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1. Introduction

Let X be a real Banach space and let C be a nonempty closed convex subset of X. A self-
mapping T : C → C is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, for all x, y ∈ C.A point
x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T) the set of fixed points of T ; that
is, Fix(T) = {x ∈ C : Tx = x}. It is assumed throughout this paper that T is a nonexpansive
mapping such that Fix(T)/=∅. Construction of fixed points of nonexpansive mappings is an
important subject in the theory of nonexpansive mappings and its applications in a number
of applied areas, in particular, in image recovery and signal processing (see [1–3]). One way
to overcome this difficulty is to use Mann’s iteration method that produces a sequence {xn}
via the recursive sequence manner:

xn+1 = αnxn +
(
1 − αn

)
Txn, n ≥ 0. (1.1)

Reich [4] proved that if X is a uniformly convex Banach space with a Frechét differentiable
norm and if {αn} is chosen such that

∑∞
n=1 αn(1 − αn) = ∞, then the sequence {xn} defined
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by (1.1) converges weakly to a fixed point of T. However, this scheme has only weak
convergence even in a Hilbert space (see [5]). Some attempts to modify Mann’s iteration
method (1.1) so that strong convergence is guaranteed have recently been made.

The following modification of Mann’s iteration method (1.1) in a Hilbert space H is
given by Nakajo and Takahashi [6]:

x0 = x ∈ C,

yn = αnxn +
(
1 − αn

)
Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 = Pcn
⋂
Qn

(
x0
)
,

(1.2)

where PK denotes the metric projection from H onto a closed convex subset K of H. They
proved that if the sequence {αn} is bounded from one, then {xn} defined by (1.2) converges
strongly to PFix(T)(x0). Their argument does not work outside the Hilbert space setting. Also,
at each iteration step, an additional projection is needed to calculate.

Let C be a closed convex subset of a Banach space and T : C → C is a nonexpansive
mapping such that Fix(T)/=∅. Define {xn} in the following way:

x0 = x ∈ X,

yn = αnxn +
(
1 − αn

)
Txn,

xn+1 = βnu +
(
1 − βn

)
yn,

(1.3)

where u ∈ C is an arbitrary (but fixed) element in C, and {αn} and {βn} are two sequences
in (0, 1). It is proved, under certain appropriate assumptions on the sequences {αn} and {βn},
that {xn} defined by (1.3) converges to a fixed point of T (see [7]).

The second modification of Mann’s iteration method (1.1) is an adaption to (1.3) for
finding a zero of anm-accretive operatorA, for which we assume that the zero setA−1(0)/=∅.

The iteration process {xn} is given by

x0 = x ∈ C,

yn = Jrnxn,

xn+1 = βnu +
(
1 − βn

)
yn,

(1.4)

where for each r > 0, Jr = (I + rA)−1 is the resolvent of A. In [7], it is proved, in a uniformly
smooth Banach space and under certain appropriate assumptions on the sequences {αn} and
{rn}, that {xn} defined by (1.4) converges strongly to a zero of A.
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2. Preliminaries

Let X be a real Banach space. Recall that the (normalized) duality map J from X into X∗, the
dual space of X, is given by

J(x) =
{
x∗ ∈ X∗ :

〈
x, x∗〉 = ‖x‖2 = ∥

∥x∗∥∥2}
, x ∈ X. (2.1)

Now, we define Opial’s condition in the sense of doubly sequence.

Definition 2.1. A Banach space X is said to satisfy Opial’s condition if for any sequence {xk,n}
in X, xk,n ⇀ x implies that

lim
k,n→∞

sup
∥
∥xk,n − x

∥
∥ < lim

k,n→∞
sup

∥
∥xk,n − y

∥
∥ ∀y ∈ X with y /=x, (2.2)

where xk,n ⇀ x denotes that {xk,n} converges weakly to x.

We are going to work in uniformly smooth Banach spaces that can be characterized by
duality mappings as follows (see [8] for more details).

Lemma 2.2 (see [8]). A Banach space X is uniformly smooth if and only if the duality map J is
single-valued and norm-to-norm uniformly continuous on bounded sets of X.

Lemma 2.3 (see [8]). In a Banach space X, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, x, y ∈ X, (2.3)

where j(x + y) ∈ J(x + y).

IfC andD are nonempty subsets of a Banach spaceX such thatC is a nonempty closed
convex subset and D ⊂ C, then the map Q : C → D is called a retraction from C onto D
providedQ(x) = x for all x ∈ D. A retractionQ : C → D is sunny [1, 4] providedQ(x+ t(x−
Q(x))) = Q(x) for all x ∈ C and t ≥ 0 whenever x + t(x −Q(x)) ∈ C. A sunny nonexpansive
retraction is a sunny retraction, which is also nonexpansive. A sunny nonexpansive retraction
plays an important role in our argument.

