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A real-valued continuous function f(t) on an interval (α, β) gives rise to a map X �→ f(X) via
functional calculus from the convex set of n × n Hermitian matrices all of whose eigenvalues
belong to the interval. Since the subpace of Hermitianmatrices is providedwith the order structure
induced by the cone of positive semidefinite matrices, one can consider convexity of this map.
We will characterize its convexity by the following trace-inequalities: Tr(f(B) − f(A))(C − B) ≤
Tr(f(C) − f(B))(B −A) for A ≤ B ≤ C. A related topic will be also discussed.

1. Introduction and Theorems

Let f(t) be a (real-valued) continuous function defined on an open interval (α, β) of the real
line. The function f(t) is said to be convex if

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b)
(
0 ≤ λ ≤ 1; α < a, b < β

)
. (1.1)

We referee to [1] for convex functions. Under continuity the requirement (1.1) can be
restricted only to the case λ = 1/2, that is,

f

(
a + b

2

)
≤ f(a) + f(b)

2
(
α < a, b < β

)
. (1.2)

It is well known that when f(t) is a C1-function, its convexity is characterized by the
condition on the derivative

f(b) − f(b − t)
t

≤ f ′(b) ≤ f(b + t) − f(b)
t

(
α < b − t < b + t < β

)
, (1.3)
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and, further when f(t) is a C2-function, by the condition on the second derivative

f ′′(b) ≥ 0
(
α < b < β

)
. (1.4)

On the other hand, it is easy to see that (1.1) is equivalent to the following requirement
on the divided difference:

f(b) − f(a)
b − a

≤ f(c) − f(b)
c − b

(
α < a < b < c < β

)
, (1.5)

or even to the inequality

(
f(b) − f(a)

)
(c − b) ≤ (

f(c) − f(b)
)
(b − a)

(
α < a ≤ b ≤ c < β

)
. (1.6)

LetMn be the linear space of n×n complex matrices, andHn its (real) subspace of n×n
Hermitian matrices. The identity matrix I will be denoted simply by 1, and correspondingly,
a scalar λ will represent λI. For Hermitian A, B the order relation A ≤ B means that B −A is
positive-semidefinite, or equivalently

A ≤ B ⇐⇒ 〈Ax, x〉 ≤ 〈Bx, x〉 (x ∈ C
n), (1.7)

where 〈x, y〉 denotes the inner product of vectors x, y ∈ C
n. The strict order relation A < B

will mean that B−A is positive definite; that is, B ≥ A and B−A is invertible (see [2] for basic
facts about matrices.)

Notice that for scalars α, β and Hermitian X the order relation α < X < β is equivalent
to the condition that every eigenvalue of X is in the interval (α, β). Denote by Hn(α, β) the
convex set of Hermitian matrices X such that α < X < β. A continuous function f(t), defined
on (α, β), induces a (nonlinear) map X �→ f(X) from Hn(α, β) to Hn through the familiar
functional calculus, that is,

f(X) := Udiag
(
f(λ1), . . . , f(λn)

)
U∗ (1.8)

with a unitary matrix U which diagonalizes X as

U∗XU = diag(λ1, . . . , λn). (1.9)

The function f(t) is said to bematrix-convex of order n, or simply n-convex on the interval (α, β)
if the map X �→ f(X) is convex on Hn(α, β) or more exactly

f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B)
(
0 ≤ λ ≤ 1; A,B ∈ Hn

(
α, β

))
(1.10)

(see [3, 4]). This is a formal matrix-version of (1.1). In view of (1.7) this convexity means that
the numerical valued function X �→ 〈f(X)x, x〉 is convex for all vector x ∈ C

n.
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Just as in the scalar case for the matrix-convexity the following matrix-version of (1.2)
is sufficient:

2f(B) ≤ f(B +X) + f(B −X)
(
B ±X ∈ Hn

(
α, β

))
. (1.11)

This means that f(t) is n-convex if and only if the map t �→ f(B + tX) is convex on (−1, 1)
when B ±X ∈ Hn(α, β).

The 1-convexity is nothing but the usual convexity of the function f(t). It is easy to see
that n-convexity implies m-convexity for all 1 ≤ m ≤ n.

It is known (see [3]) that if f(t) is 2-convex then it is already a C2-function, and (see
[5, 6]) that for each n there is an n-convex function which is not (n + 1)-convex.

It should be mentioned here that in his original definition of n-convexity Kraus [3]
restricted the requirement (1.11) only for X ≥ 0 with rank(X) = 1. We will return to this point
later.

