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1. Introduction

Existence of solutions of differential and integral equations is subject of numerous
investigations (see, e.g., the monographs [1–3] or [4]). Moreover, a lot of work in this domain
is devoted to the existence of solutions in certain special classes of functions (e.g., positive
functions or monotone functions). We merely mention here the result obtained by Caballero
et al. [5] concerning the existence of nondecreasing solutions to the integral equation of
Urysohn type

x(t) = a(t) + u(t, x(t))
∫T

0
v(t, s, x(s))ds, t ∈ [0, T], (1.1)

where T is a positive constant. In the special case when u(t, x) := x2 (or even u(t, x) := xn), the
authors proved in [5] that if a is positive and nondecreasing, v is positive and nondecreasing
in the first variable (when the other two variables are kept fixed), and they satisfy some
additional assumptions, then there exists at least one positive nondecreasing solution x :
[0, T] → R to (1.1). A similar existence result, but involving a Volterra type integral equation,
has been obtained by Banaś and Martinon [6].
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It should be noted that both existence results were proved with the help of a measure
of noncompactness related tomonotonicity introduced by Banaś and Olszowy [7]. The reader
is referred also to the paper by Banaś et al. [8], in which another measure of noncompactness
is used to prove the solvability of an integral equation of Urysohn type on an unbounded
interval.

The main purpose of the present paper is twofold. First, we generalize the result from
the paper [5] to the framework of higher-order convexity. Namely, we show that given an
integer r ≥ −1, if a and v are convex of order p for each p ∈ {−1, 0, . . . , r}, then (1.1) possesses
at least one solution which is also convex of order p for each p ∈ {−1, 0, . . . , r}. Second, we
simplify the proof given in [5] by showing that it is not necessary to make use of the measure
of noncompactness related to monotonicity introduced by Banaś and Olszowy [7].

2. Measures of Noncompactness

Measures of noncompactness are frequently used in nonlinear analysis, in branches
such as the theory of differential and integral equations, the operator theory, or the
approximation theory. There are several axiomatic approaches to the concept of a measure
of noncompactness (see, e.g., [9–11] or [12]). In the present paper the definition of a measure
of noncompactness given in the book by Banaś and Goebel [12] is adopted.

Let E be a real Banach space, letME be the family consisting of all nonempty bounded
subsets of E, and let NE be the subfamily of ME consisting of all relatively compact sets.
Given any subset X of E, we denote by clX and coX the closure and the convex hull of X,
respectively.

Definition 2.1 (see [12]). A function μ : ME → [0,∞) is said to be a measure of noncompactness
in E if it satisfies the following conditions.

(1) The family ker μ := {X ∈ ME | μ(X) = 0} (called the kernel of μ) is nonempty and
it satisfies kerμ ⊆ NE.

(2) μ(X) ≤ μ(Y )whenever X,Y ∈ ME satisfy X ⊆ Y .

(3) μ(X) = μ(clX) = μ(coX) for all X ∈ ME.

(4) μ(λX + (1 − λ)Y ) ≤ λμ(X) + (1 − λ)μ(Y ) for all λ ∈ [0, 1] and all X,Y ∈ ME.

(5) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊆ Xn for each positive
integer n and if limn→∞μ(Xn) = 0, then the set X∞ :=

⋂∞
n=1Xn is nonempty.

An important and very convenient measure of noncompactness is the so-called
Hausdorff measure of noncompactness χ : ME → [0,∞), defined by

χ(X) := inf
{
ε ∈ (0,∞) | X possesses a finite ε − net in X

}
. (2.1)

The importance of this measure of noncompactness is given by the fact that in certain Banach
spaces it can be expressed by means of handy formulas. For instance, consider the Banach
space C := C[a, b] consisting of all continuous functions x : [a, b] → R, endowed with the
standard maximum norm

‖x‖ := max {|x(t)| | t ∈ [a, b]}. (2.2)
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Given X ∈ MC, x ∈ X, and ε > 0, let

