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1. Introduction

It is well known that the well-posedness is very important for both optimization theory
and numerical methods of optimization problems, which guarantees that, for approximating
solution sequences, there is a subsequence which converges to a solution. The study of
well-posedness originates from Tykhonov [1] in dealing with unconstrained optimization
problems. Levitin and Polyak [2] extended the notion to constrained (scalar) optimization,
allowing minimizing sequences {xn} to be outside of the feasible set X0 and requiring
d(xn,X0) (the distance from xn to X0) to tend to zero. The Levitin and Polyak well-
posedness is generalized in [3, 4] for problems with explicit constraint g(x) ∈ K, where
g is a continuous map between two metric spaces and K is a closed set. For minimizing
sequences {xn}, instead of d(xn,X0), here the distance d(g(xn), K) is required to tend to zero.
This generalization is appropriate for penalty-type methods (e.g., penalty function methods,
augmented Lagrangian methods) with iteration processes terminating when d(g(xn), K) is
small enough (but d(xn,X0)may be large). Recently, the study of generalized Levitin-Polyak
well-posedness was extended to nonconvex vector optimization problems with abstract
and functional constraints (see [5]), variational inequality problems with abstract and
functional constraints (see [6]), generalized variational inequality problemswith abstract and
functional constraints [7], generalized vector variational inequality problems with abstract
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and functional constraints [8], and equilibrium problems with abstract and functional
constraints [9]. Most recently, S. J. Li and M. H. Li [10] introduced and researched two types
of Levitin-Polyak well-posedness of vector equilibrium problems with variable domination
structures. Huang et al. [11] introduced and researched the Levitin-Polyak well-posedness of
vector quasiequilibrium problems. Li et al. [12] introduced and researched the Levitin-Polyak
well-posedness for two types of generalized vector quasiequilibrium problems. However,
there is no study on the generalized Levitin-Polyak well-posedness for vector equilibrium
problems and vector quasiequilibrium problems with explicit constraint g(x) ∈ K.

Motivated and inspired by the above works, in this paper, we introduce two types of
generalized Levitin-Polyak well-posedness of vector equilibrium problems with functional
constraints as well as an abstract set constraint and investigate criteria and characterizations
for these two types of generalized Levitin-Polyak well-posedness. The results in this paper
generalize and extend some known results in literature.

2. Preliminaries

Let (X, dX), (Z, dZ), and Y be locally convex Hausdorff topological vector spaces, where
dX(dZ) is the metric which compatible with the topology of X(Z). Throughout this paper,
we suppose that K ⊂ Z and X1 ⊂ X are nonempty and closed sets, C : X → 2Y is a set-
valued mapping such that for any x ∈ X, C(x) is a pointed, closed, and convex cone in Z
with nonempty interior intC(x), e : X → Y is a continuous vector-valued mapping and
satisfies that for any x ∈ X, e(x) ∈ intC(x), f : X × X1 → Y and g : X1 → Z are two
vector-valued mappings, and X0 = {x ∈ X1 : g(x) ∈ K}. We consider the following vector
equilibrium problem with variable domination structures, functional constraints, as well as
an abstract set constraint: finding a point x∗ ∈ X0, such that

f
(
x∗, y

)
/∈ − intC(x∗), ∀y ∈ X0. (VEP)

We always assume that X0 /= and g is continuous on X1 and the solution set of (VEP)
is denoted by Ω.

Let (P, d) be a metric space, P1 ⊆ P, and x ∈ P . We denote by d(x, P1) = inf{d(x, p) :
p ∈ P1} the distance function from the point x ∈ P to the set P1.