If X is a smooth Banach space, then Q : C → D is a sunny nonexpansive retraction if
and only if there holds the inequality

〈x −Qx, J(y −Qx)〉 ≤ 0 ∀x ∈ C, y ∈ D. (2.4)

Lemma 2.4 (see [9]). Let X be a uniformly smooth Banach space and let T : C → C be a
nonexpansive mapping with a fixed point. For each fixed u ∈ C and every t ∈ (0, 1), the unique
fixed point xt ∈ C of the contraction C 
 x �→ tu + (1 − t)Tx converges strongly as t → 0 to a fixed
point of T . DefineQ : C → Fix(T) byQu = s−limt→ 0xt. Then,Q is the unique sunny nonexpansive
retract from C onto Fix(T); that is, Q satisfies the property

〈u −Qu, J(z −Qu)〉 ≤ 0, ∀u ∈ C, z ∈ Fix(T). (2.5)
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Lemma 2.5 (see [10, 11]). Let {an}∞n=0 be a sequence of nonnegative real numbers satisfying the
property

an+1 ≤
(
1 − γn

)
an + γnσn, n ≥ 0, (2.6)

where {γn}∞n=0 ⊂ (0, 1) and {σn}∞n=0 are such that

(i) limn→∞ γn = 0, and
∑∞

n=0 γn = ∞,

(ii) either limn→∞ sup σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.

Then, {an}∞n=0 converges to zero.

Lemma 2.6 (see [8]). Assume that X has a weakly continuous duality map Jϕ with gauge ϕ. Then,
A is demiclosed in the sense that A is closed in the product space Xw × X, where X is equipped with
the norm topology and Xw with the weak topology. That is, if (xn, yn) ∈ A, xn ⇀ x, yn → y, then
(x, y) ∈ A.

Lemma 2.7 (see [12]). Let X be a Banach space and γ ≥ 2. Then,

(i) X is uniformly convex if and only if, for any positive number r, there is a strictly increasing
continuous function gr : [0,∞) → [0,∞), gr(0) = 0, such that

‖tx + (1 − t)y‖γ ≤ t‖x‖γ + (1 − t)‖y‖γ −Wγ(t)gr(‖x − y‖), (2.7)

where t ∈ [0, 1], x, y ∈ Br := {u ∈ X : ‖u‖ ≤ r}, the closed ball of X centered at the origin
with radius r, and Wγ(t) = tγ(1 − t) + t(1 − t)γ .

(ii) X is γ-uniformly convex if and only if there holds the inequality

‖tx + (1 − t)y‖γ ≤ t‖x‖γ + (1 − t)‖y‖γ − cγWγ(t)‖x − y‖γ , t ∈ [0, 1], x, y ∈ X, (2.8)

where cγ > 0 is a constant.

Lemma 2.8 (see [4]). Let C be a closed convex subset of a uniformly convex Banach space with
a Fréchet differentiable norm, and let (Tn) be a sequence of nonexpansive self mapping of C with a
nonempty common fixed point set F. If x1 ∈ C and xn+1 = Tnxn for n ≥ 1, then limn→∞〈xn, J(f1 −
f2)〉 exists for all f1, f2 ∈ F. In particular, 〈q1 − q2, J(f1 − f2)〉 = 0, where f1, f2 ∈ F and q1, q2 are
weak limit points of {xn}.

Lemma 2.9 (the demiclosedness principle of nonexpansive mappings [13]). Let T be a
nonexpansive selfmapping of a closed convex subset of E of a uniformly convex Banach space. Suppose
that T has a fixed point. Then I − T is demiclosed. This means that

{xn} ⊂ E, xn ⇀ x, (I − T)xn → y =⇒ (I − T)x = y. (2.9)

In 2005, Kim and Xu [7], proved the following theorem.
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Theorem A. Let C be a closed convex subset of a uniformly smooth Banach spaceX, and let T : C →
C be a nonexpansive mapping such that Fix(T)/=∅.Given a point u ∈ C and given sequences {αn}∞n=0
and {βn}∞n=0 in (0, 1), the following conditions are satisfied.

(i) αn → 0, βn → 0,

(ii)
∑∞

n=0 αn = ∞,
∑∞

n=0 βn = ∞,

(iii)
∑∞

n=0 |αn+1 − αn| < ∞,
∑∞

n=0 |βn+1 − βn| < ∞.

Define a sequence {xn}∞n=0 in C by

x0 ∈ C arbitrarily,

yn = αnxn +
(
1 − αn

)
Txn, n ≥ 0,

xn+1 = βnu +
(
1 − βn

)
yn, n ≥ 0.

(2.10)

Then {xn}∞n=0 is strongly converges to a fixed point of T .