ω(x, ε) := sup {|x(t) − x(s)| | t, s ∈ [a, b], |t − s| ≤ ε} (2.3)

be the usual modulus of continuity of x. Further, let

ω(X, ε) := sup {ω(x, ε) | x ∈ X}, (2.4)

and ω0(X) := limε→ 0+ω(X, ε). Then it can be proved (see Banaś and Goebel [12,
Theorem 7.1.2]) that

χ(X) =
1
2
ω0(X) ∀X ∈ MC. (2.5)

For further facts concerning measures of noncompactness and their properties the
reader is referred to the monographs [9, 11] or [12]. We merely recall here the following
fixed point theorem.

Theorem 2.2 (see [12, Theorem 5.1]). Let E be a real Banach space, let μ : ME → [0,∞) be
a measure of noncompactness in E, and let Q be a nonempty bounded closed convex subset of E.
Further, let F : Q → Q be a continuous operator such that μ(F(X)) ≤ kμ(X) for each subset X of
Q, where k ∈ [0, 1) is a constant. Then F has at least one fixed point in Q.

3. Convex Functions of Higher Orders

Let I ⊆ R be a nondegenerate interval. Given an integer p ≥ −1, a function x : I → R is said
to be convex of order p or p-convex if

[
t0, t1, . . . , tp+1; x

] ≥ 0 (3.1)

for any system t0 < t1 < · · · < tp+1 of p + 2 points in I, where

[
t0, t1, . . . , tp+1; x

]
:=

1
(t0 − t1)(t0 − t2) · · ·

(
t0 − tp+1

) x(t0)

+
1

(t1 − t0)(t1 − t2) · · ·
(
t1 − tp+1

) x(t1) + · · ·

+
1(

tp+1 − t0
)(
tp+1 − t1

) · · · (tp+1 − tp
) x

(
tp+1

)
(3.2)

is called the divided difference of x at the points t0, t1, . . . , tp+1. With the help of the polynomial
function defined by

ω(t) := (t − t0)(t − t1) · · ·
(
t − tp+1

)
, (3.3)
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the previous divided difference can be written as

[
t0, t1, . . . , tp+1;x

]
=

p+1∑
k=0

x(tk)
ω′(tk)

. (3.4)

An alternative way to define the divided difference [t0, t1, . . . , tp+1;x] is to set

[ti;x] := x(ti) for each i ∈ {
0, 1, . . . , p + 1

}
,

[
ti, ti+1, . . . , ti+j ;x

]
:=

[
ti, . . . , ti+j−1;x

] − [
ti+1, . . . , ti+j ;x

]
ti − ti+j

,
(3.5)

whenever j ∈ {0, 1, . . . , p+1−i}. Finally, wemention a representation of the divided difference
by means of two determinants. It can be proved that

[
t0, t1, . . . , tp+1;x

]
=

U
(
t0, t1, . . . , tp+1;x

)
V
(
t0, t1, . . . , tp+1

) , (3.6)

where

U
(
t0, t1, . . . , tp+1;x

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

t0 t1 · · · tp+1

t20 t21 · · · t2p+1
...

... · · · ...

t
p

0 t
p

1 · · · t
p

p+1

x(t0) x(t1) · · · x
(
tp+1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

V
(
t0, t1, . . . , tp+1

)
:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

t0 t1 · · · tp+1

t20 t21 · · · t2p+1
...

... · · · ...

t
p+1
0 t

p+1
1 · · · t

p+1
p+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.7)

Note that a convex function of order −1 is a nonnegative function, a convex function of
order 0 is a nondecreasing function, while a convex function of order 1 is an ordinary convex
function.

