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It is proved that a complete geodesically bounded R-tree is the closed convex hull of the set of
its extreme points. It is also noted that if X is a closed convex geodesically bounded subset of a
complete R-tree Y, and if a nonexpansive mapping T : X → Y satisfies inf{d(x, T(x)) : x ∈ X} = 0,
then T has a fixed point. The latter result fails if T is only continuous.

1. Introduction

Recall that for a metric space (X, d), a geodesic path (or metric segment) joining x and y in X
is a mapping c of a closed interval [0, l] into X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) =
|t − t′| for each t, t′ ∈ [0, l]. Thus c is an isometry and d(x, y) = l. An R-tree (or metric tree) is a
metric space X such that:

(i) there is a unique geodesic path (denoted by [x, y]) joining each pair of points x, y ∈
X;

(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

From (i) and (ii), it is easy to deduce that

(iii) if x, y, z ∈ X, then [x, y] ∩ [x, z] = [x,w] for some w ∈ X.

The concept of an R-tree goes back to a 1977 article of Tits [1]. Complete R-trees posses
fascinating geometric and topological properties. Standard examples of R-trees include the
“radial” and “river” metrics on R

2. For the radial metric, consider all rays emanating from
the origin in R

2. Define the radial distance dr between x, y ∈ R
2 to be the usual distance if

they are on the same ray; otherwise take

dr

(
x, y

)
= d(x, 0) + d

(
0, y

)
. (1.1)
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(Here d denotes the usual Euclidean distance and 0 denotes the origin.) For the river metric ρ
on R

2, if two points x, and y are on the same vertical line, define ρ(x, y) = d(x, y). Otherwise
define ρ(x, y) = |x2|+ |y2|+ |x1−y1|,where x = (x1, x2) and y = (y1, y2).More subtle examples
of R-trees also exist, for example, the real tree of Dress and Terhalle [2].

It is shown in [3] that R-trees complete are hyperconvex metric spaces (a fact that also
follows from Theorem B of [4] and the characterization of [5]). They are also CAT(0) spaces in
the sense of Gromov (see, e.g., [6, page 167]). Moreover, complete and geodesically bounded
R-trees have the fixed point property for continuous maps. This fact is a consequences of
a result of Young [7] (see also [8]), and it suggests that complete geodesically bounded R-
trees have properties that one often associates with compactness. The two observations below
serve to affirm this.

2. A Krein-Milman Theorem

In [9] Niculescu proved that a nonempty compact convex subset X of a complete CAT(0)
space (called a global NPC space in [9]) is the convex hull of the set of all its extreme points.
Subsequently, in [10], Borkowski et al. proved (among other things) that compactness is not
needed in the special case when X is a complete and bounded R-tree. Here we show that in
complete R-trees even the boundedness assumption may be relaxed.

Theorem 2.1. Let X be a complete and geodesically bounded R-tree. Then X is the convex hull of its
set E of extreme points.

Proof. Let x ∈ E, and let z ∈ X \ E. We will show that z lies on a segment joining x to some
other element of E.We proceed by transfinite induction. Let Ω denote the set of all countable
ordinals, let z0 = z, let α ∈ Ω, and assume that for all β ∈ Ωwith β < α, zβ has been defined so
that the following condition holds:

(i) μ < γ < α ⇒ zμ ∈ [x, zγ], and zγ /∈E ⇒ zμ /= zγ .

There are two cases.

(1) α = β + 1. If zβ ∈ E, there is nothing to prove because z = z0 ∈ [x, zβ]. Otherwise,
there are elements a, b ∈ X such that zβ lies on the segment [a, b] and a/= zβ /= b. At
least one of these points, say a, does not lie on the segment [zβ, x]. Set zα = a, and
observe that zβ lies on the segment [zα, x].

(2) α is a limit ordinal. Since X is geodesically bounded, it must be the case that∑
β<α d(zβ, zβ+1) < ∞. This implies that (zβ)β<α is a Cauchy net. Since X is complete,

it must converge to some zα ∈ X.

Therefore, zα is defined for all α ∈ Ω. Since X is geodesically bounded,∑
β∈Ω d(zβ, zβ+1) < ∞. But since Ω is uncountable, it is not possible that d(zβ, zβ+1) > 0 for

each β. Hence this transfinite process must terminate, and zβ = zβ+1 for some β ∈ Ω. It now
follows from (i) that zβ ∈ E and z lies on the segment [zβ, x].