Recently, the study of fixed points by doubly Mann iteration process began by Moore
(see [14]). In [15, 16], we introduced the concept of Mann-type doubly sequence iteration
with errors, then we obtained some fixed point theorems for some different classes of
mappings. In this paper, we will continue our study in the doubly sequence setting. We
propose two modifications of the doubly Mann iteration process with errors in uniformly
smooth Banach spaces: one for nonexpansive mappings and the other for the resolvent of
accretive operators. The two modified doubly Mann iterations are proved to have strong
convergence. Also, we append this paper by obtaining weak convergence theorems for
Mann’s doubly sequence iteration with errors in a uniformly convex Banach space by a
Fréchet differentiable norm. Our results in this paper extend, generalize, and improve a lot of
known results (see, e.g., [4, 7, 8, 17]). Our generalizations and improvements are in the use
of doubly sequence settings as well as by adding the error part in the iteration processes.

3. A Fixed Point of Nonexpansive Mappings

In this section, we propose a modification of doubly Mann’s iteration method with errors to
have strong convergence. Modified doubly Mann’s iteration process is a convex combination
of a fixed point in C, and doubly Mann’s iteration process with errors can be defined as

x0,0 = x ∈ C arbitrarily,

yk,n = αnxk,n +
(
1 − αn

)
Txk,n + αnwk,n, k, n ≥ 0,

xk,n+1 = βnu +
(
1 − βn

)
yk,n + βnvk,n, k, n ≥ 0.

(3.1)

The advantage of this modification is that not only strong convergence is guaranteed, but also
computations of iteration processes are not substantially increased.

Now, we will generalize and extend Theorem A by using scheme (3.1).

Theorem 3.1. Let C be a closed convex subset of a uniformly smooth Banach space X and let T :
C → C be a nonexpansive mapping such that Fix(T)/=∅. Given a point u ∈ C and given sequences
{αn}∞n=0 and {βn}∞n=0 in (0, 1), the following conditions are satisfied.
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(i) αn → 0, βn → 0,

(ii)
∑∞

n=0 αn = ∞,
∑∞

n=0 βn = ∞.

Define a sequence {xk,n}∞k,n=0 in C by (3.1). Then, {xk,n}∞k,n=0 converges strongly to a fixed point of T.

Proof. First, we observe that {xk,n}∞k,n=0 is bounded. Indeed, if we take a fixed point p of T
noting that

∥
∥yk,n − p

∥
∥ =

∥
∥αnxk,n +

(
1 − αn

)
Txk,n + αnwk,n − p

∥
∥

≤ αn

∥
∥xk,n − p

∥
∥ +

(
1 − αn

)∥∥Txk,n − p
∥
∥ + αn

∥
∥wk,n

∥
∥

=
∥
∥xk,n − p

∥
∥ + αn

∥
∥wk,n

∥
∥,

(3.2)

we obtain

∥∥xk,n+1 − p
∥∥ =

∥∥βnu +
(
1 − βn

)
yk,n + βnvk,n − p

∥∥

≤ βn‖u − p‖ + (
1 − βn

)∥∥yk,n − p
∥∥ + βn

∥∥vk,n

∥∥

≤ βn‖u − p‖ + (
1 − βn

)(∥∥xk,n − p
∥∥ + αn

∥∥wk,n

∥∥) + βn
∥∥vk,n

∥∥

≤ max
{∥∥xk,n − p

∥∥, ‖u − p‖} + βn
∥∥vk,n

∥∥ +
(
1 − βn

)
αn

∥∥wk,n

∥∥.

(3.3)

Now, an induction yields

∥∥xk,n − p
∥∥ ≤ max

{∥∥x0,0 − p
∥∥, ‖u − p‖,∥∥v0,0

∥∥} k, n ≥ 0. (3.4)

Hence, {xk,n} is bounded, so is {yk,n}. As a result, we obtain by condition (i)

∥∥xk,n+1 − yk,n

∥∥ =
∥∥βnu − βnyk,n + βnvk,n

∥∥

≤ βn
∥∥u − yk,n

∥∥ + βn
∥∥vk,n

∥∥ −→ 0.
(3.5)

We next show that

∥∥xk,n − Txk,n

∥∥ −→ 0. (3.6)

It suffices to show that

∥∥xk,n+1 − xk,n

∥∥ −→ 0. (3.7)

Indeed, if (3.7) holds, in view of (3.5), we obtain

∥∥xk,n − Txk,n

∥∥ ≤ ∥∥xk,n − xk,n+1
∥∥ +

∥∥xk,n+1 − yk,n

∥∥ +
∥∥yk,n − Txk,n

∥∥

≤ ∥∥xk,n − xk,n+1
∥∥ +

∥∥xk,n+1 − yk,n

∥∥ + αn

∥∥xk,n − Txk,n

∥∥ + αn

∥∥wk,n

∥∥ −→ 0.
(3.8)
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Hence, (3.6) holds. In order to prove (3.7), we calculate

xk,n+1 − xk,n =
(
βn − βn−1

)(
u − Txn−1

)
+
(
1 − βn

)
αn

(
xk,n − xk,n−1

)

+
[(
αn − αn−1

)(
1 − βn

) − (
βn − βn−1

)
αn−1

](
xk,n−1 − Txk,n−1

)

+
(
1 − αn

)(
1 − βn

)(
Txk,n − Txk,n−1

)
+
(
1 − βn

)
αnwk,n

+ βnvk,n −
(
1 − βn

)
αn−1wk,n−1 − βn−1vk,n−1.

