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1. Introduction

Although compact surfaces were the setting of Nielsen’s fixed point theory in 1927 [1], until
relatively recently the calculation of the Nielsen number was restricted to maps of very few
surfaces. For surfaces with boundary, such calculations were possible on the annulus and
Möbius band because they have the homotopy type of the circle. In 1987 [2], Kelly used the
commutativity property of the Nielsen number to make calculations for a family of maps
of the disc with two holes. We will discuss Kelly’s technique in more detail below. The
first general algorithm for calculating Nielsen numbers of maps of surfaces with boundary
was published by Wagner in 1999 [3]. It applies to many maps and recent research has
significantly extended the class of such maps whose Nielsen number can be calculated (see
[4–7] and, especially, the survey article [8]). This approachmakes use of the fact that a surface
with boundary has the homotopy type of a wedge of circles. For the calculation of the Nielsen
number, Wagner and her successors employ techniques of combinatorial group theory.

The key properties of surfaces with boundary that are exploited in the Wagner-type
calculations are that they have the homotopy type of a wedge and that they are aspherical
spaces so their selfmaps are classified up to homotopy by the induced homomorphisms
of the fundamental group. The paper [9] studies the fixed point theory of maps of other
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aspherical spaces that have the homotopy type of a wedge, for instance the wedge of a
torus and a circle. The purpose of this paper is to demonstrate that combinatorial group
theory furnishes powerful tools for the calculation of Nielsen numbers, even for maps of
a nonaspherical space. We investigate a setting that is not aspherical and hence fundamental
group information is not sufficient to classify selfmaps up to homotopy. We obtain explicit,
easily calculated formulas for the Nielsen numbers of these maps.

Denote the projective plane by P and the circle by C. This paper is concerned with
maps of finite polyhedra that have the homotopy type of the wedge X = P ∨ C. If the
polyhedron has no local cut points but is not a surface, then the Nielsen number of a map
is the minimum number of fixed points among all the maps homotopic to it [10]. However,
since a map of such a polyhedron has the homotopy type of a map of X and the Nielsen
number is a homotopy type invariant, we will assume that we are concerned only with maps
ofX itself. We identify P and Cwith their images inX and denote their intersection by x0. We
need to consider only selfmaps of X and their homotopies that preserve x0. The fundamental
group of X at x0 is the free product of a group of order two, whose generator we denote by
a, and, choosing an orientation for C, the infinite cyclic group generated by b. To simplify
notation, throughout the paper we denote the fundamental group homomorphism induced
by a map by the same letter as the map because it will be clear from the context whether it
represents the map or the homomorphism. Since all maps from P to C are homotopic to the
constant map, we may assume that fP , the restriction of f : X → X to P , maps P to itself.

The paper is organized as follows. We will describe in the next section a standard form
for the map f in which the fixed point set is minimal on P and on C the fixed point set
consists of x0 together with a fixed point for each appearance of b or b−1 in the fundamental
group element f(b). In Section 3 we calculate the Nielsen numbers N(f) of the maps for
which f(a) = 1 by proving that, in that case, N(f) equals the Nielsen number of a certain
selfmap of C obtained from f and thereforeN(f) is determined by the degree of that map. In
Section 4 we obtain formulas for the Nielsen numbers of almost all maps for which f(a) = a.
The formulas depend on integers obtained from the word f(b) in the fundamental group of
X. However, the nonaspherical nature of X, which makes fundamental group information
insufficient to determine the homotopy class of a map, requires us to find two different
formulas for each word f(b). One formula calculates N(f) in the case that fP is homotopic
to the identity map whereas the other applies when fP belongs to one of the infinite number
of homotopy classes that do not contain the identity map. Section 5 then considers the two
exceptional cases that are not calculated in Section 4. We demonstrate there that even if the
induced fundamental group homomorphisms in these cases vary only slightly from those of
Section 4, their Nielsen numbers can differ by an arbitrarily large amount. Section 6 presents
the proof of a technical lemma from Section 4.

This paper is the fruit of a collaboration made possible by the Research Experiences
for Undergraduates program funded by the U. S. National Science Foundation through its
VIGRE grant to UCLA.

