2.19)

Now using the fact that

d(Tu, u) = d(TTmu, Tnu) = d(TmTu, Tnu)

≤ Ad(Tu, u) + Bd(Tu, TmTu) + Cd(u, Tnu) +Dd(Tu, Tnu) + Ed(u, TmTu)

≤ Ad(Tu, u) + Bd(Tu, Tu) + Cd(u, u) +Dd(Tu, u) + Ed(u, Tu)

= (A +D + E)d(Tu, u).

(2.20)

We obtain u is a fixed point of T. For uniqueness, assume that there exists another point u∗

in X such that u∗ = Tu∗ for some u∗ in X. From

d(u, u∗) = d(Tmu, Tnu∗)

≤ Ad(u, u∗) + Bd(u, Tmu) + Cd(u∗, Tnu∗) +Dd(u, Tnu∗) + Ed(u∗, Tmu)

≤ Ad(u, u∗) + Bd(u, u) + Cd(u∗, u∗) +Dd(u, u∗) + Ed(u, u∗)

≤ (A +D + E)d(u, u∗),

(2.21)

we obtain that u∗ = u.
Huang and Zhang [9] proved Theorem 2.1 by using the following additional

assumptions.

(a) E Banach Space.

(b) P is normal (i.e., there is a number κ ≥ 1 such that for all x, y,∈ E, 0 ≤ x ≤ y ⇒
‖x‖ ≤ κ‖y‖).

(c) m = n = 1.

(d) One of the following is satisfied:

(i) B = C = D = E = 0 with A < 1 [5, Theorem 1],
(ii) A = D = E = 0 with B = C < 1/2 [5, Theorem 3],
(iii) A = B = C = 0 with D = E < 1/2 [5, Theorem 4].

Azam and Arshad [4] improved these results of Huang and Zhang [5] by omitting the
assumption (b).
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Theorem 2.2. Let (X, d) be a complete topological vector space-valued cone metric space, P be a cone
and m,n be positive integers. If a mapping T : X → X satisfies:

d
(
Tx, Ty

) ≤ Ad
(
x, y

)
+ Bd(x, Tx) + Cd

(
y, Ty

)
+Dd

(
x, Ty

)
+ Ed

(
y, Tx

)
(2.22)

for all x, y ∈ X, where A, B, C, D, E are non negative real numbers with A + B + C + D + E < 1.
Then T has a unique fixed point.

Proof. The symmetric property of d and the above inequality imply that

d
(
Tx, Ty

) ≤ Ad
(
x, y

)
+
B + C

2
[
d(x, Tx) + d

(
y, Ty

)]
+
D + E

2
[
d
(
x, Ty

)
+ d

(
y, Tx

)]
. (2.23)

By substituting Tm = Tn = T in the Theorem 2.1, we obtain the required result. Next we
present an example to support Theorem 2.2.

Example 2.3. X = [0, 1], E be the set of all complex-valued functions on X then E is a vector
space over R under the following operations:

(
f + g

)
(t) = f(t) + g(t),

(
αf

)
(t) = αf(t) (2.24)

for all f, g ∈ E, α ∈ R. Let τ be the topology on E defined by the the family {px : x ∈ X} of
seminorms on E, where

px
(
f
)
=
∣∣f(x)

∣∣ (2.25)

then (X, τ) is a topological vector space which is not normable and is not even metrizable
(see [18, 19]). Define d : X ×X → E as follows:

(
d
(
x, y

))
(t) =

(∣∣x − y
∣∣, 3

∣∣x − y
∣∣)3t,

P = {(x ∈ E : x(t) � 0 ∀t ∈ X}.
(2.26)

Then (X, d) is a topological vector space-valued cone metric space. Define T : X → X as
T(x) = x2/9, then all conditions of Theorem 2.2 are satisfied.

Corollary 2.4. Let (X, d) be a complete Banach space-valued cone metric space, P be a cone, andm,n
be positive integers. If a mapping T : X → X satisfies

d
(
Tmx, Tny

) ≤ Ad
(
x, y

)
+ Bd(x, Tmx) + Cd

(
y, Tny

)
+Dd

(
x, Tny

)
+ Ed

(
y, Tmx

)
(2.27)

for all x, y ∈ X, whereA, B, C, D, E are non negative real numbers withA+B+C+D+E < 1, B = C,
or D = E. Then T has a unique fixed point.

Next we present an example to show that corollary 2.4 is a generalization of the results
[9, Theorems 1, 3, and 4] and [15, Theorems 2.3, 2.6, 2.7, and 2.8].
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Example 2.5. LetX = {1, 2, 3}, B = R2, and P = {(x, y) ∈ B | x, y ≥ 0} ⊂ R2. Define d : X×X →
R2 as follows:

d
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), if x = y,
(
5
7
, 5
)
, if x /=y, x, y ∈ X − {2},

(1, 7), if x /=y, x, y ∈ X − {3},
(
4
7
, 4
)
, if x /=y, x, y ∈ X − {1}.

(2.28)

Define the mapping T : X → X as follows:

T(x) =

⎧
⎨

⎩

1, if x /= 2,

3, if x = 2.
(2.29)

Note that the assumptions (d) of results [9, Theorems 1, 3, and 4] and [15, Theorems 2.3, 2.6,
2.7, and 2.8] are not satisfied to find a fixed point of T. In order to apply inequality (2.1)
consider mapping T2(x) = 1 for each x ∈ X, then for A = B = C = D = 0, E = 5/7, T2, and T
satisfy all the conditions of Corollary 2.4 and we obtain T(1) = 1.

Acknowledgment

The authors are thankful to referee for precise remarks to improve the presentation of the
paper.

References

[1] M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without
continuity in cone metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1,
pp. 416–420, 2008.
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[10] D. Ilić and V. Rakočević, “Common fixed points for maps on cone metric space,” Journal of
Mathematical Analysis and Applications, vol. 341, no. 2, pp. 876–882, 2008.



Fixed Point Theory and Applications 9
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