(3.9)

It follows that

∥
∥xk,n+1 − xk,n

∥
∥ ≤ (

1 − αn

)(
1 − βn

)∥∥Txk,n − Txk,n−1
∥
∥ +

(
1 − βn

)
αn

∥
∥xk,n − xk,n−1

∥
∥

+
∣
∣(αn − αn−1

)(
1 − βn

) − (
βn − βn−1

)
αn−1

∣
∣
∥
∥xk,n−1 − Txk,n−1

∥
∥

+
∣∣βn − βn−1

∣∣∥∥u − Txk,n−1
∥∥ +

(
1 − βn

)
αn

∥∥wk,n

∥∥ + βn
∥∥vk,n

∥∥

− (
1 − βn

)
αn−1

∥∥wk,n−1
∥∥ − βn−1

∥∥vk,n−1
∥∥.

(3.10)

Hence, by assumptions (i)-(ii), we obtain ‖xk,n+1 − xk,n‖ → 0.
Next, we claim that

lim
k,n→∞

sup
〈
u − q, J

(
xk,n − q

)〉 ≤ 0, (3.11)

where q = Q(u) = s − limt→ 0zt with zt being the fixed point of the contraction z → tu + (1 −
t)Tz. In order to prove (3.11), we need some more information on q, which is obtained from
that of zt (cf. [18]). Indeed, zt solves the fixed point equation

zt = tu + (1 − t)Tzt + tv. (3.12)

Thus we have

zt − xk,n = (1 − t)
(
Tzt − xk,n

)
+ t

(
u − xk,n

)
+ tv. (3.13)

We apply Lemma 2.3 to get

∥∥zt − xk,n

∥∥2 ≤ (1 − t)2
∥∥Tzt − xk,n

∥∥2 + 2t
〈
u + v − xk,n, J

(
zt − xk,n

)〉

≤ (
1 − 2t + t2

)∥∥zt − xk,n

∥∥ + an(t) + 2t
〈
u + v − zt, J

(
zt − xk,n

)〉
+ 2t

∥∥zt − xk,n

∥∥2
,

(3.14)

an(t) =
(
2
∥∥zt − xk,n

∥∥ +
∥∥xk,n − Txk,n

∥∥)∥∥xk,n − Txk,n

∥∥ −→ 0 as n −→ ∞. (3.15)

It follows that

〈
zt − u, J

(
zt − xk,n

)〉 ≤ t

2
∥∥zt − xk,n

∥∥2 +
1
2t
an(t). (3.16)
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Letting n → ∞ in (3.16) and noting (3.15) yield

lim
n→∞

sup
〈
zt − u, J

(
zt − xk,n

)〉 ≤ t

2
M, (3.17)

where M > 0 is a constant such that M ≥ ‖zt − xk,n‖2 for all t ∈ (0, 1) and n ≥ 1. Since the set
{zt −xk,n} is bounded, the duality map J is norm-to-norm uniformly continuous on bounded
sets of X (Lemma 2.2), and zt strongly converges to q. By letting t → 0 in (3.17), thus (3.11)
is therefore proved. Finally, we show that xk,n → q strongly and this concludes the proof.
Indeed, using Lemma 2.3 again, we obtain

∥
∥xk,n+1 − q

∥
∥2 =

∥
∥(1 − βn

)
yk,n + βnu + βnvk,n − q

∥
∥2

=
∥
∥(1 − βn

)(
yk,n − q

)
+ βn(u − q) + βnvk,n

∥
∥2

≤ (
1 − βn

)2∥∥yk,n − q
∥∥2 + 2βn

〈
u + vk,n − q, J

(
xk,n+1 − q

)〉

≤ (
1 − βn

)2{(∥∥xk,n − q
∥∥ + αn

∥∥wk,n

∥∥)2} + 2βn
〈
u + vn − q, J

(
xk,n+1 − q

)〉
.

(3.18)

Now we apply Lemma 2.5, and using (3.11)we obtain that ‖xk,n − q‖ → 0.

We support our results by giving the following examples.

Example 3.2. Let T : [0, 1] × [0, 1] → [0, 1] × [0, 1] be given by Tx = x. Then, the modified
doubly Mann’s iteration process with errors converges to the fixed point x∗ = (0, 0), and both
Picard and Mann iteration processes converge to the same point too.

