Hindawi Publishing Corporation

Fixed Point Theory and Applications
Volume 2009, Article ID 531308, 20 pages
doi:10.1155/2009/531308

Research Article

An Iterative Method for Generalized
Equilibrium Problems, Fixed Point Problems
and Variational Inequality Problems

Qing-you Liu,’ Wei-you Zeng,?> and Nan-jing Huang?

I State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,
Chengdu, Sichuan 610500, China
2 Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Correspondence should be addressed to Nan-jing Huang, nanjinghuang@hotmail.com
Received 11 January 2009; Accepted 28 May 2009
Recommended by Fabio Zanolin

We introduce an iterative scheme by the viscosity approximation method for finding a common
element of the set of solutions of generalized equilibrium problems, the set of common fixed points
of infinitely many nonexpansive mappings, and the set of solutions of the variational inequality
for a-inverse-strongly monotone mappings in Hilbert spaces. We give some strong-convergence
theorems under mild assumptions on parameters. The results presented in this paper improve and
generalize the main result of Yao et al. (2007).

Copyright © 2009 Qing-you Liu et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H andlet ® : C xC — R
be a bifunction, where R is the set of real numbers. Let ¥ : C — H be a nonlinear mapping.
The generalized equilibrium problem (GEP) for ® : CxC — Rand ¥ : C — H is to find
u € C such that

O(u,v) + (Yu,v-u) >0 VYveC. (1.1)

The set of solutions for the problem (1.1) is denoted by €, that is,

Q={ueC:0wu,v)+(¥Yu,v-u)>0,vVoeC}. (1.2)
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If ¥ = 0in (1.1), then GEP(1.1) reduces to the classical equilibrium problem (EP) and
Q is denoted by EP(®), that is,

EP(®) ={ueC:Dd(u,v) >0, Vv e C}. (1.3)

If ® = 0in (1.1), then GEP(1.1) reduces to the classical variational inequality and € is
denoted by VI(¥, C), that is,

VI(¥,C) = {u* € C: (¥u',v—u") >0, Yo € C}. (1.4)

It is well known that GEP(1.1) contains as special cases, for instance, optimization
problems, Nash equilibrium problems, complementarity problems, fixed point problems, and
variational inequalities (see, e.g., [1-6] and the reference therein).

A mapping A : C — H is called a-inverse-strongly monotone [7], if there exists a
positive real number a such that

(Ax - Ay, x - y) > a||Ax - Ay| (1.5)

for all x,y € C. It is obvious that any a-inverse-strongly monotone mapping A is monotone
and Lipschitz continuous. A mapping S : C — C is called nonexpansive if

[Sx = Syll < llx -yl (1.6)

for all x,y € C. We denote by F(S) the set of fixed points of S, thatis, F(S) = {x € C: x =
S(x)}. If C ¢ H is bounded, closed and convex and S is a nonexpansive mappings of C into
itself, then F(S) is nonempty (see [8]).

In 1997, Fldm and Antipin [9] introduced an iterative scheme of finding the best
approximation to initial data when EP(®) is nonempty and proved a strong convergence
theorem. In 2003, Iusem and Sosa [10] presented some iterative algorithms for solving equi-
librium problems in finite-dimensional spaces. They have also established the convergence
of the algorithms. Recently, Huang et al. [11] studied the approximate method for solving
the equilibrium problem and proved the strong convergence theorem for approximating the
solutions of the equilibrium problem.

On the other hand, for finding an element of F(S) N VI(A, C), Takahashi and Toyoda
[12] introduced the following iterative scheme:

Xni1 = apXy + (1= a,)SPc(x, — A\, Ax,), n=0,1,2,..., (1.7)

where xy € C, Pc is metric projection of H onto C, {a,} is a sequence in (0,1) and {\,} is
a sequence in (0, 2a). Further, liduka and Takahashi [13] introduced the following iterative
scheme:

Xn+1 = Al + PuXy + YuSPc(xy — MyAxy), (1.8)

where u, xg € C, and proved the strong convergence theorems for iterative scheme (1.8) under
some conditions on parameters. In 2007, S. Takahashi and W. Takahashi [14] introduced an
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iterative scheme by the viscosity approximation method for finding a common element of
the set of an equilibrium problem and the set of fixed points of a nonexpansive mapping
in Hilbert spaces. They also proved a strong convergence theorem which is connected with
Combettes and Hirstoaga’s result [3] and Wittmann's result [15]. Tada and W. Takahashi
[16] introduced the Mann type iterative algorithm for finding a common element of the set
of solutions of the EP(®) and the set of common fixed points of nonexpansive mapping
and obtained the weak convergence of the Mann type iterative algorithm. Yao et al. [17]
introduced an iteration process for finding a common element of the set of solutions of
the EP(®) and the set of common fixed points of infinitely many nonexpansive mappings
in Hilbert spaces. They proved a strong-convergence theorem under mild assumptions
on parameters. Very recently, Moudafi [18] proposed an iterative algorithm for finding a
common element of QNF(S), where ¥ : C — H is an a-inverse-strongly monotone mapping,
and obtained a weak convergence theorem. There are some related works, we refer to [19-22]
and the references therein.