Definition 2.1. (i) A sequence {xn} ⊂ X1 is called a type I Levitin-Polyak (in short LP)
approximating solution sequence for (VEP) if there exists {εn} ⊂ R1

+ with εn → 0 such that

d(xn,X0) ≤ εn, (2.1)

f
(
xn, y

)
+ εne(xn)/∈ − intC(xn), ∀y ∈ X0. (2.2)

(ii){xn} ⊂ X1 is called type II approximating solution sequence for (VEP) if there exists
{εn} ⊂ R1

+ with εn → 0 and {yn} ⊂ X0 satisfying (2.1), (2.2), and

f
(
xn, yn

) − εne(xn) ∈ −C(xn). (2.3)
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(iii){xn} ⊂ X1 is called a generalized type I approximating solution sequence for (VEP)
if there exists {εn} ⊂ R1

+ with εn → 0 satisfying

d
(
g(xn), K

) ≤ εn (2.4)

and (2.2).
(iv){xn} ⊂ X1 is called a generalized type II approximating solution sequence for

(VEP) if there exists {εn} ⊂ R1
+ with εn → 0 and {yn} ⊂ X0 satisfying (2.2), (2.3), and (2.4).

Definition 2.2. The vector equilibrium problem (VEP) is said to be type I (resp., type II,
generalized type I, generalized type II) LP well-posed if Ω/= ∅ and for any type I (resp., type
II, generalized type I, generalized type II) LP approximating solution sequence {xn} of (VEP),
there exists a subsequence {xnj} of {xn} and x ∈ Ω such that xnj → x.

Remark 2.3. (i) If Y = R and C(x) = R1
+ = {r ∈ R : r ≥ 0} for all x ∈ X, then the type I

(resp., type II, generalized type I, generalized type II) LP well-posedness of (VEP) defined
in Definition 2.2 reduces to the type I (resp., type II, generalized type I, generalized type II)
LP well-posedness of the scalar equilibrium problem with abstract and functional constraints
introduced by Long et al. [9]. Moreover, if X∗ is the topological dual space of X, F : X1 → X∗

is a mapping, 〈F(x), z〉 denotes the value of the functional F(x) at z, and f(x, y) = 〈F(x), y −
x〉 for all x, y ∈ X1, then the type I (resp., type II, generalized type I, generalized type II)
LP well-posedness of (VEP) defined in Definition 2.2 reduces to the type I (resp., type II,
generalized type I, generalized type II) LP well-posedness for the variational inequality with
abstract and functional constraints introduced by Huang et al. [6]. If K = Z, then X1 = X0

and the type I (resp., type II) LP well-posedness of (VEP) defined in Definition 2.2 reduces to
the type I (resp., type II) LP well-posedness of the vector equilibrium problem introduced by
S. J. Li and M. H. Li [10].

(ii) It is clear that any (generalized) type II LP approximating solution sequence of
(VEP) is a (generalized) type I LP approximating solution sequence of (VEP). Thus the
(generalized) type I LP well-posedness of (VEP) implies the (generalized) type II LP well-
posedness of (VEP).

(iii) Each type of LP well-posedness of (VEP) implies that the solution set Ω is
nonempty and compact.

(iv) Let g be a uniformly continuous functions on the set

S(δ0) =
{
x ∈ X1 : d

(
g(x), K

) ≤ δ0
}

(2.5)

for some δ0 > 0. Then generalized type I (resp., type II) LP well-posedness implies type I
(resp., type II) LP well-posedness.

3. Criteria and Characterizations for Generalized LP
Well-Posedness of (VEP)

In this section, we present necessary and/or sufficient conditions for the various types of
(generalized) LP well-posedness of (VEP) defined in Section 2.
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3.1. Criteria and Characterizations without Using Gap Functions

In this subsection, we give some criteria and characterizations for the (generalized) LP well-
posedness of (VEP)without using any gap functions of (VEP).

Nowwe introduce the Kuratowski measure of noncompactness for a nonempty subset
A of X (see [13]) defined by

α(A) = inf

{

ε > 0 : A ⊂
n⋃

i=1

Ai, for every Ai, diamAi < ε

}

, (3.1)

where diamAi is the diameter of Ai defined by

diamAi = sup{d(x1, x2) : x1, x2 ∈ Ai}. (3.2)

Given two nonempty subsets A and B of X, the excess of set A to set B is defined by

e(A,B) = sup{d(a, B) : a ∈ A}, (3.3)

and the Hausdorff distance between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)}. (3.4)

For any ε > 0, four types of approximating solution sets for (VEP) are defined,
respectively, by