2. The Standard Form of f

Given a map f : (X, x0) → (X, x0) where X = P ∨ C, we write

f(b) = aε1bk1abk2 · · ·abkmaε2 , (2.1)

where εi = 0, 1 and kj /= 0 for all j.
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Let fC : C → X denote the restriction of f to C. By the simplicial approximation
theorem, we may homotope fC to a map with the property that the inverse image of x0 is
a finite union of points and arcs. A further homotopy reduces the inverse image of x0 to
a finite set and we view C as the union of arcs whose endpoints are mapped to x0. We then
homotope the map restricted to each arc, relative to the endpoints, so that it is a loop inX that
is an embedding except at the endpoints and it represents either a, b or b−1. If the restriction
of the map to adjacent arcs corresponds to any of aa, bb−1 or b−1b, we can homotope the map
to a map constant at x0 on both intervals and then shrink the intervals. We will continue to
denote the map by fC : C → X. Starting with x0 = v0 and moving along the circle clockwise
until we come to a point of f−1

C (x0) which we call v1, we denote the arc in C from v0 to
v1 by J1. Continuing in this manner, we obtain arcs J1, . . . , Jn where the endpoints of Jn are
vn and v0. As a final step, we homotope the map so that it is constant at x0 on arcs J0 and
Jn+1 that form a neighborhood of x0 in C. Thus we have constructed a map, still written
fC : C → X, that is constant on J0 and Jn+1 and, otherwise, its restriction to an arc is a loop
representing a, b or b−1 according to the form of f(b) above, in the order of the orientation
of C.

Given a map f : X → X, we may deform f by a homotopy so that fP , its restriction
to P , maps P to itself. We will make use of the constructions of Jiang in [11] to deform f
so that fP has a minimal fixed point set. If f(a) = fP (a) = 1, then fP belongs to one of
two possible homotopy classes and, in both cases, Jiang constructs homotopies of fP to a
map with a single fixed point, which we may take to be x0. Let ˜fP : S2 → S2 denote a lift
of fP to the universal covering space, then the degree of ˜fP is determined up to sign and
we denote its absolute value by d(fP ). If f(a) = fP (a) = a, the homotopy class of fP is
determined by d(fP ), which must be an odd natural number. If fP is a deformation, that is,
it is homotopic to the identity map, then d(fP ) = 1 and Jiang constructs a map homotopic to
fP with a single fixed point, which we again take to be x0. For the remaining cases, where
d(fP ) ≥ 3, the Nielsen number N(fP ) = 2 and Jiang constructs maps homotopic to fP with
two fixed points. We take one of those fixed points to be x0 and denote the other fixed point
by y0.

We also homotope f so that fC, its restriction to C, is in the form described above.
The map thus obtained we call the standard form of f and denote it also by f : X → X. We
note that, for each b in f(b) there is exactly one fixed point of f in C, of index −1, and for
each b−1 in f(b) there is one fixed point, of index 1. The fixed points x0 and y0 are of index
1, see [11]. For the rest of the paper, all maps f : X → X will be assumed to be in standard
form.

Our tools for calculating the Nielsen numbers come from Wagner’s paper [3] which
we will describe in the specific setting of selfmaps ofX. Let xp be a fixed point of f inCwhich
is distinct from x0, then xp lies in an arc corresponding to an element b or b−1 in f(b); we write
xp ∈ b or xp ∈ b−1. We identify this element by writing f(b) = VpbV p or f(b) = Vpb

−1V p. The

Wagner tailsWp,Wp ∈ π1(X, x0) of the fixed point xp are defined byWp = Vp andWp = V
−1
p if

xp ∈ b and byWp = Vpb
−1 and Wp = V

−1
p b if xp ∈ b−1.

We will use the following results of Wagner.

Lemma 2.1 (see [3, Lemma 1.3]). For any fixed point xp of f on C,

f(b) = WpbW
−1
p . (2.2)
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Lemma 2.2 (see [3, Lemma 1.5]). If xp and xq are fixed points of f : X → X on C, then xp and xq

are in the same fixed point class if and only if there exists z ∈ π1(X, x0) such that

z = W−1
p f(z)Wq. (2.3)

Wagner’s Lemma 1.5 concerns the case Y ∨ C where Y is a wedge of circles. However,
the same proof establishes the statement of Lemma 2.2 for X = P ∨ C. When (2.3) holds, we
will say that xp and xq are f-Nielsen equivalent by z or, when the context is clear, more briefly
that xp and xq are equivalent.