Let I ⊆ R be a nondegenerate interval, let x : I → R be an arbitrary function, and let
h ∈ R. The difference operator Δh with the span h is defined by

(Δhx)(t) := x(t + h) − x(t) (3.8)
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for all t ∈ I for which t+h ∈ I. The iterates Δp

h (p = 0, 1, 2, . . .) of Δh are defined recursively by

Δ0
hx := x, Δp+1

h
x := Δh

(
Δp

h
x
)

for p = 0, 1, 2, . . . . (3.9)

It can be proved (see, e.g., [13, page 368, Corollary 3]) that

(
Δp

h
x
)
(t) =

p∑
k=0

(−1)p−k
(
p

k

)
x(t + kh) (3.10)

for every t ∈ I for which t + ph ∈ I. On the other hand, the equality

[
t, t + h, t + 2h, . . . , t + ph; x

]
=

(
Δp

h
x
)
(t)

p!hp
(3.11)

holds for every nonnegative integer p and every t ∈ I for which t + ph ∈ I.
Let I ⊆ R be a nondegenerate interval. Given an integer p ≥ −1, a function x : I → R

is called Jensen convex of order p or Jensen p-convex if

(
Δp+1

h x
)
(t) ≥ 0 (3.12)

for all t ∈ I and all h > 0 such that t + (p + 1)h ∈ I. Due to (3.11), it is clear that every convex
function of order p is also Jensen convex of order p. In general, the converse does not hold.
However, under the additional assumption that x is continuous, the two notions turn out to
be equivalent.

Theorem 3.1 (see [13, page 387, Theorem 1]). Let I ⊆ R be a nondegenerate interval, let p ≥ −1
be an integer, and let x : I → R be a continuous function. Then x is convex of order p if and only if
it is Jensen convex of order p.

Finally, we mention the following result concerning the difference of order p of a
product of two functions:

Lemma 3.2. Let I ⊆ R be a nondegenerate interval, and let p be a nonnegative integer. Given two
functions x, y : I → R, the equality

(
Δp

hxy
)
(t) =

p∑
k=0

(
p

k

)(
Δk

hx
)
(t) ·

(
Δp−k

h y
)
(t + kh) (3.13)

holds for every t ∈ I such that t + ph ∈ I.
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4. Main Results

Throughout this section T is a positive real number. In the space C[0, T], consisting of all
continuous functions x : [0, T] → R, we consider the usual maximum norm

‖x‖ := max{|x(t)| | t ∈ [0, T]}. (4.1)

Our first main result concerns the integral equation of Urysohn type (1.1) in which a,
u, and v are given functions, while x is the unknown function. We assume that the functions
a, u, and v satisfy the following conditions:

(C1) r ≥ −1 is a given integer number;

(C2) a : [0, T] → R is a continuous function which is convex of order p for each p ∈
{−1, 0, . . . , r};

(C3) u : [0, T] ×R → R is a continuous function such that u(t, 0) = 0 for all t ∈ [0, T] and
the function

t ∈ [0, T] �−→ u(t, x(t)) ∈ R (4.2)

is convex of order p for each p ∈ {−1, 0, . . . , r} whenever x ∈ C[0, T] is convex of
order p for each p ∈ {−1, 0, . . . , r};

(C4) there exists a continuous function ϕ : [0,∞) × [0,∞) → [0,∞) which is
nondecreasing in each variable and satisfies

∣∣u(t, x) − u
(
t, y

)∣∣ ≤ ∣∣x − y
∣∣ϕ(x, y) (4.3)

for all t ∈ [0, T] and all x, y ∈ [0,∞);

(C5) v : [0, T] × [0, T] ×R → R is a continuous function such that the function v(·, s, x) :
[0, T] → R is convex of order p for each p ∈ {−1, 0, . . . , r} whenever s ∈ [0, T] and
x ∈ [0,∞);

(C6) there exists a continuous nondecreasing function ψ : [0,∞) → [0,∞) such that

|v(t, s, x)| ≤ ψ(|x|) ∀t, s ∈ [0, T], x ∈ R; (4.4)

(C7) there exists r0 > 0 such that

‖a‖ + Tr0ϕ(r0, 0)ψ(r0) ≤ r0, Tϕ(r0, r0)ψ(r0) < 1. (4.5)

