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Received 29 July 2009; Accepted 8 October 2009

Recommended by Marlene Frigon

Recently, Frigon proved that, for weakly contractive maps, the property of having a fixed point is
invariant by a certain class of homotopies, obtaining as a consequence a Leray-Schauder alternative
for this class of maps in a Banach space. We prove here that the Leray-Schauder condition in the
aforementioned result can be replaced by a modification of it, the interior condition. We also show
that our arguments work for a certain class of generalized contractions, thus complementing a
result of Agarwal and O’Regan.
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1. Introduction

Suppose that X is a Banach space, that U ⊂ X is an open bounded subset of X, containing
the origin, and that f : U → X is a mapping. It is well known that if f satisfies the Leray-
Schauder condition defined as

f(x)/=λx, for x ∈ ∂U, λ > 1 (L-S)

and f is a strict set-contraction or, more generally, condensing, then f has a fixed point in U
(see, e.g., [1] or [2]). The first continuation method in the setting of a complete metric space
for contractive maps comes from the hands of Granas [3], in 1994, who gave a homotopy
result for contractive maps (for more information on this topic see, e.g., [4, 5] or [6]).

On the other hand, it has been recently shown in [7] that, for condensing mappings,
the condition (L-S) can be replaced by amodification of it whichwe call the interior condition,
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and is defined as follows: a mapping f : U → X satisfies the Interior Condition (I-C), if there
exists δ > 0 such that

f(x)/=λx, for x ∈ Uδ, λ > 1, f(x)/∈U, (I-C)

where Uδ = {x ∈ U : dist(x, ∂U) < δ} (some generalizations of this result can be found in
[8, 9]).

We remark that the condition (I-C) by itself cannot be a substitute for the condition
(L-S), and an additional assumption on the domain of f needs to be made in order to
guarantee the existence of a fixed point for f . The class of sets that we need is defined
as follows: suppose that U ⊂ X is an open neighborhood of the origin. We say that U is
strictly star shaped if for any x ∈ ∂U we have that {λx : λ > 0} ∩ ∂U = {x}. It was
shown in [7] that if U is bounded and strictly star shaped and f : U → X is a condensing
mapping satisfying the condition (I-C), then f has a fixed point. Of course, this result includes
the case of a contractive map (i.e., a map f for which there exists k ∈ [0, 1) such that
d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ U), but our aim in this note is, following the pattern
of Granas [3] and Frigon et al. [10], to give a continuation method for weakly contractive
mappings, in the setting of a complete metric space, under some conditions on the homotopy
which are the counterpart of the condition (I-C) and the notion of a strictly star shaped set
in a space without a vector structure. Finally, in the last section we show that our arguments
also work for a class of generalized contractions, thus complementing a result of Agarwal
and O’Regan [11].

2. Weakly Contractive Maps

In this chapter we deal with the concept of weakly contractive maps, as it was introduced by
Dugundji and Granas in [12].

Definition 2.1. Let (X, d) be a complete metric space and U an open subset of X. A function
f : U → X is said to be weakly contractive if there exists ψ : X × X → (0,∞) compactly
positive (i.e., inf{ψ(x, y) : a ≤ d(x, y) ≤ b} = θ(a, b) > 0 for every 0 < a ≤ b) such that

d
(
f(x), f

(
y
)) ≤ d

(
x, y

) − ψ
(
x, y

)
. (2.1)

If ψ is a compactly positive function, we define for 0 < a ≤ b

γ(a, b) = min{a, θ(a, b)}. (2.2)

It was shown in [12] that any weakly contractive map f : X → X defined on a
completemetric spaceX has a unique fixed point. Some years later, Frigon [5] proved that, for
weakly contractive maps, the property of having a fixed point is invariant by a certain class of
homotopies, obtaining as a consequence a Leray-Schauder alternative for weakly contractive
maps in the setting of a Banach space. We prove here that the Leray-Schauder condition in
the aforementioned result can be replaced by the condition (I-C), and it will also be obtained
as a consequence of a continuation method. The definition of homotopy that we need for our
purposes is the following.
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Definition 2.2. Let (X, d) be a complete metric space, and U an open subset of X. Let f, g :
U → X be two weakly contractive maps. We say that f is (I-C)-homotopic to g if there exists
H : U × [0, 1] → X with the following properties:

(P1) H(x, 1) = f(x) and H(x, 0) = g(x) for every x ∈ U;

(P2) there exists δ > 0 such that x /=H(x, t) for every x ∈ Uδ, with f(x)/∈U, and t ∈ [0, 1],
where Uδ = {x ∈ U : dist(x, ∂U) < δ};

(P3) there exists a compactly positive function ψ : X × X → (0,∞) such that
d(H(x, t),H(y, t)) ≤ d(x, y) − ψ(x, y) for every x, y ∈ U, and t ∈ [0, 1];

(P4) there exists a continuous function φ : [0, 1] → R such that, for every x ∈ U and
t, s ∈ [0, 1], d(H(x, t),H(x, s)) ≤ |φ(t) − φ(s)|;

(P5) if x ∈ ∂U and 0 ≤ λ < 1, with H(x, λ) ∈ ∂U, then H(x, 1)/∈U.