3. The f(a) = 1 Case

If Y is an aspherical polyhedron and a map f : Y ∨ C → Y ∨ C induces a homomorphism
of the fundamental group that is trivial on the π1(Y, x0) factor of π1(Y ∨ C, x0), then f is
homotopic to the map fCπ where π : X → C is the retraction sending Y to x0. Therefore,
by the commutativity property of the Nielsen number, N(f) = N(fCπ) = N(πfC). Since
πfC : C → C, its Nielsen number is easily calculated. This is the technique that Kelly used,
with Y = C, in [2] to construct his examples. If Y is not aspherical, then a map f that induces a
homomorphism that is trivial on the π1(Y, x0) factor need not be homotopic to fCπ . However,
when Y = P , we will prove that it is still true that N(f) = N(πfC).

We note that since, in the f(a) = 1 case, all fixed points of f lie inC, then the fixed point
sets of f and of πfC consist of the same points. Moreover, the fixed point index of each fixed
point is the same whether we view it as a fixed point of f or of πfC. We will demonstrate
that the fixed point classes f and of πfC are also the same, and thus the Nielsen numbers are
equal.

SinceC is a circle with fundamental group generated by b, the condition corresponding
to Wagner’s for xp and xq to be in the same fixed point class of πfC : C → C in [3, Lemma
1.5] is that there exist an integer r such that

br = π
(

Wp

)−1
πfC

(

br
)

π
(

Wq

)

. (3.1)

That is, there exists z ∈ π1(X, x0) such that

π(z) = π
(

Wp

)−1
πfC(π(z))π

(

Wq

)

. (3.2)

Although Wagner’s paper [3] assumes reduced form for map and πfC(b) may not be in
reduced form, in fact that condition is not used in the proof of [3, Lemma 1.5] so the existence
of z satisfying (3.2) is still equivalent to the statement that xp and xq are in the same fixed
point class of πfC. Corresponding to the previous terminology, in this case we will say that
xp and xq are πfC-Nielsen equivalent by π(z).

We have

f(b) = aε1bk1abk2 · · ·abkmaε2 , (3.3)
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where εi = 0, 1 and kj /= 0 for all j. Let k be the sum of the kj from 1 to m. Similarly, for an
element z ∈ π1(X, x0), we write

z = aη1b�1ab�2 · · ·ab�naη2 (3.4)

where, as before, ηi = 0, 1 and �j /= 0 for all j. Let � be the sum of all the �j from 1 to n. The
retraction π : X → C induces π : π1(X, x0) → π1(C, x0) such that π(a) = 1 and π(b) = b and
thus π(f(b)) = bk and π(z) = b� . For fixed points xp, xq, define g = W−1

p Wq, then π(g) = bv

for some integer v.

Lemma 3.1. If f(a) = 1, then the following are equivalent:

(1) xp and xq are f-Nielsen equivalent by z,

(2) xp and xq are πfC-Nielsen equivalent by π(z),

(3) � = k� + v.

Proof. (1)⇒(2) If xp and xq are f-Nielsen equivalent by z, there exists z ∈ π1(X, x0) such that

z = W−1
p f(z)Wq (3.5)

so

π(z) = π(Wp)
−1πf(z)π(Wq). (3.6)

Every element of finite order in the fundamental group of X is a conjugate of an element of
finite order in a or in b. Therefore, fP (a) = 1 implies that f(a) = 1 so we have f(z) = fC(π(z))
and thus

π(z) = π
(

Wp

)−1
πfC(π(z))π

(

Wq

)

. (3.7)

As we noted above, (3.7) implies that xp and xq are πfC-Nielsen equivalent by π(z).
(2)⇒(3) If xp and xq are πfC-Nielsen equivalent by π(z), then we have (3.7). Since

π(z) = b� , we see that

b� = π
(

W−1
p f(z)Wq

)

= π
(

Wp

)−1
π
(

f(b))�π
(

Wp

)

π(g)

= π(f(b))�π(g) =
(

bk
)�
bv.