The corresponding matrix-versions of (1.5) and (1.6) have no definite meaning
because (f(B) − f(A))(C − B) or (f(B) − f(A))(B −A)−1 is no longer Hermitian.

On the spaceMn the most useful linear functional is the Trace, in symbol, Tr(X), which
is defined as the sum of diagonal entries of X with respect to any orhonormal basis. The
useful properties of the trace are commutativity, Tr(XY ) = Tr(YX), and positivity, that is, X ≤
Y ⇒ Tr(X) ≤ Tr(Y ).

We will use a characterization of positive semidefiniteness X ≥ 0 in terms of trace:

X ≥ 0 ⇐⇒ Tr(XY ) ≥ 0 (0 ≤ Y of rank-one). (1.12)

Notice in this connection that if both X,Y are Hermitian, then Tr(XY ) is a real number.
Our main aim is to establish trace-versions of (1.5) and (1.6). The trace-version for

(1.6) is quite natural.

Theorem 1.1. A continuous function f(t) on an interval (α, β) is n-convex if and only if

Tr
(
f(B) − f(A)

)
(C − B) ≤ Tr

(
f(C) − f(B)

)
(B −A)

(
A ≤ B ≤ C in Hn

(
α, β

))
. (†n)

On the other hand, the trace-version for (1.5) turns out quite restrictive.

Theorem 1.2. Let n ≥ 2. A continuous function f(t) on an interval (α, β) satisfies the condition

Tr
(
f(B) − f(A)

)
(B −A)−1 ≤ Tr

(
f(C) − f(B)

)
(C − B)−1

(
A < B < C in Hn

(
α, β

))
(‡n)

if and only if it is of the form f(t) = at2 + bt + c with a ≥ 0, and b, c ∈ R.
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2. Preliminary

In order to prove theorems, we use a well-established regularization technique (see [7] I-4).
Take a nonnegative symmetric C∞-function ϕ(t) on (−∞,∞) such that

ϕ(t) = 0 (|t| ≥ 1),
∫∞

−∞
ϕ(t)dt = 1, (2.1)

and for ε > 0 let ϕ(ε) := ϕ(tε−1)ε−1. Then ϕ(ε)(t) is a nonnegative, symmetric C∞-function such
that

ϕ(ε)(t) = 0 (|t| ≥ ε),
∫∞

−∞
ϕ(ε)(t)dt = 1. (2.2)

Given a continuous function f(t) on an interval (α, β), setting f(t) = 0 outside of the
interval (α, β), define fε(t) as the convolution of this extended function f with ϕ(ε), that is,

fε(t) :=
(
f � ϕ(ε)

)
(t) =

∫∞

−∞
f(t − s)ϕ(ε)(s)ds. (2.3)

The following is well known.

Lemma 2.1. The function fε is a C∞-function, in fact,

dk

dtk
fε = f �

dk

dtk
ϕ(ε) (k = 1, 2, . . .), (2.4)

and fε(t) converges to f(t) uniformly on each compact subset of the interval (α, β) as ε → 0.

Lemma 2.2. Let f(t) be a continuous function on an interval (α, β).

(i) f(t) satisfies (†n) on (α, β) if and only if for small ε > 0 the function fε(t) satisfies (†n) on
(α + ε, β − ε).

(ii) f(t) is n-convex on (α, β) if and only if for small ε > the function fε(t) is n-convex on
(α + ε, β − ε).

Proof. (i) Let f(t) satisfy (†n) on (α, β). Suppose that α + ε < A ≤ B ≤ C < β − ε, then

Tr
(
fε(C) − fε(B)

)
(B −A) − Tr

(
fε(B) − fε(A)

)
(C − B)

=
∫ ε

−ε

[
Tr
{
f(C − s) − f(B − s)

}{(B − s) − (A − s)}

−Tr{f(B − s) − f(A − s)
}{(C − s) − (B − s)}]ϕ(ε)(s)ds ≥ 0,

(2.5)
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because

α < A − s ≤ B − s ≤ C − s < β (|s| ≤ ε). (2.6)

The converse statement is clear by the second half of Lemma 2.1.
The proof of (ii) is also easy and omitted.

In a similar way we have the following.

Lemma 2.3. A continuous function f(t) satisfies (‡n) on (α, β) if and only if for small ε > 0 the
functin fε(t) satisfies (‡n) on (α + ε, β − ε).