Inspired and motivated by the works mentioned above, in this paper, we introduce an
iterative process for finding a common element of the set of common fixed points of infinitely
many nonexpansive mappings, the set of solutions of GEP(1.1), and the solution set of the
variational inequality problem for an a-inverse-strongly monotone mapping in real Hilbert
spaces. We give some strong-convergence theorems under mild assumptions on parameters.
The results presented in this paper improve and generalize the main result of Yao et al. [17].

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let C be a closed
convex subset of H. Then, for any x € H, there exists a unique nearest point in C, denoted by
Pc(x), such that

llx = Pe(x)l < llx -yl VYyeC (2.1)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping and satisfies

(Pcx — Pcy,x —y) > ||ch—Pcy||2 (2.2)
for all x, y € H. Furthermore, Pc(x) € C is characterized by the following properties:

(x = Pcx,y —Pcx) <0,

, 5 5 (2.3)
= el + ly - Pex|]* < | x - ]
forall x € H and y € C. It is easy to see that
ueVI(A,C) & u=Pc(u-L\Au), (2.4)

where A > 0 is a parameter in R.
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A set-valued mapping T : H — 2! is called monotone if for all x,y € H, p € T(x) and
g € T(y) imply (x —y,p — q) > 0. A monotone mapping T : H — 2! is maximal if the graph
G(T) of T is not properly contained in the graph of any other monotone mappings. It is known
that a monotone mapping T is maximal if and only if for (x,p) €e Hx H, (x -y,p—q) 2 0
for all (v,q) € G(T) implies p € T(x). Let A: C — H be a monotone, L-Lipschitz continuous
mappings and let Ncu be the normal cone to C atu € C, thatis, Ncu={w e H: (u-v,w) >
0, Vv € C}. Define

Au+Ncu, uecC,
Tu = (2.5)
0, ugC.

Then T is the maximal monotone and 0 € Tu if and only if u € VI(A, C); see [23].
Let {T,},~; be a sequence of nonexpansive mappings of C into itself and let {sr,};; be
a sequence of nonnegative numbers in [0,1]. For any n > 1, define a mapping S, of C into
itself as follows:
un,n+1 =1 ’
un,n = JrnTnun,rHl + (1 - Jrn)I/

un,n—l = Jrn—lTn—lun,n + (1 - ﬂ-n—l)Ir

Uk = miTilbp e + (1 =), (2.6)

U1 = w1 TieeaUp e + (1 = )1,

U, =mThl,s+ (1 -m)l,

Sn = lln,l = yrlTllln,z + (1 - .71'1)1

Such a mapping S, is called the S-mapping generated by T}, Ty,—1, ..., T1 and o, 71, ..., 71
see [24]. It is obvious that S, is nonexpansive and if x = T,,x then x = U, x = S,,x.

Lemma 2.1 (see [24]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tu}seqi be a sequence of nonexpansive mappings of C into itself such that (\,—1F(T,) #0 and let
{714 } 51 be a sequence in (0, 0] for some o € (0,1). Then, for every x € Cand k e N = {1,2,...}, the
limit lim,, _, oo U, kX exists.

Remark 2.2 (see [17]). It can be known from Lemma 2.1 that if D is a nonempty bounded

subset of C, then for € > 0, there exists ny > 1 such that for all n > ny

sup||Uprx — Ukx|| < €. (2.7)

xeD



Fixed Point Theory and Applications 5

Using Lemma 2.1, one can define a mapping S of C into itself as follows:

Sx = lim S,x = lim U,1x (2.8)

n—oo n— oo

for every x € C. Such a mapping S is called the S-mapping generated by Ti,T>,... and
1,90, . ... Since S, is nonexpansive, S : C — C is also nonexpansive. If {x,} is a bounded
sequence in C, then we put D = {x, : n > 0}. Hence, it is clear from Remark 2.2 that for an
arbitrary e > 0 there exists Ny € N such that for all n > Ny

1Snxn = Sxpll = U0 — Urxy|| < supl|Uyix = Upx|| < e. (2.9)
xeD
This implies that
lim ||S,x,, — Sx,| = 0. (2.10)

Since T; and U,,; are nonexpansive, we deduce that, for each n > 1,

1Sns12n = Suxall = |1 TiU i1 220 — 1 T1U 0% ||
<y [[U i1 ,200 = Up a0l
= || ToU ps1 3% — 702 ToU 34 ||
< || U s 3% — Up 3%l

(2.11)

n
< Hﬁillunﬂ,nﬂxn = U 1|
i=1

< Mﬁﬂ'i
i=1

for some constant M > 0.