(3.8)

and conclude that � = k� + v.
(3)⇒(1) Suppose that � = k� + v. Since f(a) = 1, then f(g) = f(b)v. If k = 1, it must be

that v = 0. So, if we let z = g, then f(z) = f(g) = f(b)v = 1 and thus

W−1
p f(z)Wq = W−1

p Wq = g = z, (3.9)
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that is, xp and xq are f-Nielsen equivalent by this z. If k /= 1, we define Up = b(Wp)
−1

and,
again using the hypothesis f(a) = 1, we can write f(Up) = f(b)r for some integer r. That
hypothesis also implies that

f(f(b)) = f
(

aε1bk1abk2 · · ·abkmaε2
)

= f(b)k. (3.10)

Now writing f(b) = Wpb(Wp)
−1

= WpUp, we see that

UpWp = Up

(

WpUp

)

U−1
p = Upf(b)U−1

p . (3.11)

If we let z = (UpWp)
�g then, since k� + v = �, we have

f(z) = f
((

UpWp

)�
g
)

= f
((

Upf(b)U−1
p

)�
g
)

= f
(

Upf(b)
�U−1

p g
)

= f(b)r
(

f(b)k
)�
f(b)−rf(b)v

= f(b)k�+v = f(b)� =
(

WpUp

)�
.

(3.12)

Therefore,

W−1
p f(z)Wq = W−1

p

(

WpUp

)�(
Wpg

)

=
(

UpWp

)�
g = z (3.13)

which again means that xp and xq are f-Nielsen equivalent by z.

Since Lemma 3.1 has demonstrated that the fixed point classes of f and of πfC are
identical and the Nielsen number of a map of the circle is determined by its degree, we have

Theorem 3.2. Let π : π1(X, x0) → π1(C, x0) be induced by retraction. If f : X → X is a map such
that f(a) = 1 and π(f(b)) = bk, then

N(f) = N
(

πfC
)

= |1 − deg
(

πfC
)| = |1 − k|. (3.14)

4. The f(a) = a Case

Let f : (X, x0) → (X, x0) be a map, where X = P ∨ C, such that f(a) = a. We will use
Lemma 2.2 to calculate the Nielsen number of most such maps. We write

f(b) = aε1bk1abk2 · · ·abkmaε2 , (4.1)

where εi = 0, 1 and kj /= 0 for all j. Suppose that ε2 = 1. Then there is a map h :
(X, x0) → (X, x0) that induces the homomorphism h(·) = af(·)a, that is, h(a) = a and
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h(b) = aε1+1bk1abk2 · · ·abkm . (2.3) of Lemma 2.2 is satisfied for f if and only if it is satisfied
for h. Thus, we can assume that ε2 = 0 in f(b) and we write

f(b) = aεbk1abk2 · · ·abkm = aεcdc−1, (4.2)

where ε = 0, 1 and either d = a or d is cyclically reduced, which means that dd is a reduced
word. Then, for some integers r and t,

c = bk1abk2 · · · bkrabt, d = bkr+1−ta · · ·abkm−r+t, (4.3)

where tmay be zero. If t /= 0, then either kr+1 = t or km−r = −t. Let r = 0 when c = bt.
Now suppose that fixed points xp and xq are equivalent by

z = aη1b�1ab�2 · · ·ab�naη2 , (4.4)

where ηi = 0, 1 and �j /= 0 for all j. Let L denote the sum of the |�i| from 1 to n and let

R = W−1
p f(z)Wq = W−1

p aη1
(

aεcdc−1
)�1

a · · ·a(aεcdc−1
)�n

aη2Wq (4.5)

be the right-hand side of the (2.3) of Lemma 2.2.
Denote the length of a word w in π1(X, x0) by |w|, where the unit element is of length

zero.

Lemma 4.1. Suppose xp and xq are equivalent fixed points of f . If ε = 0 and d /=a, then Wp = Wq

or Wp = Wq.

Proof. Suppose that ε = 0 and d /=a. Then

R = W−1
p aη1cd�1c−1a · · ·acd�nc−1aη2Wq. (4.6)

Case 1. η1 = 1 and η2 = 1.
Since ε = 0 so that f(b) starts and ends with b or b−1, it follows that one of those

elements ends W−1
p and one of them starts Wq. Since η1 = η2 = 1, we see that R is reduced

(c may be 1) and therefore

|R| = ∣

∣Wp

∣

∣ +
∣

∣Wq

∣

∣ + (n + 1)|a| + 2n|c| + L|d|
> (n + 1) + L (because

∣

∣Wp

∣

∣ +
∣

∣Wq

∣

∣ > 0)

= |z|.
(4.7)

This is a contradiction and thus there is no solution in this case.