T1(ε) := {x ∈ X1 : d(g(x), K) ≤ ε and f(x, y) + εe(x)/∈ − intC(x), for all y ∈ X0},
T2(ε) := {x ∈ X1 : d(x,X0) ≤ ε and f(x, y) + εe(x)/∈ − intC(x), for all y ∈ X0},
T3(ε) := {x ∈ X1 : d(g(x), K) ≤ ε and f(x, y) + εe(x)/∈ − intC(x), for all y ∈ X0 and

f(x, y) − εe(x) ∈ −C(x), for some y ∈ X0},
T4(ε) := {x ∈ X1 : d(x,X0) ≤ ε and f(x, y) + εe(x)/∈ − intC(x), for all y ∈ X0 and

f(x, y) − εe(x) ∈ −C(x), for some y ∈ X0}.

Theorem 3.1. Let X be complete.
(i) (VEP) is generalized type I LP well-posed if and only if the solution setΩ is nonempty and

compact and

e(T1(ε),Ω) −→ 0 as ε −→ 0. (3.5)

(ii) (VEP) is type I LP well-posed if and only if the solution set Ω is nonempty and compact
and

e(T2(ε),Ω) −→ 0 as ε −→ 0. (3.6)

(iii) (VEP) is generalized type II LP well-posed if and only if the solution set Ω is nonempty
and compact and

e(T3(ε),Ω) −→ 0 as ε −→ 0. (3.7)
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(iv) (VEP) is type II LP well-posed if and only if the solution set Ω is nonempty and compact
and

e(T4(ε),Ω) −→ 0 as ε −→ 0. (3.8)

Proof. The proofs of (ii), (iii), and (iv) are similar with that of (i) and they are omitted here.
Let (VEP) be generalized type I LP well-posed. Then Ω is nonempty and compact. Now we
show that (3.5) holds. Suppose to the contrary that there exist l > 0, εn > 0 with εn → 0 and
zn ∈ T1(εn) such that

d(zn,Ω) ≥ l. (3.9)

Since {zn} ⊂ T1(εn)we know that {zn} is generalized type I LP approximating solution
for (VEP). By the generalized type I LP well-posedness of (VEP), there exists a subsequence
{znj} of {zn} converging to some element of Ω. This contradicts (3.9). Hence (3.5) holds.

Conversely, suppose that Ω is nonempty and compact and (3.5) holds. Let {xn} be a
generalized type I LP approximating solution for (VEP). Then there exists a sequence {εn}
with {εn} ⊆ R1

+ and εn → 0 such that

d
(
g(xn), K

) ≤ εn,

f
(
xn, y

)
+ εne(xn)/∈ − intC(xn), ∀y ∈ X0.

(3.10)

Thus, {xn} ⊂ T1(ε). It follows from (3.5) that there exists a sequence {zn} ⊆ Ω such that

d(xn, zn) = d(xn,Ω) ≤ e(T1(ε),Ω) −→ 0. (3.11)

Since Ω is compact, there exists a subsequence {znk} of {zn} converging to x0 ∈ Ω.
And so the corresponding subsequence {xnk} of {xn} converging to x0. Therefore (VEP) is
generalized type I LP well-posed. This completes the proof.

Theorem 3.2. Let X be complete. Assume that

(i) for any y ∈ X1, the vector-valued function x 
→ f(x, y) is continuous;

(ii) the mapping W : X → 2Y defined byW(x) = Y \ − intC(x) is closed.

Then (VEP) is generalized type I LP well-posed if and only if

T1(ε)/= , ∀ε > 0, lim
ε→ 0

α(T1(ε)) = 0. (3.12)

Proof. First we show that for every ε > 0, T1(ε) is closed. In fact, let {xn} ⊂ T1(ε) and xn → x.
Then

d
(
g(xn), K

) ≤ ε,

f
(
xn, y

)
+ εe(xn)/∈ − intC(xn), ∀y ∈ X0.

(3.13)
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From (3.13), we get

d
(
g(x), K

) ≤ ε,

f
(
xn, y

)
+ εe(xn) ∈ W(xn), ∀y ∈ X0.