Lemma 2.3 (see [24]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tu}eq be a sequence of nonexpansive mappings of C into itself such that (\,—1F(T,) #0, and let
(o1, Yoy be a sequence in (0, o] for some o € (0,1). Then, F(S) = ;1 F(Ty).

For solving the generalized equilibrium problem, we assume that the bifunction @ :
C x C — R satisfies the following conditions:

(al) ®(u,u) =0forall u € C;
(a2) @ is monotone, thatis, ®(u, v) + ®(v,u) <0 forall u,v € C;
(a3) for each u,v,w € C, lim;;p®(tw + (1 - t)u,v) < D(u,v);

(a4) for each u € C, v — ®(u,v) is convex and lower semicontinuous.
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The following lemma appears implicitly in [1].

Lemma 2.4 (see [1]). Let C be a nonempty closed convex subset of H, and let ® be a bifunction from

C x Cinto R satisfying (a1)—(a4). Let r > 0 and x € H. Then, there exists u € C such that

CD(u,v)+%<v—u,u—x) >0 VYveC. (2.12)

The following lemma was also given in [3].
Lemma 2.5 (see [3]). Assume that @ : C x C — R satisfies (a1)—(a4). For r > 0, define a mapping
T, : H — C as follows:

Tr(x)={uGC:(D(u,U)+%(U—u,u—x)ZO,VUEC} (2.13)

forall x € H. Then, the following hold:

(b1) T, is single-valued;

(b2) T, is firmly nonexpansive, that is, for any x,y € H, |T,x — T,y|* < (T,x = Ty, x — y);
(b3) F(T,) = EP(D);

(b4) EP(®) is closed and convex.

Remark 2.6. Replacing x with x —7%x € H in (2.12), then there exists u € C such that
1
<D(u,v)+(‘1’x,v—u)+;(v—u,u—x)20 Yo e C. (2.14)

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.7 (see [25]). Let {x,} and {z,} be bounded sequences in Banach space E, and let {p,} be
a sequence in [0,1]. Suppose

Xn+l = (1 - ﬂn)zn + ﬂnxn (2.15)
for all integers n > 1. If

0 <liminf g, <limsup f, <1,
n—oo n—co

(2.16)
limsup([|zn+1 = zull = |21 = xull) <0,

n— oo

then lim,, _, ||z — xn|| = 0.

Lemma 2.8 (see [26]). Assume {a,} is a sequence of nonnegative real numbers such that

a1 < (1-ay)an+6, n21, (2.17)
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where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that
(1) X an =,
(2) limsup, _,_ (6n/ay) <0o0r 372, 16,] < oo.

Then lim,, _, ,a,, = 0.

3. Main Results

In this section, we deal with an iterative scheme by the approximation method for finding
a common element of the set of common fixed points of infinitely many nonexpansive
mappings, the set of solutions of GEP(1.1), and the solution set of the variational inequality
problem for an a-inverse-strongly monotone mapping in real Hilbert spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let @ be a
bifunction from C x C into R satisfying (al)—(a4), ¥ : C — H an inverse-strongly monotone
mapping with constant ¢ > 0, A : C — H an inverse-strongly monotone mapping with constant
0>0, f:C — C acontraction mapping with constant « € [0,1). Let S, : C — C be a S-mapping
generated by T1, Ty, ... and a1, 015, ... and (", F(T,) N Q N VI(A, C) #0, where sequence {T,} is
nonexpansive and {ir,} is a sequence in (0, 0] for some o € (0,1). For x; € C, suppose that {x,},
{yn}, and {u,} are generated by

1
O(uy,v) + (Px,,0—uy) + r—(v — Uy, Uy —x,) >0, YveC,
n

Yn = PC(un - -)LnAun)/ (3.1)

Xn+l = anf(xn) + ﬂnxn + YnSnyn

forall n € N, where {a,}, {fn}, and {y,} are three sequences in [0, 1], {\,} is a sequence in (0, b] for
some 0 < b <2¢and {r,} C (0,d] for some 0 < d < 2¢ satisfying

D) an+Pfu+yn=1
(ii) limy, oty = 0and X774 ay = 00,

)

)
(iii) 0 < liminf, , B, < limsup, B, <1;
(iv) liminf, _ oA, > 0 and lim,, _, |1 — Ay| = 0;
)

(v) iminf, _, o7, > 0 and lim, _, o |rps1 — 7| = 0.