Case 2. η1 = 0 and η2 = 1. (η1 = 1 and η2 = 0 is similar.)
If there is no cancellation betweenW−1

p and d�1 , thenwe can see that the solution z does
not exist as in Case 1. Suppose there is a cancellation between W−1

p and d�1 . Suppose �1 < 0
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andwrite d = d1d2 where d−1
2 is the part of d−1 that is cancelled byW−1

p , thenW−1
p = ̂W−1

p d2c
−1.

By Lemma 2.1,

cdc−1 = f(b) = WpbW
−1
p = cd−1

2
̂WpbW

−1
p (4.8)

so d = d1d2 = d−1
2 d0d2, for someword d0, which contradicts the assumption that d is cyclically

reduced. Thus �1 > 0 so we may write z = bz′ and we have

bz′ = W−1
p f

(

bz′
)

Wq

= W−1
p f(b)f

(

z′
)

Wq

= W−1
p

(

WpbW
−1
p

)

f
(

z′
)

Wq (by Lemma 2.1)

= W−1
p

(

WpbW
−1
p

)

cd(�1−1)c−1a · · ·acd�nc−1aWq.

(4.9)

and thus

z′ = W
−1
p cd(�1−1)c−1a · · ·acd�nc−1aWq. (4.10)

We have shown that �1 cannot be negative and, if �1 = 1 then z′ begins with W
−1
p a which

cannot be reduced since ε = 0 implies that W
−1
p ends with either b or b−1. So suppose �1 > 1

and W
−1
p cancels part of d(�1−1). Then W

−1
p must end with c−1 to cancel c and, since W

−1
p is

either V p or b−1V p, further cancellation would cancel parts of dd. But d is cyclically reduced
and therefore we conclude that there is no further cancellation. Thus, as in Case 1, there are
no solutions z′ to this equation.

Case 3. η1 = 0 and η2 = 0.
If n ≥ 2, then an argument similar to that of Case 2 applies. Thus we may assume that

n = 1, which implies that z = b or z = b−1. Suppose that z = b, then

b = W−1
p f(b)Wq = W−1

p (WpbW
−1
p )Wq = bW

−1
p Wq. (4.11)

and soWp = Wq. Similarly, if z = b−1, then Wp = Wq.

Lemma 4.2. Suppose xp and xq are equivalent fixed points of f . If ε = 1 and d /=a, then Wp = Wq

or Wp = Wq.

The proof of Lemma 4.2 is similar to that of Lemma 4.1, but it requires the analysis of
a greater number of cases, so we postpone it to Section 6.

Suppose xp, xq are fixed points of f with xp ∈ b and xq ∈ b, then Wp = Wq implies
xp = xq because f is in standard form; the same is true in the case xp ∈ b−1 and xq ∈ b−1.
In these cases, Wp = Wq also implies xp = xq. On the other hand, if xp ∈ b−1 and xq ∈ b or
xp ∈ b and xq ∈ b−1, then Wp /=Wq and Wp /=Wq. Thus, in our setting, the only ways that
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two distinct fixed points xp and xq of f can be directly related in the sense of [3, page 47] are
if Wp = Wq or if Wq = Wp. The point of Lemmas 4.1 and 4.2 is that, if two fixed points in
C are equivalent, then they must be directly related rather than related by intermediate fixed
points. It is this property that permits the calculations of Nielsen numbers that occupy the
rest of this section.

We continue to assume that f is in standard form and f(a) = a. If fP is a deformation,
then x0 is the only fixed point of f on P . Otherwise, there is another fixed point of f on P
denoted by y0 and both x0 and y0 are of index 1, see [11]. We again write xp ∈ b or xp ∈ b−1

depending on whether f maps the arc containing xp to b or to b−1. The fixed points of f
on C are x0, x1, x2, . . . , xK−1, xK, ordered so that x1 lies in the arc corresponding to the first
appearance of b or b−1 in f(b). Moreover, for w a subword of f(b), we write xp ∈ w if xp lies
in an arc corresponding to an element ofw. LetKd denote the number of fixed points xp such
that xp ∈ d.

Lemma 4.3. Suppose fp is not a deformation and, if ε = 1, suppose also that d /=a. If ε = 1 and
x1 ∈ b, then y0 and x1 are equivalent. Otherwise, y0 is not equivalent to any other fixed point of f .