(3.14)

By assumptions (i), (ii), we have f(x, y) + εe(x)/∈ − intC(x), for all y ∈ X0.Hence x ∈ T1(ε).
Second, we show that

Ω =
⋂

ε>0
T1(ε). (3.15)

It is obvious that

Ω ⊂
⋂

ε>0
T1(ε). (3.16)

Now suppose that εn > 0 with εn → 0 and x∗ ∈ ⋂∞
n=1T1(εn). Then

d
(
g(x∗), K

) ≤ εn, ∀n ∈ N, (3.17)

f
(
x∗, y

)
+ εne(x∗)/∈ − intC(x∗), ∀y ∈ X0. (3.18)

Since K is closed, g is continuous, and (3.17) holds, we have x∗ ∈ X0. By (3.18) and
closedness of W(x∗), we get f(x∗, y) ∈ W(x∗), for all y ∈ X0, that is, x∗ ∈ Ω. Hence (3.15)
holds.

Now we assume that (3.12) holds. Clearly, T1(·) is increasing with ε > 0. By the
Kuratowski theorem (see [14]), we have

H(T1(ε),Ω) −→ 0, as ε −→ 0. (3.19)

Let {xn} be any generalized type I LP approximating solution sequence for (VEP).
Then there exists εn > 0 with εn → 0 such that (3.13) holds. Thus, xn ∈ T1(εn). It follows from
(3.19) that d(xn,Ω) → 0. So there exsist un ∈ Ω, such that

d(xn, un) −→ 0. (3.20)

Since Ω is compact, there exists a subsequence {unj} of {un} and a solution x∗ ∈ Ω
satisfying

unj −→ x∗. (3.21)

From (3.20) and (3.21), we get d(xnj , x
∗) → 0.

Conversely, let (VEP) be generalized type I LP well-posed. Observe that for every
ε > 0,

H(T1(ε),Ω) = max{e(T1(ε),Ω), e(Ω, T1(ε))} = e(T1(ε),Ω). (3.22)
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Hence,

α(T1(ε)) ≤ 2H(T1(ε),Ω) + α(Ω) = 2e(T1(ε),Ω), (3.23)

where α(Ω) = 0 since Ω is compact. From Theorem 3.1(i), we know that e(T1(ε),Ω) → 0 as
ε → 0. It follows from (3.23) that (3.12) holds. This completes the proof.

Similar to Theorem 3.2, we can prove the following result.

Theorem 3.3. Let X be complete. Assume that

(i) for any y ∈ X1, the vector-valued function x 
→ f(x, y) is continuous;

(ii) the mapping W : X → 2Y defined byW(x) = Y \ − intC(x) is closed;

(iii) the set-valued mapping C : X1 → 2Y is closed;

(iv) for any x∗ ∈ Ω, f(x∗, y) ∈ −∂C, for some y ∈ X0. Then (VEP) is generalized type II LP
well-posed if and only if

T3(ε)/= , ∀ε > 0, lim
ε→ 0

α(T3(ε)) = 0. (3.24)

Definition 3.4. (VEP) is said to be generalized type I (resp., generalized type II) well-set if
Ω/= ∅ and for any generalized type I (resp., generalized type II) LP approximating solution
sequence {xn} for (VEP), we have

d(xn,Ω) −→ 0, as n −→ ∞. (3.25)

From the definitions of the generalized LP well-posedness for (VEP) and those of the
generalized well-set for (VEP), we can easily obtain the following proposition.

Proposition 3.5. The relations between generalized LP well-posedness and generalized well set are
(i) (VEP) is generalized type I LP well-posed if and only if (VEP) is generalized type I well-set

and Ω is compact.
(ii) (VEP) is generalized type II LP well-posed if and only if (VEP) is generalized type II

well-set and Ω is compact.

By combining the proof of Theorem 3.3 in [10] and that of Theorem 3.1, we can prove
that the following results show that the relations between the generalized LP well-posedness
for (VEP) and the solution set Ω of (VEP).

