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We give a general condition for infinite dimensional unital Abelian Banach algebras to fail the
fixed point property. Examples of those algebras are given including the algebras of continuous
functions on compact sets.

1. Introduction

Let X be a Banach space. A mapping T : E ⊂ X → X is nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥∥x − y

∥
∥ (1.1)

for each x, y ∈ E. The fixed point set of T is Fix(T) = {x ∈ E : Tx = x}. We say that the space
X has the fixed point property (or weak fixed point property) if for every nonempty bounded
closed convex (or weakly compact convex, resp.) subset E of X and every nonexpansive
mapping T : E → E we have Fix(T)/= ∅. One of the central goals in fixed point theory is to
solve the problem: which Banach spaces have the (weak) fixed point property?

For weak fixed point property, Alspach [1] exhibited a weakly compact convex subset
E of the Lebesgue space L1[0, 1] and an isometry T : E → E without a fixed point, proving
that the space L1[0, 1] does not have the weak fixed point property. Lau et al. [2] proved the
following results.

Theorem 1.1. LetX be a locally compact Hausdorff space. If C0(X) has the weak fixed point property,
then X is dispersed.



2 Fixed Point Theory and Applications

Corollary 1.2. Let G be a locally compact group. Then the C∗-algebra C0(G) has the weak fixed point
property if and only if G is discrete.

Corollary 1.3. A von Neumann algebraM has the weak fixed point property if and only ifM is finite
dimensional.

Continuing in this direction, Benavides and Pineda [3] developed the concept of
ω-almost weak orthogonality in the Banach lattice C(K) and obtained the results.

Theorem 1.4. Let X be a ω-almost weakly orthogonal closed subspace of C(K) where K is a
metrizable compact space. Then X has the weak fixed point property.

Theorem 1.5. LetK be a metrizable compact space. Then, the following conditions are all equivalent:

(1) C(K) is ω-almost weakly orthogonal,

(2) C(K) is ω-weakly orthogonal,

(3) K(ω) = ∅.

Corollary 1.6. Let K be a compact set with K(ω) = ∅. Then C(K) has the weak fixed point property.

As for the fixed point property, Dhompongsa et al. [4] showed that a C∗-algebra has
the fixed point property if and only if it is finite dimensional. In this paper, we approach the
question on the fixed point property from the opposite direction by identifying unital abelian
Banach algebras which fail to have the fixed point property. As consequences, we obtain
results on the algebra of continuous functions C(S), where S is a compact set, and there is a
unital abelian subalgebra of the algebra l∞(N) which does not have the fixed point property
and does not contain the space c0.

2. Preliminaries and Lemmas

The fields of real and complex numbers are denoted by R and C, respectively. The symbol F
denotes a field that can be either R or C. The elements of F are called scalars.

An element x in a unital algebra X is said to be invertible if there is an element y in X
such that

xy = yx = 1. (2.1)

In this case y is unique and written x−1.
We define the spectrum of an element x of a unital algebra X over F to be the set

σ(x) = {λ ∈ F : λ1 − x is not invertible}. (2.2)

The spectral radius of x is defined to be

r(x) = sup
λ∈σ(x)

|λ|. (2.3)



Fixed Point Theory and Applications 3

We note that a subalgbra of a normed algebra is itself a normed algebra with the norm
got by restriction. The closure of a subalgebra is a subalgebra. A closed subalgebra of a Banach
algebra is a Banach algebra. If (Bα)α∈Λ is a family of subalgebras of an algebraX, then

⋂

α∈Λ Bα

is a subalgebra also. Hence, for any subset E of X, there is the smallest subalgebra A(E) of X
containing E. This algebra is called the subalgebra of X generated by E. If E is the singleton
{x}, then A(E) is the linear span of all powers xn of x. If X is a normed algebra, the closed
algebra B(E) generated by a set E is the smallest closed subalgebra containing E. We can see
that B(E) = A(E).