Proof. (I) Doubly Picards iteration converges.
For every point in (0, 1] × (0, 1] is a fixed point of T. Let b0,0 be a point in (0, 1] × (0, 1],

then

bk+1,k+1 = Tbk,k = Tnb0,0 = b0,0. (3.19)

Hence,

lim
k→∞

bk,k = b0,0. (3.20)

Let (x, y) − (a, b) = (|x − a|, |y − b|), for all (x, y), (a, b) ∈ (0, 1] × (0, 1]. Take p0,0 = (0, 0) and
pk,k = (1/k, 1/k). Thus

δk,k = pk+1,k+1 − Tpk,k =
(

1
k(k + 1)

,
1

k(k + 1)

)
−→ (0, 0). (3.21)

(II) Doubly Mann’s iteration converges.
Let e0,0 be a point in (0, 1] × (0, 1], then

ek+1,k+1 =
(
1 − αk

)
ek,k + αkek,k = ek,k = · · · = e0,0. (3.22)
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Since doubly Mann’s iteration is defined by

ek+1,k+1 =
(
1 − αk

)
ek,k + αkTek,k. (3.23)

Take u0,0 = e0,0, uk,k = (1/(k + 1), 1/(k + 1)) to obtain

εk,k = uk+1,k+1 −
(
1 − αk

)
uk,k + αkTuk,k

=
(

1
(k + 1)(k + 2)

,
1

(k + 1)(k + 2)

)
−→ (0, 0).

(3.24)

(III) Modified doubly Mann’s iteration process with errors converges because the
sequence ek,k+1 → (0, 0) as we can see and by using (3.1), we obtain

yk,k = αkek,k +
(
1 − αk

)
ek,k + αkwk,k

= ek,k + αkwk,k.
(3.25)

In (3.1), we suppose that u = ek,k,

ek,k+1 = βku +
(
1 − βk

)(
ek,k + αkwk,k

)
+ βkνk,k

= ek,k +
(
1 − βk

)
αkwk,k + βkνk,k,

ek,k+1 − ek,k =
(
1 − βk

)
αkwk,k + βkνk,k.

(3.26)

Let k → ∞ and using Theorem 3.1 (T is nonexpansive),we obtain ek,k+1 − ek,k = (0, 0).

Example 3.3. Let T : [0,∞) × [0,∞) → [0,∞) × [0,∞) be given by Tx = x/4. Then the doubly
Mann’s iteration converges to the fixed point of x∗ = (0, 0) but modified doubly Mann’s
iteration process with errors does not converge.

Proof. (I) Doubly Mann’s iteration converges because the sequence ek,k → (0, 0) as we can
see,

ek+1,k+1 =
(
1 − αk

)
ek,k + αk

ek,k
4

=
(
1 − 3αk

4

)
ek,k

=
n∏

m=1

(
1 − 3αm

4

)
e0,0

≤ exp

(

− 3
4

n∑

k=1

αk

)

−→ (0, 0).

(3.27)

The last inequality is true because 1 − x ≤ exp(−x), for all x ≥ 0 and
∑n

k=1 αk = ∞.
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(II) The origin is the unique fixed point of T.

(III) Note that, modified doubly Mann’s iteration process with errors does not converge
to the fixed point of T, because the sequence ek,k+1 � (0, 0) as we can see and by
using (3.1), we obtain

yk,k = αkek,k +
(
1 − αk

)ek,k
4

+ αkwk,k =
(
1 + 3αk

4

)
ek,k + αkwk,k. (3.28)

Putting u = ek,k,

ek,k+1 = βkek,k +
(
1 − βk

)
((

1 + 3αk

4

)
ek,k + αkwk,k

)
+ βkνk,k. (3.29)

Letting k → ∞,we deduce that ek,k+1 � (0, 0).

4. Convergence to a Zero of Accretive Operator

In this section, we prove a convergence theorem for m-accretive operator in Banach spaces.
Let X be a real Banach space. Recall that, the (possibly multivalued) operatorAwith domain
D(A) and range R(A) in X is accretive if, for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there
exists a j ∈ J(x2 − x1) such that

〈
y2 − y1, j

〉 ≥ 0. (4.1)

An accretive operatorA ism-accretive ifR(I+rA) = X for each r > 0. Throughout this section,
we always assume thatA ism-accretive and has a zero. The set of zeros of A is denoted by F.
Hence,

F = {z ∈ D(A) : 0 ∈ A(z)} = A−1(0). (4.2)

For each r > 0, we denote by Jr the resolvent of A, that is, Jr = (I + rA)−1. Note that if A
is m-accretive, then Jr : X → X is nonexpansive and Fix(Jr) = F for all r > 0. We need the
resolvent identity (see [19, 20] for more information).

Lemma 4.1 ([7] (the resolvent identity)). For λ > 0, μ > 0 and x ∈ X,

Jλx = Jμ

(
μ

λ
x +

(
1 − μ

λ

)
Jλx

)
. (4.3)

Theorem 4.2. Assume that X is a uniformly smooth Banach space, and A is anm-accretive operator
in X such that A−1(0)/=∅. Let {xk,n} be defined by

x0,0 = x ∈ X,

yk,n = Jrnxk,n,

xk,n+1 = αnu +
(
1 − αn

)
yk,n + αnwk,n.