When f(t) is a C1-function on (α, β), B ∈ Hn(α, β) and X ∈ Hn, the map t �→ f(B + tX)
is defined for small |t| and differentiable at t = 0. The derivative of this map at t = 0 will be
denoted by Df(B;X), that is,

Df(B;X) :=
d

dt

∣∣∣∣
t=0

f(B + tX) (X ∈ Hn). (2.7)

When B is daigonal as B = diag(λ1, . . . , λn), it is known (see [2] V-3 and [8] 6-6) that

Df(B;X) =
[
f [1](λi, λj

)]n

i,j=1
◦ [xij

]n
i,j=1 for X =

[
xij

]n
i,j=1, (2.8)

where ◦ denotes the Schur product (= entrywise product) and f [1](s, t) is the first divided
difference of f , defined as

f [1](s, t) =

⎧
⎪⎨

⎪⎩

f(s) − f(t)
s − t

, if s /= t,

f ′(s), if s = t.

(2.9)

Notice that [f [1](λi, λj)]
n

i,j=1 is a real symmetric matrix.

In a similar way when f(t) is a C2-function, the second derivative of the map t �→ f(B +
tX) at t = 0 is written as (see [2] V-3 and [8] 6-6)

d2

dt2

∣∣∣∣∣
t=0

f(B + tX) = 2

[
n∑

k=1

f [2](λi, λk, λj
)
xikxkj

]n

i,j=1

for X =
[
xij

]n
i,j=1, (2.10)

where f [2](s, t, u) is the second divided difference of f , defined as

f [2](s, t, u) =
f [1](s, t) − f [1](t, u)

s − u
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f [1](s, t) − f [1](t, u)
s − u

, if s /=u,

f ′(s) − f [1](t, s)
s − t

, if s = u/= t,

f ′′(s)
2

, if s = t = u.

(2.11)
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Since the functional calculus is invariant for unitary similarity, that is, f(V ∗XV ) =
V ∗f(X)V , the formulas (2.8) and (2.10) well determine the forms of derivatives.

Lemma 2.4. If f(t) is a C1-function on an interval (α, β), then

Tr
(Df(B;X) · Y) = Tr

(Df(B;Y ) ·X) (
B ∈ Hn

(
α, β

)
; X,Y ∈ Hn

)
. (2.12)

Proof. We may assume that B = diag(λ1, . . . , λn), then by (2.8) for X = [xij]
n
i,j=1 and Y =

[yij]
n
i,j=1

Tr
(Df(B;X) · Y) =

n∑

i,j=1

f [1](λi, λj
)
xijyji

=
n∑

i,j=1

f [1](λj , λi
)
yjixij = Tr

(Df(B;Y ) ·X)
.

(2.13)

3. Proofs of Theorems

By Lemmas 2.3 and 2.4 we may assume that f(t) in theorems is a C∞-function.

Proof of Theorem 1.1. Suppose that the function f(t) satisfies (†n) on (α, β). Take B ∈ Hn(α, β)
and 0 ≤ X,Y of rank-one such that C := B + X and A := B − tY for small t > 0 belong to
Hn(α, β). Since A ≤ B ≤ C, by assumption (†n) we have

Tr

(
f(B) − f(B − tY )

)
X

t
≤ Tr

(
f(B +X) − f(B)

)
Y, (3.1)

hence by (2.7)

Tr
(Df(B;Y ) ·X) ≤ Tr

(
f(B +X) − f(B)

)
Y. (3.2)

Then it follows from Lemma 2.4 that

Tr
(Df(B;X) · Y) ≤ Tr

(
f(B +X) − f(B)

)
Y. (3.3)

Since 0 ≤ X,Y of rank-one are arbitrary, it follows from (3.3) and (1.12) that for any 0 ≤ X of
rank one such that α < B ±X < β

Df(B;X) ≤ f(B +X) − f(B), (3.4)

and similarly

f(B) − f(B −X) ≤ Df(B;X). (3.5)
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Therefore

2f(B) ≤ f(B +X) + f(B −X)
(
B ±X ∈ Hn

(
α, β

)
and 0 ≤ X of rank-one

)
. (3.6)

This means that the matrix-valued function t �→ f(B + tX) is convex under the condition that
0 ≤ X is of rank-one.

At this point we proved the n-convexity in the sense of Kraus [3] as mentioned in
Section 1. The remaining part is essentially the same as Kraus’ approach [3].