We denote by CF(S) the Banach algebra of continuous functions from a topological
space S to F, with the sup-norm

∥
∥f
∥
∥
∞ = sup

x∈S

∣
∣f(x)

∣
∣. (2.4)

The following theorems are known as the Stone-Weierstrass approximation theorem
for CR(S) and CC(S), respectively. For the details, the readers are referred to [5].

Theorem 2.1. Let A be a subalgebra of CR(S) such that

(1◦) A separates the points of S,

(2◦) A annihilates no point of S.

Then A is dense in CR(S).

Theorem 2.2. Let S be a compact space, A a subalgebra of CC(S) such that

(1◦) A separates the points of S,

(2◦) A annihilates no point of S,

(3◦) f ∈ A implies that the conjugate f of f is in A.

Then A is dense in CC(S).

A character on a unital algebra X over F is a nonzero homomorphism τ : X → F. We
denote by Ω(X) the set of characters on X. Note that if X is a unital abelian complex Banach
algebra, then

σ(x) = {τ(x) : τ ∈ Ω(X)} (2.5)

for each x ∈ X (see [6]).

Remark 2.3. It is unknown if (2.5) is valid whenever Ω(X)/= ∅. Equation (2.5) obviously does
not hold for a space X with Ω(X) = ∅ as the following example shows.

Example 2.4. Let X = C be considered as a real unital abelian Banach algebra under ordinary
complex multiplication and whose norm is the absolute value. We have Ω(X) = ∅. Indeed,
assume to the contrary that there is a non-zero homomorphism τ0 on X and τ0(i) = λ ∈ R, so

τ0((1 + i)i) = τ0(i − 1) = λ − 1,

τ0(1 + i)τ0(i) = (1 + λ)λ = λ + λ2.
(2.6)

Thus λ − 1 = λ + λ2; so λ is not a real number, which is a contradiction.
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Since Ω(X) = ∅, so {τ(1) : τ ∈ Ω(X)} = ∅ but σ(1) = {1}.

We consider throughout this paper on Banach algebras X for which Ω(X)/= ∅ and
satisfy (2.5).

If X is a unital abelian Banach algebra, it follows from Proposition 2.5 that Ω(X) is
contained in the closed unit ball ofX∗.We endowΩ(X)with the relative weak∗ topology and
call the topological space Ω(X) the character space of X.

Detailed proofs of the following propositions can be found in [6].

Proposition 2.5. Let X be a unital abelian Banach algebra. If τ ∈ Ω(X), then ‖τ‖ = 1.

Proposition 2.6. If X is a unital Banach algebra, then Ω(X) is compact.

If X is a unital abelian Banach algebra, and x ∈ X, we define a continuous function x̂
by

x̂ : Ω(X) −→ F, τ �−→ τ(x). (2.7)

We call x̂ the Gelfand transform of x, and the homomorphism

ϕ : X −→ CF(Ω(X)), x �→ x̂ (2.8)

is called the Gelfand representation.
The following two lemmas, Lemmas 2.7 and 2.10, will be used to prove our main

theorem.

Lemma 2.7. Let X be a unital abelian real Banach algebra with

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. (2.9)

Then one has the following:

(i) the Gelfand representation ϕ is a bounded isomorphism,

(ii) the inverse ϕ−1 is also a bounded isomorphism.

Proof. (i) ϕ is injective since inf{r(x) : x ∈ X, ‖x‖ = 1} > 0 implies ker(ϕ) = 0. It is
easily checked that ϕ is a bounded homomorphism, and ϕ(X) is a subalgebra of CR(Ω(X))
separating the points of Ω(X), and having the property that for any τ ∈ Ω(X) there is an
element x ∈ X such that x̂(τ)/= 0. In order to use the Stone-Weierstrass theorem to show
that ϕ(X) = CR(Ω(X)), we shall show that ϕ(X) is closed. We show that ϕ(X) is closed by
showing that ϕ(X) is complete. Let {x̂n} be a Cauchy sequence in ϕ(X). First, we show that
the sequence {xn} = {ϕ−1(x̂n)} is Cauchy. Assume on the contrary that {xn} is not Cauchy.
Thus there exists ε0 > 0 and subsequences {zn} and {z′n} of {xn} such that