Theorem 3.6. Let X be finite dimensional. Assume that

(i) for any y ∈ X1, the vector-valued function x 
→ f(x, y) is continuous;

(ii) the mapping W : X → 2Y defined byW(x) = Y \ − intC(x) is closed;

(iii) there exists ε0 > 0 such that T1(ε0) (resp., T3(ε0)) is bounded.

IfΩ is nonempty, then (VEP) is generalized type I (resp., generalized type II) LP well-
posed.
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Corollary 3.7. Suppose Ω/= . And assume that

(i) for any y ∈ X1 the vector-valued function x 
→ f(x, y) is continuous;

(ii) the mapping W : X → 2Y defined byW(x) = Y \ − intC(x) is closed;

(iii) there exists ε0 > 0 such that T1(ε0) (resp., T3(ε0)) is compact.

IfΩ is nonempty, then (VEP) is generalized type I (resp., generalized type II) LP well-
posed.

3.2. Criteria and Characterizations Using Gap Functions

In this subsection, we give some criteria and characterizations for the (generalized) LP well-
posedness of (VEP) using the gap functions of (VEP) introduced by S. J. Li and M. H. Li
[10].

Chen et al. [15] introduced a nonlinear scalarization function ξe : X × Z → R defined
by

ξe
(
x, y

)
= inf

{
λ ∈ R : y ∈ λe(x) − C(x)

}
. (3.26)

Definition 3.8 ([10]). A mapping g : X → R is said to be a gap function on X0 for (VEP) if

(i) g(x) ≥ 0, for all x ∈ X0;

(ii) g(x∗) = 0 and x∗ ∈ X0 if and only if x∗ ∈ Ω.

S. J. Li and M. H. Li [10] introduced a mapping φ : X → R defined as follows:

φ(x) = sup
y∈X0

{−ξe
(
x, f

(
x, y

))}
. (3.27)

Lemma 3.9 (see [10]). If for any x ∈ X0, f(x, x) ∈ −∂C(x), where ∂C(x) is the topological
boundary of C(x), then the mapping φ defined by (3.27) is a gap function on X0 for (VEP).

Now we consider the following general constrained optimization problems introduced and
researched by Huang and Yang [4]:

(P)minφ(x)

s.t. x ∈ X1, g(x) ∈ K.
(3.28)

We use argminφ and v∗ denote the optimal set and value of (P ), respectively.

The following example illustrates that it is useful to consider sequences that satisfy
d(g(xn), K) → 0 instead of d(xn,X0) → +∞ for (VEP).
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Example 3.10. Let α > 0, X = R1, Z = R1, C(x) = R2
+, and e(x) = (1, 1) for each x ∈ X, K = R1

−,

X1 = R1
+, g(x) =

⎧
⎪⎨

⎪⎩

x, if x ∈ [0, 1],

1
x2

, if x ≥ 1,

f
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
xα − yα,−xα − y − 1

)
, if x ∈ [0, 1], ∀y ∈ X1,

(
1
xα

− 1
yα

,− 1
xα

− y − 1
)
, if x > 1, ∀y ∈ X1,

(−1,−1), if x < 0, ∀y ∈ X1.

(3.29)

Then, it is easy to verify that X0 = {x ∈ X1 : g(x) ∈ K} and (VEP) is equivalent to the
optimization problem (P)with

φ(x) =

⎧
⎪⎨

⎪⎩

−xα, if x ∈ [0, 1],

− 1
xα

, if x ≥ 1.
(3.30)

Huang and Yang [4] showed that xn = (2n)1/α is the unique solution to the following
penalty problem (PPα(n)):

(PPα(n))min
x∈X1

φ(x) + n
[
max

{
0, g(x)

}]α
, n ∈ N, (3.31)

and d(g(xn), K) → 0 and d(xn,X0) → +∞.