Theorem 4.1. If the conditions (C1)–( C7) are satisfied, then (1.1) possesses at least one solution
x ∈ C[0, T] which is convex of order p for each p ∈ {−1, 0, . . . , r}.
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Proof. Consider the operator F, defined on C[0, T] by

(Fx)(t) := a(t) + u(t, x(t))
∫T

0
v(t, s, x(s))ds, t ∈ [0, T]. (4.6)

Then Fx ∈ C[0, T] whenever x ∈ C[0, T] (see [5, the proof of Theorem 3.2]).
We claim that F is continuous onC[0, T]. To this end we fix any x0 inC[0, T] and prove

that F is continuous at x0. Let c := ‖x0‖ + 1, and let

M1 := max{|u(t, x)| | t ∈ [0, T], x ∈ [−‖x0‖, ‖x0‖]}
M2 := max{|v(t, s, x)| | t, s ∈ [0, T], x ∈ [−c, c]}.

(4.7)

Further, let ε > 0. The uniform continuity of u on [0, T] × [−c, c] as well as that of v on
[0, T] × [0, T] × [−c, c] ensures the existence of a real number δ > 0 such that

∣∣u(t, x) − u
(
t, y

)∣∣ < ε,
∣∣v(t, s, x) − v

(
t, s, y

)∣∣ < ε (4.8)

for all t, s ∈ [0, T] and all x, y ∈ [−c, c] satisfying |x − y| < δ. Then for every x ∈ C[0, T] such
that ‖x − x0‖ < min{1, ε, δ} and every t ∈ [0, T]we have

|(Fx)(t) − (Fx0)(t)| ≤
∣∣∣∣∣[u(t, x(t)) − u(t, x0(t))]

∫T

0
v(t, s, x(s))ds

∣∣∣∣∣

+

∣∣∣∣∣u(t, x0(t))
∫T

0
[v(t, s, x(s)) − v(t, s, x0(s))]ds

∣∣∣∣∣

≤ |u(t, x(t)) − u(t, x0(t))|
∫T

0
|v(t, s, x(s))|ds

+ |u(t, x0(t))|
∫T

0
|v(t, s, x(s)) − v(t, s, x0(s))|ds

≤ εT(M1 +M2).

(4.9)

Therefore, the inequality ‖Fx − Fy‖ ≤ εT(M1 + M2) holds for every x in C[0, T] satisfying
‖x − x0‖ < min{1, ε, δ}. This proves the continuity of F at x0.

Next, let r0 be the positive real number whose existence is assured by (C7), and let Q
be the subset of C[0, T], consisting of all functions x such that ‖x‖ ≤ r0 and x is convex of
order p for each p ∈ {−1, 0, . . . , r}. Obviously,Q is a nonempty bounded closed convex subset
of C[0, T]. We claim that F maps Q into itself. To prove this, let x ∈ Q be arbitrarily chosen.
For every t ∈ [0, T]we have

|(Fx)(t)| ≤ |a(t)| + |u(t, x(t))|
∫T

0
|v(t, s, x(s))|ds. (4.10)
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Since x is convex of order −1 (i.e., nonnegative), according to (C3) and (C4) we also have

|u(t, x(t))| = |u(t, x(t)) − u(t, 0)| ≤ x(t)ϕ(x(t), 0) ≤ ‖x‖ϕ(‖x‖, 0). (4.11)

This inequality and (C6) yield

|(Fx)(t)| ≤ ‖a‖ + ‖x‖ϕ(‖x‖, 0)
∫T

0
ψ(|x(s)|)ds

≤ ‖a‖ + T‖x‖ϕ(‖x‖, 0)ψ(‖x‖).
(4.12)

Taking into account that ‖x‖ ≤ r0, by (C4), (C6), and (C7)we conclude that

‖Fx‖ ≤ ‖a‖ + Tr0ϕ(r0, 0)ψ(r0) ≤ r0. (4.13)