Then {x,}, {y.}, and {u,} converge strongly to the point zy € (\,21F(T,) N QN VI(A,C), where
20 = Pnz=, rrynenvicac) f (20)-

Proof. For any x,y € C and r € (0,2¢), we have
(T = r®)x = (L= r¥)y||* = || (x = ) = (Px = ¥y) ||
= ||x - y||2 -2r{x -y, ¥x - ¥y) +r?||¥x —‘I’y”2
(3.2)
< e =yl + r(r—29) [ wx - wy|*

<llx-yll*,
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which implies that I — r¥ is nonexpansive. Remark 2.6 implies that the sequences {u,} and
{x,} are well defined. In view of the iterative sequence (3.1), we have

0 < DO(uy,v) + (¥x,,v—uy,) + Tl(v — Uy, Uy — Xp)
! (3.3)

1
= ®O(u,,v) + r—(v — Uy, Uy — (X, — 1, ¥xy)).
n

It follows from Lemma 2.5 that u, = T,, (x, — r,¥x,) foralln > 1. Let z* € ;2 F(T,,) N QN
VI(A,C). For each n > 1, we have z* = 5,(z%) =T}, (z* - r,¥z*). By Lemma 2.5,

ity — 2*|* = |IT, (0 — 7a®2x) = T, (2* — 1, ¥2*) |

<{u, -z (x, -1, ¥x,) - (z* -1, ¥z"))

1 . . . (3.4)
= 5 (ltn = 1P + 1 = 10 ¥x,) = (2° = 1, W)
Mt = 2) = (0 = 72 ¥x) = (2" = 12 ¥2)) )
and so (3.2) implies that
1t = 217 < 11w — 1 ¥xn) = (2" = 12 = || (s — 20) — 70 (¥2" = ¥oxy) |
< ot = 21 = [| (= 2n) = 70 (¥2" = ¥ixyy) | (35)

< lxn = 2717

For z* € VI(A,C), we have z* = Pc(z* — A, Az*) from (2.4). Since Pc is a nonexpansive
mapping and A is an inverse-strongly monotone mapping with constant ¢ > 0, by (3.1), we
have
v =2 1” = 1Pc (1t = An Aun) = Pe(=" = 1, A2") |
<l = AnAuy) = (2" = Ay AZ) |
(3.6)
< lln = 212 + A (An = 20) [ Anty — Az"|?

<l = 2"
Thus, (3.5) and (3.6) imply that

lyn — 27| < llun = 2°|| < llxn = 27, (3.7)
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and so
llxn1 — 2" = ”anf(xn) + ﬂnxn + Ynsnyn -z
S anllf(xn) = 271 + Bullen = 2°[l + Yull Snym = 27l
S an(llf (o) = fE+NFE) = 2"M) + Pullxn = 2"l + YullSnyn = Suz"l

< an(allxn = 2°[| + 11 £(z") = 2°Ml) + Bullxn = 2" [ + yullyn — 2"l

(3.8)
< aualley = 21+ 1£(2) = 21) + fullen — =1+ yallea ]
- [ (1= @)l - ]+ a1 - L ELE
< max{ x, - 27, ILEZ,

This implies that {x,} is bounded. Therefore, {u,}, {v,.}, {¥x,}, {Au,}, and {S,y,} are also
bounded.
From u, =T, (x, - r,¥x,) and u,1 =T, (Xn41 — 71 ¥Xp41), we have

1
D (uy,v) + (Px,,v—uy) + T—(v — Uy, Uy —Xy) >0 YoeC(C, (3.9)
n
1
D (uns1,0) + (Pxpi1,0 = Ups1) + oot (V= U1, Uns1 — Xpe1) 20 Yo € C. (3.10)
n+

Putting v = 1,41 in (3.9) and v = u, in (3.10), we get

1
(D(unl un+1) + <1Pxn/ Upi1 — un) + r_<un+1 — U, Up — xn> >0,
n

(3.11)
D (i1, Un) + (Wxni1, Uy — Uni1) + (Un = Ups1, Uns1 — Xps1) 2 0.
n+l
Adding the above two inequalities, the monotonicity of ® implies that
Upi1 — X Uy — X
<1Pxn+1 -Wx,, u, - un+1> + <un — Up+1, il ml _ In n> >0, (3.12)
Tn+1 Tn
and so
T
0< <un = Uns1, Tn(Pxpa1 — Pxn) + ’ nl (Uns1 = Xns1) — (Un — xn)>
n+