Proof. Let xj ∈ C be a fixed point of f and let γ+ and γ− denote the arcs of C going from
x0 to xj in the clockwise and counterclockwise directions, respectively. Then f(γ+) = Wγ+

and f(γ−) = Wγ−, where W and W are the Wagner tails of xj . The fixed points y0 and xj are
equivalent if and only if there is a path β inX from y0 to xj such that the loops γ+β−1f(β)(γ+)−1

and γ−β−1f(β)(γ−)−1 represent the identity element of π1(X, x0). Using a homotopy, we may
assume that β is of the form αzγ+ or αzγ− where α is a path in P from y0 to x0 and z is a loop
in X based at x0. Since, by [11], the fixed points y0 and x0 are not fP -Nielsen equivalent, then
[α−1f(α)] = a, the only nonidentity element of π1(P, x0).

If β = αzγ+, then y0 and xj are equivalent by β if and only if

1 =
[

γ+β−1f(β)
(

γ+
)−1]

=
[

γ+
(

γ+
)−1

z−1α−1f(α)f(z)Wγ+
(

γ+
)−1]

= z−1af(z)W

(4.12)

which is equivalent to az = f(z)W , for some zwhichwe now view as an element of π1(X, x0).
If β = αzγ− then, similarly, y0 and xj are equivalent by β if and only if az = f(z)W.

There is no solution z to az = f(z)W or az = f(z)W for which ε = 0 since az starts
with aη1+1 but f(z)W and f(z)W will start with aη1 . If ε = 1, and �1 < 0, then there is no
solution either since, again, az starts with aη1+1 and f(z)W starts with aη1 . If ε = 1, �1 > 0 and
k1 < 0, then there is no solution since az starts with aη1+1b but f(z)W starts with aη1+1b−1. If
ε = 1, �1 = 0 and k1 < 0, then there is no solution since az = aη1+1 but f(z)W contains at least
one b or b−1. So suppose that ε = 1, �1 ≥ 0 and k1 > 0. This means that x1 ∈ b with W = a
so x1 is equivalent to y0 by letting z = a. However, no other fixed point is equivalent to y0

because it would then also be equivalent to x1 and, in this case, everyW starts with a and no
W starts with a so, since we assumed d /=a, we may conclude from Lemma 4.2 that no such
equivalence is possible.

We now have the tools we will need to calculate the Nielsen number N(f) for almost
all maps f : X → X such that f(a) = a. (The remaining cases will be computed in Section 5.)
We continue to write f(b) = aεcdc−1 where ε = 0, 1.



10 Fixed Point Theory and Applications

Theorem 4.4. If ε = 0, c = 1, d /=a and fP is not a deformation, then

N(f) =

⎧

⎨

⎩

K if d /= b, k1 > 0,

K + 2 if k1 < 0.
(4.13)

Proof. Since d is cyclically reduced, if k1 > 0 then km > 0 also and thus, for xp = xj where
j = 2, 3, . . . , K − 1, the Wagner tail Wp starts with b and Wp starts with b−1 so, by Lemma 4.1,
no two of the fixed points x2, . . . , xK−1 are equivalent. However, x1 and xK are equivalent to
x0 so, since y0 is an essential fixed point class by Lemma 4.3, there areK essential fixed point
classes. If k1 < 0 none of the fixed points onC are equivalent to each other, nor is y0 equivalent
to any of them.

In standard form, each bkj ⊆ f(b) is represented by |kj | consecutive arcs in C and there
is a first arc and a last arc with respect to the orientation of C, which correspond to the first
and last appearance, respectively, of b or b−1 in bkj . We will refer to the fixed points in these
arcs as the first and last fixed points in bkj .

We say that a fixed point xp cancels a fixed point xq if xp and xq are equivalent and one
is of index 1 and the other is of index −1.