In the proof of themain result of this chapter we shall make use of the following lemma
(see Frigon [5]).

Lemma 2.3. Let x0 ∈ X, r > 0, and h : B(x0, r) → X weakly contractive. If d(x0, h(x0)) <
γ(r/2, r), then h has a fixed point.

Theorem 2.4. Let f, g : U → X be two weakly contractive maps. Suppose that f is homotopic to g
and g(U) is bounded. If g has a fixed point inU, then f has a fixed point inU.

Proof. We argue by contradiction. Suppose that f does not have any fixed point in U, and let
H be a homotopy between f and g, in the sense of Definition 2.1. Consider the set

A = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ U}, (2.3)

and notice thatA is nonempty since g has a fixed point inU, that is, 0 ∈ A. We will show that
A is both open and closed in [0, 1], and hence, by connectedness, we will have thatA = [0, 1].
As a result, f will have a fixed point in U, which establishes a contradiction.

To show that A is closed, suppose that {λn} is a sequence in A converging to λ ∈ [0, 1]
and let us show that λ ∈ A. Since λn ∈ A, there exists xn ∈ U with xn = H(xn, λn). Fix
ε > 0. Using that g(U) is bounded and that φ is continuous on the compact interval [0, 1],
it is easy to show that there exists M > ε such that diamH(U × [0, 1]) ≤ M, and hence
d(xn, xm) ≤ M for all n,m ∈ N. Define μ = θ(ε,M) and let n0 ∈ N be such that for all
n,m ≥ n0, |φ(λn) − φ(λm)| < μ. Then d(xn, xm) < ε for all n,m ≥ n0 because, otherwise, we
would have d(xn, xm) ≥ ε for some n,m ≥ n0, and then

d(xn, xm) = d(H(xn, λn),H(xm, λm))

≤ d(H(xn, λn),H(xn, λm)) + d(H(xn, λm),H(xm, λm))

≤ ∣∣φ(λn) − φ(λm)
∣∣ + d(xn, xm) − ψ(xn, xm)

< μ + d(xn, xm) − ψ(xn, xm)

≤ d(xn, xm),

(2.4)
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which is a contradiction. Then {xn} is a Cauchy sequence and, since (X, d) is complete, there
exists x0 ∈ U such that xn → x0 as n → ∞. In addition, x0 = H(x0, λ) since for all n ∈ N we
have that

d(xn,H(x0, λ)) = d(H(xn, λn),H(x0, λ))

≤ d(H(xn, λn),H(xn, λ)) + d(H(xn, λ),H(x0, λ))

≤ ∣
∣φ(λn) − φ(λ)

∣
∣ + d(xn, x0) − ψ(xn, x0)

≤ ∣
∣φ(λn) − φ(λ)

∣
∣ + d(xn, x0).

(2.5)

Observe that 0 ≤ λ < 1, because if λ = 1, then x0 = H(x0, 1) = f(x0), which contradicts the fact
that f does not have any fixed point in U. Notice that x0 ∈ U, because, otherwise, we would
have x0 ∈ ∂U, that is, H(x0, λ) ∈ ∂U, and since 0 ≤ λ < 1, by (P5), we have that H(x0, 1)/∈U.
However, since x0 ∈ ∂U, {xn} → x0 and xn ∈ U for all n ∈ N, there exists n0 ∈ N such that
xn ∈ Uδ for all n ≥ n0. Hence, since xn = H(xn, λn) for all n ≥ n0, applying (P2), we have that
f(xn) ∈ U for all n ≥ n0, that is, H(xn, 1) ∈ U for all n ≥ n0. Taking limits, we arrive to the
contradiction H(x0, 1) ∈ U.

Therefore, x0 ∈ U and, consequently, λ ∈ A.
Next we show that A is open in [0, 1]. Let λ0 ∈ A. Then there exists x0 ∈ U with x0 =

H(x0, λ0). Let r > 0 be such that B(x0, r) ⊂ U, and let δ > 0 such that |φ(λ)−φ(λ0)| < γ(r/2, r)
for every λ ∈ [0, 1] with |λ0 − λ| < δ. Then, if λ ∈ (λ0 − δ, λ0 + δ) ∩ [0, 1],

d(x0,H(x0, λ)) = d(H(x0, λ0),H(x0, λ))

≤ ∣∣φ(λ0) − φ(λ)
∣∣

< γ
( r
2
, r
)
.