Tn Tn
= <un+1_ Up,Up— Ups1+ (1 - >un+1 + (Xn1 = T ¥xpe1) = (X0 = 1 W) = Xpi1 + xn+1>
Tni1 Tn+1
Tn
= Upst — Up, Uy — Uy + (1 - ; (Uns1 = Xps1) + (X1 = 1 ¥ xpi1) = (0 — 1, ¥xp) ).
n+l

(3.13)
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It follows from (3.2) that

r
41 _unllz < s — un||{|1 T t

n+l

and hence

1-In
.

n+1

[ttns1 — un|l < 1 = Xnsll + | X1 = xall-

From (3.1),

||]/n+1 - ]/n” = ||PC(un+1 - )tn+1Aun+1) - PC(un - )LnAun)”
< ||(un+1 = A1 Attyer) — (U — -lnAun)”
< ||(un+1 = A1 Attyer) — (Uy — JlnAunH)” + |1 — )Ln“lAun”

< tpar = tnll + [Ansr = Lall| A |-
Putting
Zn [5 ——f(xn) + ﬁ SnYn,
we have
Xn+1 = ﬂnxn + (1 - ﬂn)zn-

Obviously, we get

Iz =z = | 225 ) + LSy = (725 ) + S0
< oM o) = fOll+ |25 = 2 U Gl
* TSy = Suyl + 1f"[;1+1 e 02
< 1f‘"+;1a||xn+l—xn||+ 1?’;;1 - ﬁ,, I ()

An  Onyl

+
1_ﬂn 1_ﬁm—l

1- pn+1

et = st | + 1 Xnss = xnn},

1Suyall + (1 _ O >||5n+1yn+1 — Syl

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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From (2.11) and (3.16), we have

||Sn+1yn+1 - Snyn“ < ||Sn+1yn+1 - Sn+1yn” + ||Sn+1yn - Snyn”

< \ns1 = yul| + M I
< yner = yall 1;[ (3.20)

n
< e = unll + [Ans1 = Anll| Artn || + MHJTi
i=1

for some constant M > 0. Combining (3.15), (3.19), and (3.20), we deduce

1zns1 = znll = llxns1 = x|
api1(a—1) An+l In
" ||lxpe1 — Xl + - x| + IS
< O Dy =l [ 725 = 2 (U7 Col 1) .

Yn+1 B [Tns1 = 7l
MHTi + A1 = Anl[|Asty || + r—1||un+l = xna|l )

1- ﬂn+1 i=1 n+

It is easy to check that

. Xn+l Oy _ . L o . _ _
nlgrgo - 1 B =0, nlgtgoli:l[m =0, nlgr;ohml | =0, (3.22)
and so
lim sup(||zn+1 — Zall = 1201 — x4l]) <O0. (3.23)
n— oo

Thus, by Lemma 2.7, we obtain lim,,_, o, ||z, — x,|| = 0. It then follows that

nli_I)I;O”an - Xl = _ﬂlgrc}o(l - ﬂn)”zn = x|l =0. (3.24)

By (3.15) and (3.16), we have

O 1yer = yall = 1 1 = ] =0. (325)
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Since Xp+1 = Ay f(Xn) + PuXn + YnSnYn, We get

,ann + Ynsn]/n _ < 1 >
Xn+l — T = Can(Xn) +(1 m (ﬂnxn + Ynsnyn)
S (3.26)
= at|| f () — Puin + YuSuyn ||
1- n
On the other hand, for a, + B, + vy = 1,
nXn + nSn n n
o . 1 —Yan - 1 fan (Xn = Suiyn)- (3.27)
It follows that
nXn + nSn n
YallXn = Suyull = (1 — ) || 00 — [51#
—a,
(3.28)
BuXn + YnSnYn

Xn+l —

>—>0.

It is easy to see that liminf, _, .}, > 0 and hence lim,, -, - ||x,, — S,y = 0.
From (3.5) and (3.6), we obtain

<q —an>(||xn .