Theorem 4.5. If ε = 0, d /=a, c /= 1 but t = 0 and fP is not a deformation, then

N(f) =

⎧

⎨

⎩

Kd + 2r − 1 if d /= b, kr+1 > 0,

Kd + 2r otherwise.
(4.14)

Proof. If xp ∈ bkj ⊆ c and kj > 0 then, if xp is not the first fixed point, it cancels one xq ∈ b−kj ⊆
c−1 because Wp = Wq. The only fixed point of b−kj not so cancelled is the first one. If kj < 0,
then all but the last fixed point of bkj cancels a fixed point of b−kj with only the last fixed point
not cancelled. One of x1 and xK is cancelled by x0 but each remaining uncancelled fixed point
in c and c−1 is an essential fixed point class. Thus, including y0, there are 2r fixed point classes
outside of d. Let xp ∈ bkr+1 such that Vp = c and xq ∈ bkm−r such that V q = c−1. Then xp and xq

are equivalent if and only if kr+1 > 0 since that implies km−r > 0 and thus toWp = Wq = c. We
conclude that the number of essential fixed point classes in d is Kd − 1 if d /= b and kr+1 > 0
and Kd otherwise.

Theorem 4.6. If ε = 0, d /=a and t /= 0, and fP is not a deformation, then

N(f) =

⎧

⎨

⎩

Kd + 2r if kr+1 − t > 0 or kn−r + t > 0,

Kd + 2r + 2 if kr+1 − t < 0 or kn−r + t < 0.
(4.15)

Proof. If kr+1 − t > 0 then, since c ends with bt and d begins with bkr+1−t, a negative t would
produce cancellations in the reduced word f(b), so we have 0 < t < kr+1. Since d is cyclically
reduced, it must be that kn−1 + t = 0. As in the previous proof, there are r fixed points in
each of c and c−1 that do not cancel, x0 is cancelled by x1 but y0 is an essential fixed point
class. Similarly, in each of bt and b−t there is one fixed point that is not cancelled. However,
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there exist xp ∈ d and xq ∈ c−1 such that Wp = Wq = c and they cancel each other, so
N(f) = Kd + 2r. If kr+1 − t < 0 then there is one uncancelled fixed point in each of bt and b−t,
and no fixed point in d is cancelled, so N(f) = Kd + 2r + 2. The other cases are symmetric to
these.

In each of Theorems 4.4, 4.5, and 4.6, we assume that fP is not a deformation, so y0 is
an essential fixed point class of f . If ε = 0 and d /=a but fP is a deformation, let h : (X, x0) →
(X, x0) be a map such that h(x) = f(x) for all x ∈ C but the restriction of h to P is not a
deformation though it induces a homomorphism mapping a to itself. Then N(f) = N(h) − 1
by Lemma 4.3 and N(h) can be calculated by the previous theorems. We note that, since f
and h induce the same fundamental group homomorphism, this difference in the Nielsen
numbers reflects the nonaspherical nature ofX. This completes the calculation ofN(f) in the
case that ε = 0 and d /=a.

Theorem 4.7. Suppose ε = 1 and d /=a. If fP is not a deformation, then

N(f) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 if c = 1, d = b,

K + 2 if k1 < 0, km < 0,

K − 2 if k1 > 0, km > 0,

K if k1 · km < 0.

(4.16)

If fP is a deformation, then

N(f) =

⎧

⎨

⎩

K + 1 if km < 0,

K − 1 if km > 0.
(4.17)

Proof. By Lemma 4.2, no two among the fixed points x1, . . . , xK−1 can be equivalent because,
for each one, Wp begins with a and Wp does not. Suppose k1 < 0 and km < 0. If fP is not a
deformation then, using Lemma 4.3, we see that each of y0, x0, x1, . . . , xK is an essential fixed
point class so N(f) = K + 2 whereas, if fP is a deformation, then N(f) = K + 1. If k1 > 0
and km > 0, then xK cancels x0. If fP is not a deformation then, by Lemma 4.3, y0 cancels x1

so N(f) = K − 2 except when K = 1. However, if fP is a deformation, then x1 is an essential
fixed point class so N(f) = K − 1. If k1 < 0 and km > 0 then xK cancels x0 whereas if y0 is
fixed by f , then it is an essential fixed point class so N(f) = K if fP is not a deformation and
N(f) = K − 1 if it is. Finally, suppose k1 > 0 and km < 0. If fP is not a deformation, then y0

cancels x1 by Lemma 4.3 so N(f) = K. If fP is a deformation, then each of x0, x1, . . . , xK is an
essential fixed point class and N(f) = K + 1.

5. The Exceptional Cases

The only cases remaining occur when f(a) = a and f(b) = aεcac−1 for ε = 0, 1.
We will make use of the following result concerning Wagner tails.