(2.6)

Using Lemma 2.3, we obtain that H(·, λ) has a fixed point in U for every λ ∈ [0, 1] such that
|λ0−λ| < δ. Thus λ ∈ A for any λ ∈ (λ0−δ, λ0+δ)∩[0, 1], and thereforeA is open in [0, 1].

As an immediate consequence of the previous theorem, we obtain the following fixed
point result of the Leray-Schauder type for weakly contractive maps under the condition
(I-C).

Theorem 2.5. Suppose that U is an open and strictly star shaped subset of a Banach space (X, ‖ · ‖),
with 0 ∈ U, and that f : U → X is a weakly contractive map with f(U) being bounded. If f satisfies
the condition (I-C), then f has a fixed point inU.

Proof. Since f satisfies the condition (I-C), there exists δ > 0 such that f(x)/=λx for λ > 1
and x ∈ Uδ with f(x)/∈U. We may assume that x /= f(x) for every x ∈ Uδ, because otherwise
we are finished. Define H : U × [0, 1] → X as H(x, t) = tf(x), and let g be the zero map.
Notice that g has a fixed point in U, that is, 0 = g(0) and also that f and g are two weakly
contractive mappings. So, the result will follow from Theorem 2.4 once we prove that f is
(I-C)-homotopic to g. Let us check it.
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(P1) For all x ∈ U,H(x, 0) = 0 · f(x) = 0 = g(x) and H(x, 1) = 1 · f(x) = f(x).

(P2) Since f satisfies the condition (I-C), we have that f(x)/=λx for x ∈ Uδ with f(x)/∈U

and λ > 1. Hence, x /=H(x, t) for every x ∈ Uδ, with f(x)/∈U, and t ∈ [0, 1].

(P3) Since f is weakly contractive, there exists a compactly positive function ψ : X×X →
(0,∞) such that d(f(x), f(y)) ≤ d(x, y)−ψ(x, y) for every x, y ∈ U. Then, if x, y ∈ U
and t ∈ [0, 1],

d
(
H(x, t),H

(
y, t

))
= t

∥
∥f(x) − f

(
y
)∥∥

≤ d
(
f(x), f

(
y
))

≤ d
(
x, y

) − ψ
(
x, y

)
.

(2.7)

(P4) Since f(U) is bounded, there exists M ≥ 0 such that ‖f(x)‖ ≤ M for all x ∈ U.
Hence,

d(H(x, t),H(x, s)) =
∥∥f(x)

∥∥|t − s|
≤ M|t − s|
=
∣∣φ(t) − φ(s)

∣∣,
(2.8)

where φ : [0, 1] → R is the continuous function defined as φ(t) = Mt.

(P5) Suppose that for some x ∈ ∂U and λ < 1 we have that H(x, λ) ∈ ∂U. Then, f(x)/= 0
since H(x, λ) = λf(x), 0 ∈ U and U is open. Let us see that H(x, 1)/∈U: suppose,
on the contrary, that H(x, 1) ∈ U, that is, f(x) ∈ U and define

λ̂ := sup
{
t ≥ 1 : tf(x) ∈ U

}
. (2.9)

Then, it is easy to see that λ̂f(x) ∈ ∂U, which contradicts that U is strictly star
shaped, since we also have that λf(x) ∈ ∂U.

3. A Class of Generalized Contractions

A multitude of generalizations and variants of Banach’s contractive condition have been
given after Banach’s theorem (see, e.g., Rhoades [13]) and, recently, Agarwal and O’Regan
[11] have given a homotopy result (thus generalizing a fixed point theorem of Hardy and
Rogers [14]) under the following generalized contractive condition: there exists a ∈ (0, 1)
such that for all x, y ∈ X

d
(
f(x), f

(
y
)) ≤ amax

{
d
(
x, y

)
, d

(
x, f(x)

)
, d

(
y, f

(
y
))
,
1
2
[
d
(
x, f

(
y
))

+ d
(
y, f(x)

)]
}
. (3.1)
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In this section we give a homotopy result for this class of mappings under the
condition (I-C). In the proof of our theorem we shall use the following result [11].

Lemma 3.1. Let (X, d) be a complete metric space, x0 ∈ X, r > 0, and h : B(x0, r) → X. Suppose
that there exists a ∈ (0, 1) such that for x, y ∈ B(x0, r) one has

d
(
h(x), h

(
y
)) ≤ amax

{
d
(
x, y

)
, d(x, h(x)), d

(
y, h

(
y
))
,
1
2
[
d
(
x, h

(
y
))

+ d
(
y, h(x)

)]
}
,

d(x0, h(x0)) < (1 − a)r.