1-a,

%041 = 211> < @ || f (x0n) = Z*HZ 4 Bl — 2P + | Sutpn ~ z*||2
< allfGen) = 2°|> + ullxa = 2712 + YLy - =°|
< aty| f (o) = z*||2 + Bullxn — 2°|* + Yfl{”un 2R (o — 20) | Aty — Az*||2}
<l £ Gen) = 2+l = 217 + pka (A = 20) A = A"

(3.29)

Since liminf r,, > 0, without loss of generality, we may assume that there exists a real number
a > 0 such that r,, > a for all n € N. Therefore, we have

¥2a(20 - b) || Au, — AZ*|?
< || £ () = 24P+ 1xn = 2517 = 16man — 2°) (3.30)

2
< an”f(xn) - Z*” + 120 = a1 | (e = 27| + [[2041 = 27|
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Since a, — 0, ||x, — xy41]l — 0 and {x,} is bounded, (3.30) implies that ||Au, — Az*|| — O as

n — oo. From (2.2), we have

Y = 2*11? = |Pc(ttn — AnAusn) — Po(z" = A, AZ")|?
< ((up — MAuy) — (25 = M AZY), yn — 2°)
1
= 5 {10t = dnAuy) = (2" = L AZ)P + ||y - =]
X (3.31)
1t = yn) = Aa(Au = A2}

1 X *
< 5{len ==+ lya = 2|

—(||un — |l = 200 (1t — Y, Atty — AZ") + A2|| Anty - Az*||2> }
and so
Ny = 2° |17 < Mltn = 2412 = [t = Y ||* + 2401t = Y, Aty — AZ*) = A2 || Auty — AZ*|P. (3.32)
It follows that

enst = 2* 1) < @l £ () = 2* 12 + ullx = 2° I + Yl |y — 2°
< | f () = 2* || + Bullxn — 21
+ Yn<||un - z*||2 = |Jun - yn”z + 20, (Uy — Y, Aty — AZ*) — \2|| Auty — Az*||2>

< || £ () = 25|17+ 120 = 217 = Y1t = )

+ 2 Aty = Y, Alty — AZ") — 1, 02| Auy, — AZ¥|
(3.33)

which implies that

Follttn = yaul|* < aal| £ o) = 2° || + 1w = 271 = %01 — 2|

+ 2y A (Uy — Y, Aty — AZ¥)
, (3.34)
< a||f Cen) = 2|7 + 130 = x| (120 = 2°[| + |20 — 2°])

+ zYn/\n“Aun - Az"|||luy - yn”
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Since a, — 0, ||xp —xpa1ll — 0, ||Au, — Az*|| — 0, and the sequences {x,}, {y,} and {u,} are

bounded, it follows from (3.34) that lim,, ., o, [|u,, — ¥,|| = 0. On the other hand, from (3.5), we
have

et = 217 < @l f () = 2717 + Bulln = 2" 1P + yallyn = =°|°
< | f () = 2*|I* + Bullocn = 2° 1P + Yallun — 2°2
< ay||f () = 2°|1* + Bullcn - 2° (3.35)
4y (It = 271 + 7 (= 29) [, - W2 )

< an | f ) = 2" |1* + 1% = 2717 =y (2 = 1) ¥ = 27
The same as in (3.30), we have ||[Wx, - ¥z*|| — 0asn — oo. Likewise, using (3.5), we find

2 2 2 2
21 = 2" 117 < | £ (en) = 2|+ Bullxn = 27117 + yullun - 27|
2
< an"f(xn) - Z*” + ﬁn“xn - Z*llz
(I = 2112 = [l = all” + 21020 = 14, Wty = W2*) = 72| Wac, - W2*|)

2 2
< an||f(xn) = 27||7 + 2w = 2717 + 2¥n7n (2 — thn, Wty — W2*) — yo|14 — x]*-

(3.36)
The same as in (3.34), we have lim,, ., ,||u,, — x| = 0. Since
lxn = Snaxall < 1120 = Suyull + 1Snyn — Suttnll + |Snttn — Snxal|
(3.37)
<lxn = Snyall + lyn — uall + llun — xall,
we get ||x, — Spxy|| = 0asn — oo. From (2.10) and
”Snyn - yn” < ”Snyn = Spxnll + [1Snxn = xall + [l — ]/n”
SSnxn = x| + 2|, - yn” (3.38)

S |Snxn = Xl + z(llxn = Ul + ||un — ]/n”) —0,

we get limy, . [|Syn — ya|| = 0.
Next, we show limsup, _, _ {f(z0)—zo, Xxn—20) < 0, where zg = Pn=, r(1,)nenvi(a,c) f (Z0)-
To show this inequality, we choose a subsequence {y,,} of {y,} such that

lim sup( f(zo) — zo, Syn — 20) = ilirg(f(zo) — 20, SYn, — Z0)- (3.39)

n—oo

Since {yy,} is bounded, there exists a subsequence {yni,} of {y,,} which converges weakly
to z. Without loss of generality, we can assume that y,, — z. From ||Sy, — y,|| — 0, we
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obtain Sy,, — z. We now show that z € ("7 F(T,,) N QN VI(A,C). Indeed, we observe that
u, =T, (x, — 1, ¥x,) and