On the other hand, for every t ∈ [0, T] we have

(Fx)(t) = a(t) + xu(t)xv(t), (4.14)

where xu, xv : [0, T] → R are the functions defined by

xu(t) := u(t, x(t)), xv(t) :=
∫T

0
v(t, s, x(s))ds, (4.15)

respectively. According to Lemma 3.2, we have

(
Δp+1

h (Fx)
)
(t) =

(
Δp+1

h
a
)
(t) +

p+1∑
k=0

(
p + 1

k

)(
Δk

hxv

)
(t)

(
Δp+1−k

h
xu

)
(t + kh) (4.16)

for every p ∈ {−1, 0, . . . , r} and every t ∈ [0, T] such that t + ph ∈ [0, T]. But

(
Δk

hxv

)
(t) =

k∑
i=0

(−1)k−i
(
k

i

)
xv(t + ih)

=
∫T

0

k∑
i=0

(−1)k−i
(
k

i

)
v(t + ih, s, x(s))ds

=
∫T

0

(
Δk

hxv,s

)
(t)ds,

(4.17)

where xv,s(t) := v(t, s, x(s)). By virtue of (C5) we have (Δk
h
xv,s)(t) ≥ 0, whence

(
Δk

hxv

)
(t) ≥ 0 for each k ∈ {0, 1, . . . , r + 1}. (4.18)
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This inequality together with (4.16), (C2), and (C3) ensures that the function Fx is Jensen
convex of order p for each p ∈ {−1, 0, . . . , r}. Since Fx is continuous on [0, T], by Theorem 3.1
it follows that Fx is convex of order p for each p ∈ {−1, 0, . . . , r}. Taking into account (4.13),
we conclude that F maps Q into itself, as claimed.

Finally, we prove that the operator F satisfies the Darbo condition with respect to the
Hausdorff measure of noncompactness χ. To this end let X be an arbitrary nonempty subset
of Q and let x ∈ X. Further, let ε > 0 and let t1, t2 ∈ [0, T] be such that |t1 − t2| ≤ ε. We have

|(Fx)(t1) − (Fx)(t2)|

≤ |a(t1) − a(t2)| +
∣∣∣∣∣u(t1, x(t1))

∫T

0
v(t1, s, x(s))ds − u(t2, x(t2))

∫T

0
v(t2, s, x(s))ds

∣∣∣∣∣

≤ |a(t1) − a(t2)| + |u(t1, x(t1)) − u(t1, x(t2))|
∫T

0
|v(t1, s, x(s))|ds

+ |u(t1, x(t2)) − u(t2, x(t2))|
∫T

0
|v(t1, s, x(s))|ds

+ |u(t2, x(t2))|
∫T

0
|v(t1, s, x(s)) − v(t2, s, x(s))|ds

≤ ω(a, ε) + |x(t1) − x(t2)|ϕ(x(t1), x(t2))Tψ(‖x‖)
+ |u(t1, x(t2)) − u(t2, x(t2))|Tψ(‖x‖)

+ |x(t2)|ϕ(x(t2), 0)
∫T

0
|v(t1, s, x(s)) − v(t2, s, x(s))|ds.

(4.19)

Letting

ωr0(u, ε) := sup
{∣∣u(t, y) − u

(
t′, y

)∣∣ : t, t′ ∈ [0, T], |t − t′| ≤ ε, y ∈ [0, r0]
}
,

ωr0(v, ε) := sup
{∣∣v(t, s, y) − v

(
t′, s, y

)∣∣ : s, t, t′ ∈ [0, T], |t − t′| ≤ ε, y ∈ [0, r0]
}
,

(4.20)

we get

|(Fx)(t1) − (Fx)(t2)| ≤ ω(a, ε) + Tϕ(r0, r0)ψ(r0)ω(x, ε)

+ Tψ(r0)ωr0(u, ε) + Tr0ϕ(r0, 0)ωr0(v, ε).
(4.21)

Thus

ω(Fx, ε) ≤ ω(a, ε) + Tϕ(r0, r0)ψ(r0)ω(x, ε)

+ Tψ(r0)ωr0(u, ε) + Tr0ϕ(r0, 0)ωr0(v, ε),
(4.22)
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whence