(3.2)

Then there exists x ∈ B(x0, r) with x = h(x).

The proof of the following theorem is very similar to the proof of Theorem 2.4, and we
give a sketch of it.

Theorem 3.2. Let (X, d) be a complete metric space, and U an open subset of X. Let f, g : U → X

be two maps such that there existsH : U × [0, 1] → X with the following properties:

(P1) H(x, 1) = f(x) and H(x, 0) = g(x) for every x ∈ U;

(P2) there exists δ > 0 such that x /=H(x, t) for every x ∈ Uδ, with f(x)/∈U, and t ∈ [0, 1],
whereUδ = {x ∈ U : dist(x, ∂U) < δ};

(P3) there exists a ∈ (0, 1) such that for all x, y ∈ U and λ ∈ [0, 1] one has

d
(
H(x, λ),H

(
y, λ

))

≤ amax
{
d
(
x, y

)
, d(x,H(x, λ)), d

(
y,H

(
y, λ

))
,
1
2
[
d
(
x,H

(
y, λ

))
+ d

(
y,H(x, λ)

)]
}
;
(3.3)

(P4) there exists a continuos function φ : [0, 1] → R such that, for every x ∈ U and t, s ∈ [0, 1],
d(H(x, t),H(x, s)) ≤ |φ(t) − φ(s)|;

(P5) if x ∈ ∂U and 0 ≤ λ < 1, withH(x, λ) ∈ ∂U, thenH(x, 1)/∈U.

If g has a fixed point inU, then f has a fixed point inU.

Proof. Suppose that f does not have any fixed point in U and consider the nonempty set

A = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ U}. (3.4)

We will arrive to a contradiction by showing that A = [0, 1], and for this we only need prove
that A is closed and open in [0, 1].

To show that A is closed in [0, 1], consider a sequence {λn} in A, with λn → λ ∈ [0, 1]
as n → ∞, and show that λ ∈ A; that is, that there exists x0 ∈ U with H(x0, λ) = x0. To prove
that x0 exists, take any sequence {xn} in U with xn = H(xn, λn), prove that {xn} is Cauchy,
and define x0 as the limit of {xn}, as n → ∞.

That {xn} is a Cauchy sequence, as well as x0 = H(x0, λ), follows from standard
arguments which can be seen in [11, Theorem 3.1]. It remains to show that x0 ∈ U.
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To prove this, suppose that it is not true and arrive to a contradiction as follows: we have
that H(x0, λ) = x0 ∈ U \ U = ∂U, and also that 0 ≤ λ < 1, because f does not have any
fixed point inU. Then, by (P5) f(x0)/∈ ∂U. On the other hand, f(x0) = lim f(xn) ∈ U because
f(xn) ∈ U for n large enough. To be convinced of it, just apply (P2): since x0 ∈ ∂U, {xn} → x0

and xn ∈ U for all n ∈ N, there exists n0 ∈ N such that xn ∈ Uδ for all n ≥ n0. Then, f(xn) ∈ U
for all n ≥ n0 since xn = H(xn, λn).

To prove thatA is open argue as in Theorem 2.4, use Lemma 3.1 instead of Lemma 2.3.

As an immediate consequence, we obtain the following result, whose proof is omitted
because it is analogous to the proof of Theorem 2.5.

Theorem 3.3. Suppose that U is an open and strictly star shaped subset of a Banach space (X, ‖ · ‖),
with 0 ∈ U, and that f : U → X is map with f(U) being bounded. Assume also that there exists
a ∈ (0, 1) such that for all x, y ∈ U and λ ∈ [0, 1] one has

d
(
λf(x), λf

(
y
))

≤ amax
{
d
(
x, y

)
, d

(
x, λf(x)

)
, d

(
y, λf

(
y
))
,
1
2
[
d
(
x, λf

(
y
))

+ d
(
y, λf(x)

)]
}
.

(3.5)

If f satisfies the condition (I-C), then f has a fixed point inU.
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[8] C. González, A. Jiménez-Melado, and E. Llorens-Fuster, “A Mönch type fixed point theorem under
the interior condition,” Journal of Mathematical Analysis and Applications, vol. 352, no. 2, pp. 816–821,
2009.



8 Fixed Point Theory and Applications

[9] P. Shaini and N. Singh, “Fixed point theorems for mappings satisfying interior condition,”
International Journal of Mathematical Analysis, vol. 3, no. 1–4, pp. 45–54, 2008.

[10] M. Frigon, A. Granas, and Z. E. A. Guennoun, “Alternative non linéaire pour les applications
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