1
O(uy,v) + (Pxp, v —uy) + r—(v —Up, Uy —xy) >0 YveC. (3.40)
n
From (a2), we deduce that
1
(Wx,,v—uy) + r—(v — Uy, Uy — Xp) > —D(u,,v) = 0(v,uy,), (3.41)
n

and hence

Un

(¥, v —Up,) + <v — Uy, ir_ il > > D(v, uy,). (3.42)

ni

Form lim,, _, oo ||ty — yul| = 0, we get u,, — z. Put z; =tv + (1 —t)zforall t € (0,1] and v € C.
Consequently, we get z; € C. From (3.42), it follows that

Un

= Xq
(Wzt, 2zt —un,) 2 (Wzi, 20 — Up, ) — (X, 20 — Upy) — <Zt — Uy, ’r = > + D(z¢, Uy,)

ni

= (Wzy —Wuy, z¢ — Uy, ) + (Yup, — Yxn, 2t — ty,) (3.43)

Uy, — X,
- <Zt — Up,, lr : > + D(z4, uy,).

ni

From the Lipschitz continuous of ¥ and lim,, _, o, ||t — x| = 0, we obtain |[¥u,, - ¥x,| — 0.
Since ¥ is monotone, we know that (Wz; — Wu,,, z; — uy,,) > 0. Further, (u,, — xp,,) /7, — 0.1t
follows from (a4) that

D(z4,z) < UM D(z4, uy,) < Im (Wzy, 2 — Uy, ) = (Pzy, 21 — 2). (3.44)

Owing to (al) and (a4), we get that

0=D(z, z1) <tD(z4,0) + (1 - 1) D(z4, 2)
<tD(zy,0) + (1 - 1) (Pzy, 2z — 2) (3.45)

S t(D(Zt/ U) + (1 - t)t<q"ztrv - Z>/

and hence

D(z,v) + (1 -t)(¥z,v—2z) >0. (3.46)
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Letting t — 0, we have

d(z,v) + (¥z,v-2z) >0. (3.47)

This implies that z € Q.
Furthermore, we prove that z € F(S) = ;21 F(T,,). Assume z # Sz, since lim,,_, . ||tt,, —
x|l = 0, we have x,,z. From Opial’s theorem [27], we get

liminf||x,, - z|| < liminf||x,, — Sz||
1—00 1— 00
< Hminf([lacs, = Sx[| + [|Sx, — Sz)) (3.48)

< liminf||x,, — z||-.
1— 00

This is a contradiction. Hence, z € F(S) = ;1 F (Ty).
Now, we will show that z € VI(A, C). Let

Tu=

Au+ Ncu, uecC,
(3.49)

0, u is not in C.

Then T is a maximal monotone [23]. Let (1, w) € G(T), since w— Au € N¢(u) and y, € C, we
have (u - y,, w — Au) > 0. From y,, = Pc(u, — A, Au,), we have

(U= Yn,Yn = (tn = \nAutn)) 2 0. (3.50)

This is,

<u . y"; Un 4 Aun> > 0. (3.51)

Therefore, we obtain
(u ~ Ynis w> > (u ~ Ynis Au)

2 <u - ynuA”> - <u = Ynis yni)t_ A + Auni>

- _ _Ym T Un
‘<” Yass At = Attn, = =71 > (3.52)

= (U~ Yn, AU — AYn,) + (U= Yn, AYn, — Alhn,) — <” = Ynis ]/n,-)t_ o >

i

2 <u _yn,-rAyn,- _Auni> - <u = Ynis y"ij\_ i >

i
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Noting that lim,, o ||u, — y»|| = 0 and A is Lipschitz continuous, we obtain

(u-z,w) >0. (3.53)

Since T is maximal monotone, we have z € T~!0 and so z € VI(A, C). Thus, z € N2, F(T,) N
QN VI(A, C). The property of the metric projection implies that

lim sup( f (z0) — 20, Xn — 20) = limsup( f(z0) — 20, SnlYn — 20)

n—oo n—oo

= limsup( f(zo) — zo0, SYn — z0)
n—oo (3.54)

= ilifglO(f(Zo) =20, SYn, — Z0)

= (f(z0) — z0,z — z0) £ 0.
From (3.1) we obtain

%41 = Zol* = (@nf (Xn) + BuXn + YnSulYn — Z0, Xns1 — Z0)
=, (f(xn) = 20, Xps1 = 20) + Pr{Xn — 20, Xn+1 — 20) + Ynu{Sn¥Yn — 20, Xn+1 — Z0)