∥
∥zn − z′n

∥
∥ ≥ ε0 (2.10)
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for each n ∈ N.Write yn = (zn − z′n)/ε0, then ‖yn‖ ≥ 1, for each n ∈ N. But {x̂n} is Cauchy, and
so we have ŷn → 0. Thus

0 < inf{r(x) : x ∈ X, ‖x‖ = 1} ≤ inf
n∈N

r

(

yn
∥
∥yn

∥
∥

)

= inf
n∈N

∥
∥
∥
∥
∥

ŷn
∥
∥yn

∥
∥

∥
∥
∥
∥
∥
∞
= 0, (2.11)

which is a contradiction. Hence {xn} must be Cauchy and so xn → x0, for some x0 ∈ X.
Since ‖x̂‖∞ = ‖ϕ(x)‖∞ ≤ ‖x‖, for each x ∈ X, so x̂n → x̂0. Thus ϕ(X) is complete. The
Stone-Weierstrass theorem can be applied to conclude that ϕ is surjective.

(ii) follows from the open mapping theorem.

Remark 2.8. (i) Lemma 2.7 tells us that if X is a unital abelian real Banach algebra with
property

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0, (2.12)

then X and CR(Ω(X)) are homeomorphic and isomorphic under ϕ. Hence if we would like
to consider the convergence of a sequence {xn} in X,we could look at the convergence of the
corresponding sequence {x̂n}.

(ii) Property (2.12) clearly implies the semisimplicity property (r(x) ⇔ x = 0) but the
following example shows that it is stronger.

Example 2.9. Let l1(Z) denote the Banach algebra of complex-valued absolutely summable
functions on the group of integers Z under convolution regarded as a real Banach algebra
and let X be the real subalgebra of l1(Z) consisting of those functions that satisfy f(−n) =
f(n), n ∈ Z. Then the maximal ideal space of X equals T = R/Z and the Gelfand transform
is precisely the Fourier transform which maps X into the real Banach algebra CR(T) of
continuous real-valued functions on CR(T) under pointwise multiplication and maximum
norm. Although the image of the Fourier transform is dense, it is clearly not all of CR(T)
since it is simply the real-valued functions in the Wiener space which consists of complex-
valued functions whose Fourier series are absolutely summable. Therefore Lemma 2.7 shows
that X does not have Property (2.12).

Lemma 2.10. Let X be an infinite dimensional unital abelian real Banach algebra with

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. (2.13)

Then one has the following:

(i) Ω(X) is an infinite set,

(ii) if there exists a bounded sequence {xn} in X which contains no convergent subsequences
and such that {τ(xn) : τ ∈ Ω(X)} is finite for each n ∈ N, then there is an element x0 ∈ X
with

{τ(x0) : τ ∈ Ω(X)} =
{

1,
1
2
,
2
3
,
3
4
, . . .

}

, (2.14)
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(iii) there is an element x0 ∈ X such that {τ(x0) : τ ∈ Ω(X)} is an infinite set,

(iv) there exists a sequence {xn} in X such that {τ(xn) : τ ∈ Ω(X)} ⊂ [0, 1], for each n ∈ N,
and {(x̂n)

−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(X).

Proof. Let X be an infinite dimensional unital abelian real Banach algebra with

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. (2.15)

(i) If suffices to show that if Ω(X) is a finite set, for then the closed unit ball BX of X
is compact, and this will lead to us a contradiction. Let Ω(X) be a finite set, say
{τ1, τ2, . . . , τm}, and let {xn} be a sequence in BX.

Since the sequences {τp(xn)}, p = 1, 2, . . . , m, are bounded, we can choose a
subsequence {xnm} of {xn} such that τp(xnm) → λp, for each p = 1, 2, . . . , m.