Now, we recall the definitions about generalized well-posedness for (P) introduced by
Huang and Yang [4] (or [7]) as follows

Definition 3.11. A sequence {xn} ⊂ X1 is called a generalized type I (resp., generalized type
II) LP approximating solution sequence for (P) if the following (3.32) and (3.33) (resp., (3.32)
and (3.34)) hold:

d
(
g(xn), K

) −→ 0, as n −→ ∞, (3.32)

lim sup
n→∞

φ(xn) ≤ v∗, (3.33)

lim
n→∞

φ(xn) = v∗. (3.34)

Definition 3.12. (P) is said to be generalized type I (resp., generalized type II) LP well-posed
if

(i) argminφ/= ;
(ii) for every generalized type I (resp., generalized type II) LP approximating solution

sequence {xn} for (P), there exists a subsequence {xnj} of {xn} converging to some element
of argminφ.
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The following result shows the equivalent relations between the generalized LP well-
posedness of (VEP) and the generalized LP well-posedness of (P).

Theorem 3.13. Suppose that f(x, x) ∈ −∂C(x), for all x ∈ X0. Then
(i) (VEP) is generalized type I well-posed if and only if (P ) is generalized type I well-posed;
(ii) (VEP) is generalized type II well-posed if and only if (P ) is generalized type II well-posed.

Proof. (i) By Lemma 3.9, we know that φ is a gap function on X0, x ∈ Ω if and only if x ∈
argminφ with v∗ = φ(x) = 0.

Assume that {xn} is any generalized type I LP approximating solution sequence for
(VEP). Then there exists εn > 0 with εn → 0 such that

d
(
g(xn), K

) ≤ εn, (3.35)

f
(
xn, y

)
+ εne(xn)/∈ − intC(xn), ∀y ∈ X0. (3.36)

It follows from (3.35) and (3.36) that

d
(
g(xn), K

) −→ 0, as n −→ ∞, (3.37)

ξe
(
xn, f

(
xn, y

)) ≥ −εn, ∀y ∈ X0. (3.38)

Hence, we obtain

φ(xn) = sup
y∈X0

{−ξe
(
xn, f

(
xn, y

))} ≤ εn. (3.39)

Thus,

lim sup
n→∞

φ(xn) ≤ 0 since εn −→ 0. (3.40)

The above formula and (3.37) imply that {xn} is a generalized type I LP approximating
solution sequence for (P).

Conversely, assume that {xn} is any generalized type I LP approximating solution
sequence for (P). Then d(g(xn), K) → 0 and lim supn→∞ φ(xn) ≤ 0.

Thus, there exists εn > 0 with εn → 0 satisfying (3.35) and

φ(xn) = sup
y∈X0

{−ξe
(
xn, f

(
xn, y

))} ≤ εn. (3.41)

From (3.41), we have

ξe
(
xn, f

(
xn, y

)) ≥ −εn, ∀y ∈ X0. (3.42)
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Equivalently, (3.36) holds. Hence, {xn} is a generalized type I LP approximating solution
sequence for (VEP).

(ii) The proof is similar to (i) and is omitted. This completes the proof.

Now we consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently
small, such that

c(t, s) ≥ 0, ∀t, s, c(0, 0) = 0,

sn −→ 0, tn ≥ 0, c(tn, sn) −→ 0, imply tn −→ 0.
(3.43)

Lemma 3.14 (see [4, Theorem 2.2]). Suppose that f(x, x) ∈ −∂C(x) for any x ∈ X0.
(i) If (P ) is generalized type II LP well-posed, then there exists a function c satisfying (3.43)

such that

∣∣φ(x) − v∗∣∣ ≥ c
(
d
(
x, argminφ

)
, d

(
g(x), K

))
, ∀x ∈ X1. (3.44)

(ii) Assume that argminφ is nonempty and compact, and (3.44) holds for some c satisfying
(3.43). Then (P ) is generalized type II LP well-posed.

The following theorem follows immediately from Lemma 3.14 and Theorem 3.13 with φ(x)
defined by (3.27) and v∗ = 0.

Theorem 3.15. Suppose that f(x, x) ∈ −∂C(x) for any x ∈ X0.
(i) If (VEP) is generalized type II LP well-posed, then there exists a function c satisfying

(3.43) such that

∣∣φ(x)
∣∣ ≥ c

(
d(x,Ω), d

(
g(x), K

))
, ∀x ∈ X1. (3.45)

(ii) Assume that Ω is nonempty and compact, and (3.45) holds for some c satisfying (3.43).
Then (VEP) is generalized type II LP well-posed.