ω(FX, ε) ≤ ω(a, ε) + Tϕ(r0, r0)ψ(r0)ω(X, ε)

+ Tψ(r0)ωr0(u, ε) + Tr0ϕ(r0, 0)ωr0(v, ε).
(4.23)

Taking into account that a is uniformly continuous on [0, T], u is uniformly continuous on
[0, T]× [0, r0] and v is uniformly continuous on [0, T]× [0, T]× [0, r0], we have that ω(a, ε) →
0, ωr0(u, ε) → 0 and ωr0(v, ε) → 0 as ε → 0+. So letting ε → 0+ we obtain ω0(FX) ≤
Tϕ(r0, r0)ψ(r0)ω0(X), that is,

χ(FX) ≤ Tϕ(r0, r0)ψ(r0)χ(X) (4.24)

by virtue of (2.5).
By (C7) and Theorem 2.2 we conclude the existence of at least one fixed point of F in

Q. This fixed point is obviously a solution of (1.1) which (in view of the definition of Q) is
convex of order p for each p ∈ {−1, 0, . . . , r}.

Theorem 4.1 can be further generalized as follows. Given an integer number r ≥ −1
and a sequence ξ := (ξ−1, ξ0, . . . , ξr) ∈ {−1, 1}r+2, we denote by Convr,ξ[0, T] the set consisting
of all functions x ∈ C[0, T] with the property that for each p ∈ {−1, 0, . . . , r} the function ξpx
is convex of order p. For instance, if r = 1 and ξ = (1,−1, 1), then Convr,ξ[0, T] consists of all
functions in C[0, T] that are nonnegative, nonincreasing, and convex on [0, T].

Recall (see, e.g., Roberts and Varberg [14, pages 233-234]) that a function x : [0, T] →
R is called absolutely monotonic (resp., completely monotonic) if it possesses derivatives of all
orders on [0, T] and

x(k)(t) ≥ 0
(
resp., (−1)kx(k)(t) ≥ 0

)
(4.25)

for each t ∈ [0, T] and each integer k ≥ 0. By [13, Theorem 6, page 392] it follows that if
x : [0, T] → R is an absolutely monotonic (resp., a completely monotonic) function, then
x belongs to every set Convr,ξ[0, T] with r ≥ −1 and ξk = 1 (resp., ξk = (−1)k+1) for each
k ∈ {−1, 0, . . . , r}.

Instead of the conditions (C1), (C2), (C3), and (C5) we consider the following
conditions.

(C′
1) r ≥ −1 is a given integer number and ξ := (ξ−1, ξ0, . . . , ξr) ∈ {−1, 1}r+2 is a sequence

such that either

ξk = 1 for each k ∈ {−1, 0, . . . , r} (4.26)

or

ξk = (−1)k+1 for each k ∈ {−1, 0, . . . , r}. (4.27)

(C′
2) a : [0, T] → R belongs to Convr,ξ[0, T].
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(C′
3) u : [0, T] ×R → R is a continuous function such that u(t, 0) = 0 for all t ∈ [0, T] and

the function

t ∈ [0, T] �−→ u(t, x(t)) ∈ R (4.28)

belongs to Convr,ξ[0, T]whenever x ∈ Convr,ξ[0, T].

(C′
5) v : [0, T] × [0, T] ×R → R is a continuous function such that the function v(·, s, x) :

[0, T] → R belongs to Convr,ξ[0, T]whenever s ∈ [0, T] and x ∈ [0,∞).

Theorem 4.2. If the conditions (C′
1)–(C

′
3), (C4), (C′

5), and (C6)-(C7) are satisfied, then (1.1) possesses
at least one solution x ∈ Convr,ξ[0, T].

Proof. Consider the operator F, defined onC[0, T], as in the proof of Theorem 4.1. As we have
already seen in the proof of Theorem 4.1 we have Fx ∈ C[0, T] whenever x ∈ C[0, T] and F
is continuous on C[0, T].