Remark 2.2. The above proof shows that in fact each point of X is on a segment joining any
given extreme point to some other extreme point.
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3. A Fixed Point Theorem

It is known that if K is a bounded closed convex subset of a complete CAT(0) space Y, and if
f : K → Y is a nonexpansive mapping for which

inf
{
d
(
x, f(x)

)
: x ∈ K

}
= 0, (3.1)

then f has a fixed point (see [11, Theorem 21]; also [12, Corollary 3.8]). This fact carries
over to R-trees since R-trees are also CAT(0) spaces. However, we note here that if Y is an
R-tree, then again boundedness of K can be replaced by the assumption that K is merely
geodesically bounded. In fact, we prove the following. (In the following theorem, we assume
T is nonexpansive relative to the Hausdorff metric on the bounded nonempty closed subsets
of Y.)

Theorem 3.1. Suppose X is a closed convex and geodesically bounded subset of a complete R-tree Y,
and suppose T : X → 2Y is a nonexpansive mapping taking values in the family of nonempty bounded
closed convex subsets of Y. Suppose also that inf{dist(x, T(x)) : x ∈ X} = 0. Then there is a point
x ∈ X for which x ∈ T(x).

We will need the following result in the proof of Theorem 3.1. (See [13, 14] for more
general set-valued versions of this theorem.)

Theorem 3.2. Suppose X is a closed convex geodesically bounded subset of a complete R-tree Y and
suppose f : X → Y is continuous. Then either f has a fixed point or there exists a point z ∈ X such
that

0 < d
(
z, f(z)

)
= inf

{
d
(
x, f(z)

)
: x ∈ X

}
. (3.2)

Proof of Theorem 3.1. Since complete R-trees are hyperconvex, by Corollary 1 of [15] the
selection f : X → Y defined by taking f(x) to be the point of T(x) which is nearest to x
for each x ∈ X is a nonexpansive single-valued mapping. Now assume f does not have a
fixed point. Then by Theorem 3.2 there exists z ∈ X such that

0 < d
(
z, f(z)

)
= inf

{
d
(
x, f(z)

)
: x ∈ X

}
. (3.3)

We assert that d(x, f(x)) ≥ d(z, f(z)) for each x ∈ X. Indeed let x ∈ X. By (iii) there exists
w ∈ Y such that [z, f(z)] ∩ [z, x] = [z,w]. But since X is convex [z, x] ⊆ X, so w ∈ [z, x]
impliesw ∈ X. Alsow ∈ [z, f(z)], so it follows from (3.3) thatw = z. Thus [z, f(z)]∩ [z, x] =
{z}, and the segment [x, f(z)]must pass through z. Therefore,

d(x, z) + d
(
z, f(z)

)
= d

(
x, f(z)

)

≤ d
(
x, f(x)

)
+ d

(
f(x), f(z)

)

≤ d
(
x, f(x)

)
+ d(x, z).

(3.4)

Thus inf{d(x, f(x)) : x ∈ X} ≥ d(z, f(z)) > 0 – a contradiction. Therefore, there exists x ∈ X
such that x = f(x) ∈ T(x).
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Corollary 3.3. Suppose X is a closed convex and geodesically bounded subset of a complete R-tree Y,
and suppose f : X → Y is a nonexpansive mapping for which inf{d(x, f(x)) : x ∈ X} = 0. Then f
has a fixed point.

Example 3.4. In view of the fact that continuous self-maps of X → X have fixed points, it
is natural to ask whether Corollary 3.3 holds for continuous mappings. The answer is no,
even when X is bounded. Let Y be the Euclidean plane R

2 with the radial metric. Let {en}
be a sequence of distinct points on the unit circle, and let X = ∪∞

n=1[en, 0]. We now define a
continuous fixed-point free map f : X → Y for which inf{d(x, f(x)) : x ∈ X} = 0. First move
each point of the segment [0, e1] to the right onto a segment [e1, b] where b /= e1 and [e1, b]
is on the ray which extends [0, e1]. (Thus f([0, e1]) = [e1, b].) For each n ≥ 2, let an denote
the point on the segment [en, 0] which has distance 1/n from en. It is now clearly possible
to construct a continuous (even lipschitzian) fixed point-free map f (a shift) of the segment
[en, 0] onto the segment [an, e1], n ≥ 2, for which f(en) = an. Thus d(en, f(en)) = 1/n for all
n.

Remark 3.5. Corollary 3.3 for bounded X is also a consequence of Theorem 6 of [15].
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