Definition 3.16 (see [4, 7]). (i) Let Z be a topological space and let Z1 ⊂ Z be a nonempty
subset. Suppose that G : Z → R ∪ {+∞} is an extend real-valued function. Then the function
G is said to be level-compact on Z1 if for any s ∈ R1 the subset {z ∈ Z1 : G(z) ≤ s} is compact.

(ii) Let Z be a finite dimensional normed space and Z1 ⊂ Z be nonempty. A function
h : Z → R1 ∪ {+∞} is said to be level-bounded on Z1 if Z1 is bounded or

lim
z∈Z1,‖z‖→+∞

h(z) = +∞. (3.46)

Proposition 3.17. Assume that for any y ∈ X1, the vector-valued function x 
→ f(x, y) is
continuous and the mapping W : X → 2Y defined by W(x) = Y \ − intC(x) is closed, and Ω
is nonempty. Then, (VEP) is generalized type I LP well-posed if one of the following conditions holds:

(i) there exists δ1 > 0 such that S(δ1) is compact, where

S(δ1) =
{
x ∈ X1 : d

(
g(x), K

) ≤ δ1
}
; (3.47)
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(ii) the function φ defined by (3.27) is level-compact on X1;
(iii) X is a finite-dimensional normed space and

lim
x∈X1,‖x‖→+∞

max
{
φ(x), d

(
g(x), K

)}
= +∞; (3.48)

(iv) there exists δ1 > 0 such that φ is level-compact on S(δ1) defined by (3.47).

Proof. Let {xn} ⊆ X1 be a generalized type I LP approximating solution sequence for (VEP).
Then there exists a sequence {εn} ⊆ R1

+ with εn > 0 such that (3.35) and (3.36) hold. From
(3.20), without loss of generality, we assume that {xn} ⊂ S(δ1). Since S(δ1) is compact,
there exists a subsequence {xnj} of {xn} and x0 ∈ S(δ1) such that xnj → x0. This fact
combined with (3.35) yields that x0 ∈ X0. Furthermore, it follows from (3.36) and the
continuity of f with respect to the first argument and the closedness of W that we have
f(x0, y)/∈ − intC(x0), for all y ∈ X0. So x0 ∈ Ω. This implies that (VEP) is generalized type I
LP well-posed.

It is easy to see that condition (ii) implies condition (iv). Now we show that condition
(iii) implies condition (iv). It follows from [10, Proposition 4.2] that the function φ defined
by (3.27) is lower semicontinuous, and thus for any t ∈ R1, the set {x ∈ S(δ1) : φ(x) ≤ t}
is closed. Since X is a finite dimensional space, we need only to show that for any t ∈ R1,
the set {x ∈ S(δ1) : φ(x) ≤ t} is bounded. Suppose to the contrary that there exists t ∈ R1

and {x′
n} ⊂ S(δ1) and φ(x′

n) ≤ t such that ||x′
n|| → +∞. It follows from {x′

n} ⊂ S(δ1) that
d(g(x′

n), K) ≤ δ1 and so

max
{
φ
(
x′
n

)
, d

(
g
(
x′
n

)
, K

)} ≤ max {t, δ1}. (3.49)

Which contradicts with (3.48).
Therefore, we only need to prove that if condition (iv) holds, then (VEP) is generalized

type I LP well-posed. Suppose that condition (iv) holds and {xn} is a generalized type I LP
approximating solution sequence for (VEP). Then there exists {εn} ⊂ R1

+ with εn > 0 such that
(3.35) and (3.36) hold. By (3.35), we can assume without loss of generality that

{xn} ⊂ S(δ1). (3.50)

It follows from (3.36) that ξe(xn, f(xn, y)) ≥ −εn, for all y ∈ X0. Thus,

φ(xn) ≤ εn, ∀n. (3.51)

From (3.51), without loss of generality, we assume that {xn} ⊆ {x ∈ S(δ1) : φ(x) ≤ b} for
some b > 0. Since φ is level-compact on S(δ1), the subset {x ∈ S(δ1) : φ(x) ≤ b} is compact.
It follows that there exists a subsequence {xnj} of {xn} and x ∈ S(δ1) such that xnj → x. This
together with (3.35) yields x ∈ X0. Furthermore by the continuity of f with respect to the first
argument, the closedness of W , and (3.36)we have x0 ∈ Ω. This completes the proof.