Instead of the set Q, considered in the proof of Theorem 4.1, we take now Q to be
the subset of Convr,ξ[0, T] consisting of all functions x such that ‖x‖ ≤ r0. Then Q is a
nonempty bounded closed convex subset of C[0, T]. We claim that F maps Q into itself.
Indeed, according to (4.13) we have ‖Fx‖ ≤ r0 whenever x ∈ C[0, T] satisfies ‖x‖ ≤ r0. On
the other hand, Fx admits the representation (4.14), where xu, xv : [0, T] → R are defined by
(4.15). Given any p ∈ {−1, 0, . . . , r}, note that

ξp = ξk−1ξp−k for each k ∈ {
0, 1, . . . , p + 1

}
, (4.29)

whence

(
Δp+1

h

(
ξpFx

))
(t) =

(
Δp+1

h

(
ξpa

))
(t) +

p+1∑
k=0

(
p + 1

k

)(
Δk

h(ξk−1xv)
)
(t)

(
Δp+1−k

h

(
ξp−kxu

))
(t + kh)

(4.30)

for every t ∈ [0, T] such that t + ph ∈ [0, T]. By proceeding as in the proof of Theorem 4.1 one
can show that

(
Δp+1

h

(
ξpFx

))
(t) ≥ 0 whenever t ∈ [0, T] satisfies t + ph ∈ [0, T]. (4.31)

Therefore Fx ∈ Convr,ξ[0, T].
The rest of the proof is similar to the corresponding part in the proof of Theorem 4.1

and we omit it.
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5. An Application

As an application of the results established in the previous section, in what follows we study
the solvability of the integral equation

x(t) = 1 + λxn(t)
∫1

0

1
t + s + 1

x(s)ds, t ∈ [0, 1], (5.1)

in which n is a given positive integer and λ is a positive real parameter. Note that (5.1) is
similar to the Chandrasekhar equation, arising in the theory of radiative transfer (see, e.g.,
Chandrasekhar [15] or Banaś et al. [16], and the references therein).

We are going to prove that if 0 < λ < 1/n(1 + 1/n)n+1, then (5.1) possesses at least
one continuous nonnegative solution, which is nonincreasing and convex. To this end, we
apply Theorem 4.2 for r := 1 and ξ := (1,−1, 1). Take T := 1, a(t) ≡ 1, u(t, x) := xn and
v(t, s, x) := λ/(t + s + 1)x. It is immediately seen that all the conditions (C′

1)–( C
′
3), (C4), (C′

5),
and (C6) are satisfied if the functions ϕ and ψ are defined by

ϕ
(
x, y

)
:= xn−1 + xn−2y + · · · + xyn−2 + yn−1, ψ(x) := λx, (5.2)

respectively. It remains to show that (C7) is satisfied, too. Taking into account the expressions
of ϕ and ψ, condition (C7) is equivalent to the following statement. If 0 < λ < 1/n(1 + 1/n)n+1,
then there exists an r0 > 0 such that

1 + λrn+10 ≤ r0, nλrn0 < 1. (5.3)

Clearly, such an r0 must satisfy r0 > 1. Let f, g : (1,∞) → R be the functions defined by

f(r) :=
r − 1
rn+1

, g(r) :=
1

nrn
, (5.4)

respectively. Since

f ′(r) =
n + 1 − nr

rn+2
, (5.5)

one can see that f attains a maximum at rn := (n + 1)/n, the maximum value being λn :=
1/n(1 + 1/n)n+1. On the other hand, we have

g(r) − f(r) =
n − r(n − 1)

nrn+1
. (5.6)

If n = 1, then g(r) > f(r) for all r ∈ (0,∞). If n > 1 and 0 < r < n/(n − 1), then
g(r) > f(r), while if n > 1 and r ≥ n/(n − 1), then g(r) ≤ f(r). Note that 0 < rn < n/(n − 1).

Assume now that 0 < λ < λn. Then we can select an r0 sufficiently close to rn such that
λ < f(r0) < g(r0). Obviously, r0 satisfies (5.3).
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