Define ψ : Ω(X) → R by ψ(τp) = λp. Thus there exists x ∈ X such that ψ = x̂, and
consequently, x̂nm → x̂ since

‖x̂nm − x̂‖∞ = sup
τ∈Ω(X)

|x̂nm(τ) − x̂(τ)| = max
1≤p≤m

∣
∣x̂nm

(

τp
) − x̂

(

τp
)∣
∣, (2.16)

and τp(xnm) → x̂(τp), for each p = 1, 2, . . . , m.
So {x̂nm} is a subsequence of {x̂n} such that x̂nm → x̂. By Remark 2.8, xnm → x,where

x = ϕ−1(x̂). Thus BX is compact.
(ii) Let {xn} be a bounded sequence in X which has no convergent subsequences and

suppose that the set {τ(xn) : τ ∈ Ω(X)} is finite for each n ∈ N. By Remark 2.8, we will
consider {xn} as a sequence of Gelfand transforms {x̂n}.

First, we show that we can write

Ω(X) =

(
⋃

n∈N
Gn

)

∪ F, (2.17)

where F is closed, Gn are all closed and open, and {F,G1, G2, . . .} is a partition of Ω(X). For
each n ∈ N, write

{τ(xn) : τ ∈ Ω(X)} =
{

λ(n,i) : i = 1, 2, . . . , mn

}

,

Ln =
{

(x̂n)
−1{λ(n,i)

}

: i = 1, 2, . . . , mn

}

.
(2.18)

Define

L =

{
⋂

k∈N
Ak : Ak ∈ Lk

}

\ {∅}. (2.19)

Note that (x̂n)
−1{λ(n,i)} are all closed and open. Since Ln is a partition of Ω(X) for each n ∈

N,L is a partition of Ω(X). There are two cases to be considered.



Fixed Point Theory and Applications 7

Case 1 (L is infinite). Thus there exists i1 such that

{

(x̂1)
−1{λ(1,i1)

} ∩
(
⋂

k

Ak

)

: Ak ∈ Lk, k ≥ 2

}

(2.20)

is an infinite set. Similarly, there exists i2 such that

{

(x̂1)
−1{λ(1,i1)

} ∩ (x̂2)
−1{λ(2,i2)

} ∩
(
⋂

k

Ak

)

: Ak ∈ Lk, k ≥ 3

}

(2.21)

is an infinite set. Continuing in this process we obtain a sequence of the sets (x̂n)
−1{λ(n,in)} ∈

Ln such that

⎧

⎨

⎩

n⋂

j=1

((

x̂j

)−1{
λ(j,ij )

})

∩
(
⋂

k

Ak

)

: Ak ∈ Lk, k ≥ n + 1

⎫

⎬

⎭
(2.22)

is an infinite set, for each n ∈ N.
Write

H1 =
⋃

i /= i1

(x̂1)
−1{λ(1,i)

}

,

H2 = (x̂1)
−1{λ(1,i1)

} ∩
(
⋃

i /= i2

(x̂2)
−1{λ(2,i)

}

)

,

H3 = (x̂1)
−1{λ(1,i1)

} ∩ (x̂2)
−1{λ(2,i2)

} ∩
(
⋃

i /= i3

(x̂3)
−1{λ(3,i)

}

)

, . . . .

(2.23)

Thus Hn are all closed and open, and

Ω(X) =

(
⋃

n∈N
Hn

)

∪
(

Ω(X) \
⋃

n∈N
Hn

)

, (2.24)

where Ω(X) \ ⋃n∈N Hn is a nonempty closed set since Ω(X) is compact. And since L has
infinite elements, we can see that there exists a subsequence {Gn} of {Hn} such that

⋃

n∈N Gn =
⋃

n∈N Hn and Gn /= ∅, for each n ∈ N.
Hence we have

Ω(X) =

(
⋃

n∈N
Gn

)

∪
(

Ω(X) \
⋃

n∈N
Gn

)

, (2.25)

and {(Ω(X) \⋃n∈N Gn), G1, G2, . . .} is a partition of Ω(X).
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Case 2 (L = {Li : i = 1, 2, . . . , m}). To show that this case leads to a contradiction, we first
observe that if τ, τ ′ are in the same Li ∈ L, then