(4.4)
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Suppose {αn} and {rn} satisfy the conditions,

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞,

(ii)
∑∞

n=0 |αn+1 − αn| < ∞,

(iii) rn ≥ ε for some ε > 0 and for all n ≥ 1. Also assume that

∞∑

n=1

∣
∣
∣
∣1 −

rn−1
rn

∣
∣
∣
∣ < ∞. (4.5)

Then, {xk,n} converges strongly to a zero of A.

Proof. First of all we show that {xk,n} is bounded. Take p ∈ F = A−1(0). It follows that

∥∥xk,n+1 − p
∥∥ =

∥∥αnu +
(
1 − αn

)
Jrnxk,n + αnwk,n − p

∥∥

≤ αn‖u − p‖ + (
1 − αn

)∥∥xk,n − p
∥∥ + αn

∥∥wk,n

∥∥.
(4.6)

By induction, we get that

∥∥xk,n − p
∥∥ ≤ max

{∥∥x0,0 − p
∥∥, ‖u − p‖,∥∥w0,0

∥∥} k, n ≥ 0. (4.7)

This implies that {xk,n} is bounded. Then, it follows that

∥∥xk,n+1 − Jrnxk,n

∥∥ −→ 0. (4.8)

A simple calculation shows that

xk,n+1 − xk,n =
(
αn − αn−1

)(
u − yk,n−1

)
+
(
1 − αn

)(
yk,n − yk,n−1

)
+ αnwk,n − αn−1wk,n−1.

(4.9)

The resolvent identity (4.3) implies that

yk,n = Jrn−1

(
rn−1
rn

xk,n +
(
1 − rn−1

rn

)
Jrnxk,n

)
, (4.10)
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which in turn implies that

∥
∥yk,n − yk,n−1

∥
∥ =

∥
∥
∥
∥Jrn−1

(
rn−1
rn

xk,n +
(
1 − rn−1

rn

)
Jrnxk,n

)
− Jrn−1xk,n−1

∥
∥
∥
∥,

=
∥
∥
∥
∥Jrn−1

(
rn−1
rn

xk,n − xk,n−1

)
+
(
1 − rn−1

rn

)
Jrnxk,n

∥
∥
∥
∥

=
∥
∥
∥
∥Jrn−1

(
rn−1
rn

xk,n − xk,n + xk,n − xk,n−1

)
+
(
1 − rn−1

rn

)
Jrnxk,n

∥
∥
∥
∥

=
∥
∥
∥
∥Jrn−1

[(
rn−1
rn

− 1
)
xk,n +

(
xk,n − xk,n−1

)
]
+
(
1 − rn−1

rn

)
Jrnxk,n

∥
∥
∥
∥

=
∥
∥
∥
∥

(
1 − rn−1

rn

)
(
Jrn−1 − xk,n

)
+ Jrn−1

(
xk,n − xk,n−1

)
∥
∥
∥
∥

≤
∣∣∣∣1 −

rn−1
rn

∣∣∣∣
∥∥Jrnxk,n − Jrn−1xk,n

∥∥ +
∥∥Jrn−1xk,n − Jrn−1xk,n−1

∥∥

≤
∣∣∣∣1 −

rn−1
rn

∣∣∣∣
∥∥Jrnxk,n − Jrn−1xk,n

∥∥ +
∥∥xk,n − xk,n−1

∥∥.

(4.11)

Combining (4.9) and (4.11), we obtain

∥∥xk,n+1 − xk,n

∥∥ ≤ (
1 − αn

)∥∥xk,n − xk,n−1
∥∥ +M

(∣∣αn − αn−1
∣∣ +

∣∣∣∣1 −
rn−1
rn

∣∣∣∣

)

+ αn

∥∥wk,n

∥∥ + αn−1
∥∥wk,n−1

∥∥,

(4.12)

where M is a constant such that M ≥ max{‖u − yk,n‖, ‖Jrxk,n − xk,n‖} for all n ≥ 0 and r > 0.
By assumptions (i)–(iii) in the theorem, we have that limn→∞ αn = 0,

∑∞
n=0 αn = ∞, and

(|αn − αn−1| + |1 − rn−1/rn|) < ∞. Hence, Lemma 2.5 is applicable to (4.12), and we conclude
that ‖xk,n+1 − xk,n‖ → 0.

Take a fixed number r such that ε > r > 0. Again from the resolvent identity (4.3), we
find

∥∥Jrnxk,n − Jrxk,n

∥∥ =
∥∥∥∥Jr

(
r

rn
xk,n +

(
1 − r

rn

)
Jrnxk,n

)
− Jrxk,n

∥∥∥∥

≤
(
1 − r

rn

)∥∥xk,n − Jrnxk,n

∥∥

≤ ∥∥xk,n − xk,n+1
∥∥ +

∥∥xk,n+1 − Jrnxk,n

∥∥ −→ 0.