Since for 0 ≤ X of rank-one and small t > 0 by (3.6)

0 ≤ f(B + tX) + f(B − tX) − 2f(B)
t2

−→ d2

dt2

∣
∣
∣
∣
∣
t=0

f(B + tX), (3.7)

we can conclude from (2.10) that for 0 ≤ X = [xij]
n
i,j=1 of rank-one

[
n∑

k=1

f [2](λi, λk, λj
)
xikxkj

]n

i,j=1

≥ 0. (3.8)

For each t > 0, consider a positive semidefinite matrix of rank-one

0 ≤ X =
[
xij

]n
i,j=1 :=

[
ti+j−2

]n

i,j=1
. (3.9)

Then by (3.8)

0 ≤
[

n∑

k=1

f [2](λi, λk, λj
)
xikxkj

]n

i,j=1

= diag
(
1, t, . . . , tn−1

)[ n∑

k=1

f [2](λi, λk, λj
)
t2(k−1)

]n

i,j=1

diag
(
1, t, . . . , tn−1

)
,

(3.10)

which implies

[
n∑

k=1

f [2](λi, λk, λj
)
t2(k−1)

]n

i,j=1

≥ 0. (3.11)

Letting t → 0, we have

C1 :=
[
f [2](λi, λ1, λj

)]n

i,j=1
≥ 0. (3.12)
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In a similar way we can see that

Ck :=
[
f [2](λi, λk, λj

)]n

i,j=1
≥ 0 (k = 1, 2, . . . , n). (3.13)

Now since for any X = [xij]
n
i,j=1 ∈ Hn each matrix [xikxkj]

n
i,j=1 (k = 1, 2, . . . , n) is

positive semidefinite and of rank-one, it follows from (3.8) that

d2

dt2

∣
∣
∣
∣
∣
t=0

f(B + tX) = 2

[
n∑

k=1

f [2](λi, λk, λj
)
xikxkj

]n

i,j=1

= 2
n∑

k=1

Ck ◦
[
xikxjk

]n
i,j=1 ≥ 0.

(3.14)

Here we used the well-known fact that the Schur product of two positive semidefinite
matrices is again positive semidefinite (see [2] I-6). Therefore

d2

dt2

∣∣∣∣∣
t=0

f(B + tX) ≥ 0
(
B ∈ Hn

(
α, β

)
;X ∈ Hn

)
, (3.15)

which implies the convexity of the map t �→ f(B + tX) whenever B ± X ∈ Hn(α, β). This
completes the proof of the n-convexity of the function f(t).

Suppose conversely that f(t) is n-convex on the interval (α, β), then by (1.3)

f(C) − f(B) = f(B + (C − B)) − f(B) ≥ d

dt

∣∣∣∣
t=0

f(B + t(C − B))

= Df(B;C − B),

(3.16)

so that by (1.12)

Tr
(
f(C) − f(B)

)
(B −A) ≥ Tr

(Df(B;C − B) · (B −A)
)
, (3.17)

and similarly

Tr
(
f(B) − f(A)

)
(C − B) ≤ Tr

(Df(B;B −A) · (C − B)
)
. (3.18)

Now by Lemma 2.4 we can conclude

Tr
(
f(B) − f(A)

)
(C − B) ≤ Tr

(
f(C) − f(B)

)
(B −A), (3.19)

which shows that the function f(t) satisfies (†n). This completes the whole proof of
Theorem 1.1.

In the above proof we really showed the following.
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Theorem 3.1. A continuous function f(t) on an interval (α, β) is n-convex if and only if Tr(f(B) −
f(A))(C − B) ≤ Tr(f(C) − f(B))(B − A),whenever A ≤ B ≤ C in Hn(α, β) and rank(B − A) =
rank(C − B) = 1.

Notice that Kraus [3] (cf. [8, Theorem 6.6.52]) really showed, for n ≥ 2, that f(t) is
n-convex on (α, β) if and only if it is a C2-function and

[
f [2](λi, λ1, λj

)]n

i,j=1
≥ 0 ∀λ1, . . . , λn ∈ (

α, β
)
. (3.20)

For the proof of Theorem 1.2, let us start with an easy lemma.

Lemma 3.2. If condition (‡n) for f(t) is valid on (α, β), so is condition (‡m) for 1 ≤ m < n.

Proof. Given A < B < C in Hm(α, β), take λ ∈ (α, β) and small ε > 0 and consider the n × n
matrices

Ã :=

[
A 0

0 (λ − ε)In−m

]

, B̃ :=

[
B 0

0 λIn−m

]

, C̃ :=

[
C 0

0 (λ + ε)In−m

]

, (3.21)

where In−m is the (n −m) × (n −m) identity matrix. Then since Ã < B̃ < C̃ in Hn(α, β) and

Tr
(
f
(
B̃
)
− f

(
Ã
))(

B̃ − Ã
)−1

= Tr
(
f(B) − f(A)

)
(B −A)−1 + (n −m)

f(λ) − f(λ − ε)
ε

,

Tr
(
f
(
C̃
)
− f

(
B̃
))(

C̃ − B̃
)−1

= Tr
(
f(C) − f(B)

)
(B −A)−1 + (n −m)

f(λ + ε) − f(λ)
ε

,

(3.22)

by letting ε → 0 it follows from (‡n) that

Tr
(
f(B) − f(A)

)
(B −A)−1 ≤ Tr

(
f(C) − f(B)

)
(C − B)−1. (3.23)

This completes the proof.