τ(xn) = τ ′(xn) (2.26)

for each n ∈ N. Write α(n,i) = τ(xn), if τ ∈ Li. There exists a subsequence {(α(n′,1), α(n′,2),
. . . , α(n′,m))}n′∈N of {(α(n,1), α(n,2), . . . , α(n,m))}n∈N such that for each i = 1, 2, . . . , m,

α(n′,i) −→ αi (2.27)

for some (α1, α2, . . . , αm) ∈ R
m. Define a Gelfand transform x̂ : Ω(X) → R by x̂(τ) = αi, if

τ ∈ Li. Since

‖x̂n′ − x̂‖∞ = sup
τ∈Ω(X)

|x̂n′(τ) − x̂(τ)| = max
1≤i≤m

∣
∣α(n′,i) − αi

∣
∣, (2.28)

so x̂n′ → x̂, which is a contradiction.
Now we conclude that

Ω(X) =

(
⋃

n∈N
Gn

)

∪ F, (2.29)

where F is closed, Gn is closed and open for each n ∈ N, and {F,G1, G2, . . .} is a partition of
Ω(X). Define a map ψ : Ω(X) → R by

ψ(τ) =

⎧

⎪
⎨

⎪
⎩

n

n + 1
if τ ∈ Gn,

1 if τ ∈ F.

(2.30)

We can check that the inverse image of each closed set in ψ(Ω(X)) is closed. Therefore, ϕ−1(ψ)
is an element in X, say x0, with

{τ(x0) : τ ∈ Ω(X)} =
{

1,
1
2
,
2
3
,
3
4
, . . .

}

. (2.31)

(iii) Assume to the contrary that {τ(x) : τ ∈ Ω(X)} is finite for each x ∈ X. Since X
is infinite dimensional, so, as BX is noncompact, there exists a bounded sequence {xn} in X
which has no convergent subsequences. Hence {τ(xn) : τ ∈ Ω(X)} is finite for each n ∈ N. It
follows from (ii) that

{τ(x0) : τ ∈ Ω(X)} =
{

1,
1
2
,
2
3
,
3
4
, . . .

}

(2.32)

for some x0 ∈ X,which is the contradiction.
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(iv) From (iii), there is an element x1 ∈ X such that {τ(x1) : τ ∈ Ω(X)} is an infinite
set. We can choose x1 so that there exists a strictly decreasing sequence {an} such that

{an} ⊂ x̂1(Ω(X)) ⊂ [0, 1], a1 < 1, (2.33)

and τ(x1) = 1 for some τ ∈ Ω(X). Define a continuous function g1 : [0, 1] → [0, 1] to be
linear on [0, a1] and on [a1, 1] joining the points (0, 0) and (a1, 1), and g(1) ⊂ (g1(a2), 1). Put
x̂2 = g1 ◦ x̂1, for some x2 ∈ X, and define a continuous function g2 : [0, 1] → [0, 1] similar to
the way we construct g1. The left part of g2 is the line joining the point (0, 0) and (g1(a2), 1)
and g2(1) ∈ (g2(g1(a2)), 1). Then put x̂3 = g2 ◦ x̂2, for some x3 ∈ X. Continuing in this process
we obtain a sequence of points {xn} such that {τ(xn) : τ ∈ Ω(X)} ⊂ [0, 1], for each n ∈ N, and
{(x̂n)

−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(X). We then obtain the
required result.

3. Main Theorem

Now we prove our main theorem.

Theorem 3.1. Let X be an infinite dimensional unital abelian real Banach algebra satisfying each of
the following:

(i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

Then X does not have fixed point property.

Proof. Let X be an infinite dimensional unital abelian real Banach algebra satisfying (i) and
(ii). Assume to the contrary that X has fixed point property. From Lemma 2.10(iv), there
exists a sequence {xn} in X such that

{τ(xn) : τ ∈ Ω(X)} ⊂ [0, 1] (3.1)

for each n ∈ N, and {(x̂n)
−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(X).