< an<f(xn) - f(ZO)/xn+1 -2z0) + an<f(20) — Z0, Xn+1 — 20)
1 1 2
4 5B (I = 20l + a1 = z0l?) + 5 ([1Snym = 2o[1” + 11 = 2ol

< (1 = ) (120 = 2ol + [tnen = 20l12) + an{ £ (20) = 20, X1 = Z0)

N~

+ ([ o) = Flzo) |+ s - =ol)

1 1
< 5(1 - ay (1 - az)) s = zol|* + Ellxm — 2o|I* + an{ f (z0) — Zo, X1 — Z0)
(3.55)
which implies that
i = zoll” < (1 - (1- ) )llxn = 20l + 200 ( £ (20) = 20, Xns1 = 20)- (3.56)
Setting
6n = 20, (f (20) — 20, Xps1 — Z0), (3.57)
we have
. On
limsup—————< <0 (3.58)

n—oo “n(l_az) -
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Applying Lemma 2.8 to (3.56), we conclude that {x,} converges strongly to zy. Consequently,
{un} and {y,} converge strongly to zy. This completes the proof. O

As direct consequences of Theorem 3.1, we have the following two corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C — C be
a contraction mapping with Lipschitz constant a € [0,1), and let A : C — H be an inverse-strongly
monotone mapping with constant ¢ > 0. Suppose x1 € C and {x,} generated by

Xn+l = anf(xn) + ﬁnxn + YnPC(xn - )‘nAxn) (359)

foralln € N, where {a,}, {Bn}, {yn} are three sequences in [0,1], {1} is a sequence in (0, b] for some
0 < b < 29 satisfying conditions (i)—(iv). Then {x,} converges strongly to the point x* € VI(A,C),
where x* = Pyyac) f(x*).

Proof. Let ®(u,v) = 0and ¥x = 0forallu,v,x € Cand r, = 1in Theorem 3.1. Then u,, = x,, for
n=1,2,.... Letting T,, = I (the identity mapping) foralln € N, then S, = I forn =1,2,....Itis
easy to see that all conditions of Theorem 3.1 hold. Therefore, we know that the sequence {x; }
generated by (3.59) converges strongly to x* = Pyyca,c) f (x*). This completes the proof. O

Remark 3.3. From Corollary 3.2, we can get an iterative scheme for finding the solution of the
variational inequality involving the a-inverse-strongly monotone mapping A.

Corollary 3.4 (see [17, Theorem 3.5]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let @ be a bifunction from C x C into R satisfying (al)—(a4), f : C — C a contraction
mapping with constant a € [0,1). Let S, : C — C be an S-mapping generated by T1, T, ... and
1,90, . ..and (o4 F(T,) N EP(®) # 0, where sequence {T,} is nonexpansive and {or, } is a sequence
in (0, o] for some o € (0,1). Suppose x1 € C and {x,}, {u,} are generated by

O (uy,,v) + l(v — Uy, Uy —Xxy) 20 VoeC,
Tn (3.60)

Xn+l = ‘an(xn) + ,ann + Ynsnun

foralln € N, where {a,}, {Bn}, {yn} are three sequences in [0,1], and {r,} is a sequence in (0, +oo)
satisfying conditions (i)—(iii) and (v). Then, the sequences {x,} and {u,} converge strongly to the
point x* € (\;21 F(T,) N EP(®), where x* = Pnz, F(r,)nep@) f (X*).

Proof. Let A, =1forn=1,2,...and ¥(x) = 0 and A(x) = 0 for all x € C in Theorem 3.1. Since
u, € C, we get that u,, = Pcu,. It follows from Theorem 3.1 that the sequences {x,} and {u,}
converge strongly to the point x* = Pn=_ r(r,)nEp(@) f (x*). This completes the proof. O

Remark 3.5. The main result of Yao et al. [17, Corollary 3.2] improved and extended the corre-
sponding theorems in Combettes and Hirstoaga [3] and S. Takahashi and W. Takahashi [14].
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Our Theorem 3.1 improves and extends Theorem 3.5 of Yao et al. [17] in the following
aspects:

(1) the equilibrium problem is extended to the generalized equilibrium problem;

(2) our iterative process (3.1) is different from Yao et al. iterative process (3.60) because
there are a project operator and an a-inverse-strongly monotone mapping;

(3) our iterative process (3.1) is more general than Yao et al. iterative process (3.60)
because it can be applied to solving the problem of finding a common element of
the set of solutions of generalized equilibrium problems, the set of common fixed
points of infinitely many nonexpansive mappings, and the set of solutions of the
variational inequality for a-inverse-strongly monotone mapping.
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