In view of Lemma 3.2 the essential part of the proof of Theorem 1.2 is in the next
lemma.

Lemma 3.3. If a C1- function f(t) satisfies (‡2) on (α, β), then

f ′(s) + f ′(t) = 2f [1](s, t)
(
α < s, t < β

)
. (3.24)
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Proof. Take B = diag(t1, t2)with t1, t2 ∈ (α, β). Then for any 2× 2 positive definite X,Y > 0 and
small ε > 0 we have by assumption

Tr
f(B) − f(B − εX)

ε
X−1 ≤ Tr

f(B + εY ) − f(B)
ε

Y−1. (3.25)

Letting ε → 0 by (2.8) this leads to the inequality

Tr
([

f [1](ti, tj
)]2

i,j=1
◦X

)
·X−1 ≤ Tr

([
f [1](ti, tj

)]2

i,j=1
◦ Y

)
· Y−1. (3.26)

Replacing X and Y we have also

Tr
([

f [1](ti, tj
)]2

i,j=1
◦ Y

)
· Y−1 ≤ Tr

([
f [1](ti, tj

)]2

i,j=1
◦X

)
·X−1. (3.27)

Those together show that

Tr
([

f [1](ti, tj
)]2

i,j=1
◦X

)
·X−1 = constant (0 < X ∈ H2). (3.28)

It is easy to see that a 2 × 2 positive definite matrix X with Tr(X) = 1 is of the form

X =

[
a u

√
a(1 − a)

u
√
a(1 − a) 1 − a

]

(0 < a < 1; |u| < 1). (3.29)

Now it follows (3.28) and (3.29) that

Tr
([

f [1](ti, tj
)]2

i,j=1
◦X

)
·X−1

=
f ′(t1) + f ′(t2) − 2|u|2f [1](t1, t2)

1 − |u|2
= constant (|u| < 1),

(3.30)

which is possible only when (3.24) is valid.

Proof of Theorem 1.2. Suppose that a C2-function f(t) satisfies (‡n) on (α, β). By Lemmas 3.2
and 3.3 f(t) satisfies the identity (3.24). Therefore we have

{
f ′(t) + f ′(s)

}
(t − s) = 2

{
f(t) − f(s)

} (
α < s, t < β

)
. (3.31)

Twice differentiating both sides with respect to twe arrive at

f ′′′(t)(t − s) = 0
(
α < s, t < β

)
(3.32)
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which is possible only when f(t) is a quadratic function

f(t) = at2 + bt + c. (3.33)

Finally a ≥ 0 follows from the usual convexity of f(t).
Suppose conversely that f(t) is of the form (3.33) with a ≥ 0. Take A < B < C in Hn.

Then

Tr
(
f(B) − f(A)

)
(B −A)−1 = aTr

(
B2 −A2

)
(B −A)−1 + nb, (3.34)

and correspondingly

Tr
(
f(C) − f(B)

)
(C − B)−1 = aTr

(
C2 − B2

)
(C − B)−1 + nb. (3.35)

Since

B2 −A2 = B(B −A) + (B −A)A, (3.36)

we have

Tr
(
B2 −A2

)
(B −A)−1 = Tr(B) + Tr(A) (3.37)

and correspondingly

Tr
(
C2 − B2

)
(C − B)−1 = Tr(C) + Tr(B). (3.38)

Therefore we arrive at the inequality

Tr
(
f(C) − f(B)

)
(C − B)−1 − Tr

(
f(B) − f(A)

)
(B −A)−1 = a{Tr(C) − Tr(A)} ≥ 0. (3.39)

This shows that f(t) satisfies (‡n) for any n and on any interval (α, β).

Acknowledgment

The author would like to thank Professor Fumio Hiai for his valuable comments on the
original version of this paper.

References

[1] A. W. Roberts and D. E. Varberg, Convex Functions, vol. 57 of Pure and Applied Mathematics, Academic
Press, New York, NY, USA, 1973.

[2] R. Bhatia,Matrix Analysis, vol. 169 ofGraduate Texts inMathematics, Springer, New York, NY, USA, 1997.



12 Fixed Point Theory and Applications
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