Write An = (x̂n)
−1{1}, and define Tn : En → En by

x �−→ xnx, (3.2)

where

En = {x ∈ X : 0 ≤ τ(x) ≤ 1 for each τ ∈ Ω(X), and τ(x) = 1 if τ ∈ An}. (3.3)

It follows from (i) that Tn : En → En is a nonexpansive mapping on the bounded closed
convex set En, for each n ∈ N. Indeed, En is bounded since

0 < inf{r(x) : x ∈ X, ‖x‖ = 1} ≤ r

(
x

‖x‖
)

= sup
τ∈Ω(X)

∣
∣
∣
∣
τ

(
x

‖x‖
)∣
∣
∣
∣
=

1
‖x‖ sup

τ∈Ω(X)
|τ(x)| (3.4)
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for each x ∈ X. It follows that Tn has a fixed point, say yn, for each n ∈ N. Since yn = xnyn,
thus ŷn = x̂nŷn, and then

ŷn(τ) =

⎧

⎨

⎩

0 if τ is not in An,

1 if τ is in An,
(3.5)

for each n ∈ N. SinceA1, A2, A3, . . . are pairwise disjoint, so ‖ŷm− ŷn‖ = 1, ifm/=n.Hence {ŷn}
has no convergent subsequences. From Lemma 2.7, {yn} has no convergent subsequences too.
It follows from the existence of {yn} and Lemma 2.10 (ii) that there exists an element x0 in X
with

{τ(x0) : τ ∈ Ω(X)} =
{

1,
1
2
,
2
3
,
3
4
, . . .

}

. (3.6)

Write A0 = (x̂0)
−1{1}. Define T0 : E0 → E0 by

x �−→ x0x, (3.7)

where

E0 = {x ∈ X : 0 ≤ τ(x) ≤ 1 for each τ ∈ Ω(X), and τ(x) = 1 if τ ∈ A0}. (3.8)

By (i), T0 is a nonexpansive mapping on the bounded closed convex set E0. Thus T0 has a
fixed point, say y0, that is, y0 = x0y0. Thus ŷ0 = x̂0ŷ0. Consequently,

ŷ0(τ) =

⎧

⎨

⎩

0, if τ is not in (x̂0)
−1{1},

1, if τ is in (x̂0)
−1{1}.

(3.9)

The set (x̂0)
−1{1} = (ŷ0)

−1{1} is open in Ω(X), since ŷ0 is continuous. Also the set
(x̂0)

−1{n/(n + 1)} is open in Ω(X) for each n ∈ N, since x̂0 is continuous. Thus,

{

(x̂0)
−1
{

n

n + 1

}

: n ∈ N

}

∪
{

(x̂0)
−1{1}

}

(3.10)

is an open covering of Ω(X). This leads to a contradiction, since Ω(X) is compact.

From the above theorem we have the following.

Corollary 3.2. Let S be a compact Hausdorff topological space. If CR(S) is infinite dimensional, then
CR(S) fails to have the fixed point property.
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Proof. CR(S) satisfies (i), (ii) in Theorem 3.1. Indeed, if x, y ∈ CR(S) is such that |τ(x)| ≤
|τ(y)|, for each τ ∈ Ω (CR(S)), then |x(s)| ≤ |y(s)|, for each s ∈ S.Hence ‖x‖ ≤ ‖y‖.And since

r(x) = sup
λ∈σ(x)

|λ| = sup
s∈S

|x(s)| = ‖x‖, (3.11)

so inf{r(x) : x ∈ X, ‖x‖ = 1} = 1 > 0.

Let 
∞(N) denote the Banach algebra of all real bounded sequences with the sup-norm.
The following two propositions tell us that there is a subalgebra of 
∞(N) which does not
contain c0 but fails to have the fixed point property.

Proposition 3.3. If E is a subset of 
∞(N) which contains an infinite bounded sequence and the
identity, then the Banach subalgebra B(E) of 
∞(N) generated by E fails to have the fixed point
property.

Proof. Let E be a subset of 
∞(N) which contains an infinite bounded sequence {zn} and the
identity. It follows that B(E) is unital and abelian. B(E) is infinite dimensional, since the set
{({zn})n : n ∈ N} is a linearly independent subset of B(E). Next, we show that B(E) satisfies
(i) and (ii) in Theorem 3.1.