(4.13)

It follows that

∥∥xk,n+1 − Jrxk,n+1
∥∥ ≤ ∥∥xk,n+1 − Jrnxk,n

∥∥ +
∥∥Jrnxk,n − Jrxk,n

∥∥ +
∥∥Jrxk,n − Jrxk,n+1

∥∥

≤ ∥∥xk,n+1 − Jrnxk,n

∥∥ +
∥∥Jrnxk,n − Jrxk,n

∥∥ +
∥∥xk,n − xk,n+1

∥∥.
(4.14)
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Hence,

∥
∥xk,n − Jrxk,n

∥
∥ −→ 0. (4.15)

Since in a uniformly smooth Banach space the sunny nonexpansive retractQ fromX onto the
fixed point set Fix(Jr)(= F = A−1(0)) of Jr is unique, it must be obtained from Reich’s theorem
(Lemma 2.4). Namely,Q(u) = s− limt→ 0 zt, u ∈ X,where t ∈ (0, 1) and zt ∈ X solve the fixed
point equation

zt − xk,n = t
(
u − xk,n

)
+ (1 − t)

(
Jrxt − xk,n

)
. (4.16)

Applying Lemma 2.3, we get

∥∥zt − xk,n+1
∥∥2 = (1 − t)2

∥∥Jrzt − xk,n

∥∥2 + 2t
〈
u − xk,n, J

(
zt − xk,n

)〉

≤ (1 − t)2
∥∥zt − xk,n

∥∥2 + an(t) + 2t
〈
u − zt, J

(
zt − xk,n

)〉
+ 2t

∥∥zt − xk,n

∥∥,
(4.17)

where an(t) = 2‖zt − xk,n‖ · ‖Jrxk,n − xk,n‖ + ‖Jrxk,n − xk,n‖2 → 0 by (4.15). It follows that

〈
zt − u, J

(
zt − xk,n

)〉 ≤ t

2
∥∥zt − xk,n

∥∥2 +
1
2t
an(t). (4.18)

Therefore, letting k, n → ∞ in (4.18), we get

lim
k,n→∞

sup
〈
zt − u, J

(
zt − xk,n

)〉 ≤ t

2
M, (4.19)

where M is a constant such that M ≥ ‖zt − xk,n‖2 for all t ∈ (0, 1) and n ≥ 1. Since zt → Q(u)
strongly and the duality map J is norm-to-norm uniformly continuous on bounded sets ofX,
it follows that (by letting t → 0 in (4.19))

lim
k,n→∞

sup
〈
u −Q(u), J

(
xk,n −Q(u)

)〉 ≤ 0, (4.20)

∥∥xk,n+1 −Q(u)
∥∥2 =

∥∥αn(u −Q(u)) +
(
1 − αn

)(
Jrnxk,n −Q(u)

)∥∥2

≤ (
1 − αn

)2∥∥Jrnxk,n −Q(u)
∥∥2 + 2αn

〈
u −Q(u), J

(
xk,n+1 −Q(u)

)〉

≤ (
1 − αn

)∥∥xk,n −Q(u)
∥∥2 + 2αn

〈
u −Q(u), J

(
xk,n+1 −Q(u)

)〉
.

(4.21)

Now we apply Lemma 2.5 and using (4.20), we obtain that ‖xk,n −Q(u)‖ → 0.
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5. Weakly Convergence Theorems

We next introduce the following iterative scheme. Given an initial x0,0 ∈ C, we define (xk,n)
by

xk,n+1 = αnxk,n +
(
1 − αn

)
Jrnxk,n + αnuk,n, k, n ≥ 0. (5.1)

Theorem 5.1. Let X be a uniformly convex Banach space with a Frechét differentiable norm. Assume
that X has a weakly continuous duality map Jϕ with gauge ϕ. Assume also that

(i) αn → 0,

(ii) rn → ∞.

Then, the scheme (5.1) converges weakly to a point q in F.

Proof. First, we observe that for any p ∈ F, the sequence {‖xk,n − p‖} is nonincreasing.
Indeed, we have by nonexpansivity of Jrn ,

∥∥xk,n − p
∥∥ =

∥∥αnxk,n +
(
1 − αn

)
Jrnxk,n + αnuk,n − p

∥∥

≤ αn

∥∥xk,n − p
∥∥ +

(
1 − αn

)∥∥Jrnxk,n − p
∥∥ + αn

∥∥uk,n

∥∥

=
∥∥xk,n − p

∥∥ + αn

∥∥uk,n

∥∥.

(5.2)

In particular, {xk,n} is bounded, so is {Jrnxk,n}. Let Ww(xk,n) be the set of weak limit point of
the sequence {xk,n}.