Similarly, we can prove Proposition 3.18.
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Proposition 3.18. Assume that for any y ∈ X1, the vector-valued function x 
→ f(x, y) is
continuous and the mapping W : X → 2Y defined by W(x) = Y \ − intC(x) is closed, and Ω
is nonempty. Then, (VEP) is type I LP well-posed if one of the following conditions holds:

(i) there exists δ1 > 0 such that S1(δ1) is compact where

S1(δ1) = {x ∈ X1 : d(x,X0) ≤ δ1}; (3.52)

(ii) the function φ defined by (3.27) is level-compact on X1;
(iii)X is a finite-dimensional normed space and

lim
x∈X1,‖x‖→+∞

max
{
φ(x), d(x,X0)

}
= +∞; (3.53)

(iv) there exists δ1 > 0 such that φ is level-compact on S1(δ1) defined by (3.52).

Proposition 3.19. Assume that X is a finite dimensional space, for any y ∈ X1, the vector-valued
function x 
→ f(x, y) is continuous and the mappingW : X → 2Y defined byW(x) = Y \− intC(x)
is closed, and Ω is nonempty. Suppose that there exists δ1 > 0 such that the function φ(x) defined
by (3.27) is level-bounded on the set S(δ1) defined by (3.47). Then (VEP) is generalized type I LP
well-posed.

Proof. Let {xn} be a generalized type I LP approximating solution sequence for (VEP). Then
there exists {εn}with εn > 0 such that (3.35) and (3.36) hold.

From (3.35), without loss of generality, we assume that {xn} ⊂ S(δ1). Let us show
by contradiction that {xn} is bounded. Otherwise we assume without loss of generality that
||xn|| → +∞. By the level-boundedness of φ, we have

lim
‖x‖→+∞

φ(x) = +∞. (3.54)

It follows from (3.36) and the proof in Proposition 3.17 that (3.51) holds. which
contradicts with (3.54).

Nowwe assumewithout loss of generality that xn → x. Furthermore by the continuity
of f with respect to the first argument, the closedness of W , and (3.36) we have x0 ∈ Ω. This
completes the proof.

Similarly, we can prove the following Proposition 3.20.

Proposition 3.20. Assume that X is a finite dimensional space, for any y ∈ X1, the vector-valued
function x 
→ f(x, y) is continuous and the mappingW : X → 2Y defined byW(x) = Y \− intC(x)
is closed, and Ω is nonempty. Suppose that there exists δ1 > 0 such that the function φ(x) defined by
(3.27) is level-bounded on the set S1(δ1) defined by (3.52). Then (VEP) is type I LP well-posed.

Remark 3.21. Theorem 3.1 generalizes and extends [9, Theorems 3.1–3.6] from scalar-valued
case to vector-valued case. Propositions 3.17–3.20, respectively, generalize and extend [9,
Propositions 4.3, 4.2, 4.5, and 4.4] from scalar-valued case to vector-valued case. Theorems
3.2, 3.3, 3.6, 3.13, and 3.15, Proposition 3.5 and Corollary 3.7, respectively, extend [10,
Theorems 3.1–3.3, 4.1, and 4.2, Proposition 3.1 and Corollary 3.1] from the well-posedness
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of (VEP) to the generalized well-posedness of (VEP). It is easy to see that the results in this
paper generalize and extende the main results in [6] in several aspects.

Remark 3.22. The generalized Levitin-Polyak well-posedness for vectorquasiequilibrium
problems and generalized vector-quasiequilibrium problems with explicit constraint g(x) ∈
K is still an open question and we will do the research in the near future.
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