Let a = {a1, a2, a3, . . .}, b = {b1, b2, b3, . . .} ∈ B(E) be such that a/= b and |τ(a)| ≤ |τ(b)|,
for each τ ∈ Ω(X). Define τn : B(E) → R by

τn({x1, x2, x3, . . .}) = xn (3.12)

for each n ∈ N. Hence τn ∈ Ω (B(E)) for each n ∈ N, and thus

|an| = |τn(a)| ≤ |τn(b)| = |bn| (3.13)

for each n ∈ N. Clearly, ‖a‖ ≤ ‖b‖.
Since for each x ∈ B(E) we have

‖x‖ ≥ r(x) = sup
λ∈σ(x)

|λ| = sup
τ∈Ω(B(E))

|τ(x)| ≥ sup
n∈N

|τn(x)| = ‖x‖, (3.14)

so inf{r(x) : x ∈ X, ‖x‖ = 1} = 1 > 0. Now it follows from Theorem 3.1 that B(E) doesn’t
have the fixed point property.

Proposition 3.4. Let z = {1/p, 1/p2, 1/p3, . . .} with p > 1. Then the Banach subalgebra B({1, z})
of 
∞(N) generated by the identity and z does not contain the space c0.

Proof. We have

A({1, z}) =
{

n∑

i=0

αi(z)i : αi ∈ R, n ∈ N

}

. (3.15)
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If a = {a1, a2, a3, . . .} ∈ A({1, z}), then a =
∑N

i=0 αi(z)
i, for some N ∈ N and αi ∈ R. It follows

that an =
∑N

i=0 αi(1/pn)
i, for each n ∈ N. WriteM = maxi=1,...,N |αi|. Hence

α0 −M

(
1

pn − 1

)

≤ an ≤ α0 +M

(
1

pn − 1

)

(3.16)

for each n ∈ N. From the above inequality, and since a is arbitrary, we can see that the
sequence {1, 1/2, 1/3, . . .} does not lie in A({1, z}) = B({1, z}).

4. Results on Complex Banach Algebras

Let X be a unital abelian complex Banach algebra. Consider the following condition.

(A) For each x ∈ X, there exists an element y ∈ X such that τ(y) = τ(x), for each τ ∈ Ω(X).

IfX satisfies condition (A), then ϕ(X) is a subspace ofCC(Ω(X))which is closed under
the complex conjugation. By using the Stone-Weierstrass theorem for the complex Banach
algebra CC(S) and following the proof of Lemma 2.7, we obtain the following result.

Lemma 4.1. Let X be a unital abelian complex Banach algebra satisfying (A) and

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. (4.1)

Then one has the following:

(i) the Gelfand representation ϕ is a bounded isomorphism,

(ii) the inverse ϕ−1 is also a bounded isomorphism.

Using Lemma 4.1 we obtain the complex counterpart of Lemma 2.10.

Lemma 4.2. Let X be an infinite dimensional unital abelian complex Banach algebra satisfying (A)
and

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. (4.2)

Then one has the following:

(i) Ω(X) is an infinite set,

(ii) if there exists a bounded sequence {xn} in X which contains no convergent subsequences
and such that {τ(xn) : τ ∈ Ω(X)} is finite for each n ∈ N, then there is an element x0 ∈ X
with

{τ(x0) : τ ∈ Ω(X)} =
{

1,
1
2
,
2
3
,
3
4
, . . .

}

, (4.3)
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(iii) there is an element x0 ∈ X such that {τ(x0) : τ ∈ Ω(X)} is an infinite set,

(iv) there exists a sequence {xn} in X such that {τ(xn) : τ ∈ Ω(X)} ⊂ [0, 1], for each n ∈ N,
and {(x̂n)

−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(X).

By using Lemmas 4.1 and 4.2, and by following the proof of Theorem 3.1, we get the
following theorem.

Theorem 4.3. Let X be an infinite dimensional unital abelian complex Banach algebra satisfying (A)
and each of the following:

(i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

Then X does not have the fixed point property.
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