Note that we can rewrite the scheme (5.1) in the form

xk,n+1 = Tnxk,n, k, n ≥ 0, (5.3)

where Tn is the nonexpansive mapping given by

Tnx = αnx +
(
1 − αn

)
Jrnx + αnu, x ∈ C. (5.4)

Then, we have F(Tn) = F(Jrn) = F for n ≥ 1. Hence, by Lemma 2.7, we get

〈
q1 − q2, J

(
f1 − f2

)〉
= 0, q1, q2 ∈ Ww

(
xk,n

)
, f1, f2 ∈ F. (5.5)

Therefore, {xk,n} will converge weakly to a point in F if we can show that Ww(xk,n) ⊂ F. To
show this, we take a point v in Ww(xk,n). Then we have a subsequence {xk,ni} of {xk,n} such
that xk,ni ⇀ v. Noting that

∥∥xk,n+1 − Jrnxk,n

∥∥ =
∥∥αnxk,n − αnJrnxk,n + αnuk,n

∥∥

≤ αn

∥∥xk,n − Jrnxk,n

∥∥ + αn

∥∥uk,n

∥∥ −→ 0,
(5.6)
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we obtain

Arni−1xk,ni−1 ⊂ AJrni−1xk,ni−1,

Arni−1xk,ni−1 −→ 0, Jrni−1xk,ni−1 ⇀ v.
(5.7)

By Lemma 2.6, we conclude that 0 ∈ Av, that is, v ∈ F.

Theorem 5.2. Let X be a uniformly convex Banach space which either has a Frechét differentiable
norm or satisfies Opial’s property. Assume for some ε > 0,

(i) ε ≤ αn ≤ 1 − ε for n ≥ 1,

(ii) rn ≥ ε for n ≥ 1.

Then, the scheme (5.1) converges weakly to a point q in F.

Proof. We have shown that limk,n→∞‖xk,n −p‖ exists for all p ∈ F.Applying Lemma 2.7(i), we
have a strictly increasing continuous function g : [0,∞) → [0,∞), g(0) = 0, such that

∥∥xk,n+1 − p
∥∥2 =

∥∥αnxk,n +
(
1 − αn

)
Jrnxk,n + αnuk,n − p

∥∥2

=
∥∥αn

((
xk,n − p

)
+ un

)
+
(
1 − αn

)(
Jrnxk,n − p

)∥∥2

= αn

∥∥xk,n − p
∥∥2 + αn

∥∥uk,n

∥∥2 +
(
1 − αn

)∥∥Jrnxk,n − p
∥∥2

− αn

(
1 − αn

)
g
(∥∥xk,n − Jrnxk,n

∥∥).

(5.8)

This implies that

αn

(
1 − αn

)
g
(∥∥xk,n − Jrnxk,n

∥∥) ≤ ∥∥xk,n − p
∥∥2 − ∥∥xk,n − p

∥∥2
. (5.9)

Since αn(1 − αn) ≥ ε2, we obtain by (5.9) that

∑

k,n

g
(∥∥xk,n − Jrnxk,n

∥∥) < ∞ =⇒ lim
k,n→∞

∥∥xk,n − Jrnxk,n

∥∥ = 0. (5.10)

For any fixed λ ∈ (0, 1), by Lemma 4.1, we have

Jrnxk,n = Jλ

(
λ

rn
xk,n +

(
1 − λ

rn

)
Jrnxk,n

)
. (5.11)

We deduce that

∥∥Jrnxk,n − Jλxk,n

∥∥ ≤
∥∥∥∥

(
λ

rn
xk,n +

(
1 − λ

rn

)
Jrnxk,n

)
− xk,n

∥∥∥∥

=
(
1 − λ

rn

)∥∥xk,n − Jrnxk,n

∥∥

≤ ∥∥xk,n − Jrnxk,n

∥∥ −→ 0 (n −→ ∞).

(5.12)
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Therefore we obtain by (5.9) that

∥
∥xk,n − Jλxk,n

∥
∥ −→ 0 (n −→ ∞), λ ∈ (0, 1). (5.13)

Apply Lemma 2.9 to find out that Ww(xk,n) ⊂ F(Jλ) = F. It remains to show that Ww(xk,n) is
a singleton set. Towards this end, we take p, q ∈ Ww(xk,n) and distinguish the two cases.

In case X has a Frechét differentiable norm, we apply Lemma 2.8 to get

〈p − q, J(p − q)〉 = 0, (5.14)

hence, p = q. In case X satisfies Opial’s condition, we can find two subsequences {xk,ni},
{xk,mj} such that xk,ni ⇀ p, xk,mj ⇀ q. If p /= q, Opial’s property creates the contradiction,

lim
k,n→∞

∥
∥xk,n − p

∥
∥ = lim

k,n→∞

∥
∥xk,ni − p

∥
∥ < lim

k,n→∞

∥
∥xk,ni − q

∥
∥

= lim
k,n→∞

∥∥xk,mj − q
∥∥ < lim

k,n→∞

∥∥xk,nj − p
∥∥

= lim
k,n→∞

∥∥xk,n − p
∥∥.

(5.15)

In either case, we have shown that Ww(xk,n) consists of exact one point, which is clearly the
weak limit of {xk,n}.

Remark 5.3. The schemes (3.1), (4.4), and (5.1) generalize and extend several iteration
processes from literature (see [7, 8, 17, 21–25] and others).
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