Lemma 5.1. Let xp and xq be fixed points of f in C − {x0}. If one of W−1
p Wq,W

−1
p Wq,W

−1
p Wq or

W
−1
p Wq is in the kernel of f, then xp is equivalent to xq.
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Proof. LetWpq denote the word in the hypotheses that is in the kernel of f . IfWpq = W−1
p Wq let

z = Wpq, if Wpq = W
−1
p Wq let z = Wpqb

−1, if Wpq = W−1
p Wq let z = bWpq and if Wpq = W

−1
p Wq

let z = bWpqb
−1. Using Lemma 2.1, we verify that W−1

p f(z)Wq = z, so xp is equivalent to xq

by Lemma 2.2.

If ε = 0, so f(a) = a and f(b) = cac−1, then the kernel of f is the normal closure of the
subgroup of G generated by b2. Let h : G → H = G/ker(f) be the quotient homomorphism,
then there is a homomorphism f : H → H such that hf = fh. Setting h(a) = a and h(b) =
h(b−1) = b, we note that

f(b) = aηba · · ·abaη, (5.1)

where η = 0 or 1. Let U denote the number of appearances of b in f(b).

Theorem 5.2. Suppose f(a) = a and

f(b) = cac−1 = bk1a · · ·abkrab−kr a · · ·ab−k1 . (5.2)

If fP is not a deformation, then

N(f) =

{

2 if U = 0,
U if U/= 0.

(5.3)

and, if fP is a deformation, then

N(f) =

{

U − 1 if η = 0, U /= 0,
U + 1 otherwise.

(5.4)

Proof. As in the proof of Theorem 4.5, if kj > 0 then each fixed point xp of bkj ⊆ c except the
first one cancels a fixed point xq ∈ b−kj because Wp = Wq, leaving only the first fixed point of
b−kj uncancelled in this way. If kj < 0, it is the last fixed point of bkj and the last of b−kj that are
the only fixed points that are not cancelled in this way. However, further cancellations take
place. If kj is even, let xp and xq be the uncancelled fixed points of bkj and b−kj respectively.
Then W−1

p Wq = b|kj | is in the kernel of f so the fixed points cancel by Lemma 5.1.
Suppose that ki and kj , for i < j ≤ r, are odd numbers and

g = abki+1a · · ·abkj−1a (5.5)

is in the kernel of f , and thus in the kernel of h as well. Let xp ∈ bki , xp′ ∈ bkj , xq ∈ b−ki and
xq′ ∈ b−kj be fixed points in C−{x0} that were not cancelled in the previous step. If ki · kj < 0,
then xp cancels xp′ and xq cancels xq′ whereas if ki ·kj > 0, then xp cancels xq′ and xq cancels xp′ .
We will demonstrate these cancellations only in the case ki > 0 and kj < 0 because the other

three cases are similar. Since g is in the kernel of f , then W−1
p Wp′ = bkigbkj and W

−1
q Wq′ = g

are also in the kernel, so p and p′ cancel, as do q and q′, by Lemma 5.1.
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After all the cancellations, let xp ∈ bki , xq ∈ bkj be adjacent fixed points in C − {x0}
among those that remain. Writing

f(b) = g1b
kig2b

kj g3, (5.6)

it must be that ki and kj are odd and h(g2)/= 1. Therefore

f(b) = fh(b) = hf(b) = h
(

g1b
kig2b

kj g3
)

= h(g1)babh
(

g3
)

(5.7)

so that xp and xq contribute two copies of b to f(b). We conclude that there areU fixed points
remaining in C − {x0}.

None of the remaining fixed points in C − {x0} are equivalent. Let xs ∈ bks and xt ∈ bkt

be two such fixed points, so U ≥ 2. We claim that there is no solution to the equation

z = h
(

W−1
s

)

f(z)h
(

Wt

)

(5.8)

for any z = h(z), which implies that xs and xt are not equivalent since (2.3) of Lemma 2.2
then has no solution. We first show that z = 1 is not a solution to (5.8) because W−1

s Wt is not
in the kernel of h. Let

gst = abks+1a · · ·abkt−1a (5.9)

then gst cannot be in the kernel of h since, otherwise, xs and xt would have been eliminated
previously. If ks < 0 and kt > 0, then W−1

s Wt = gst whereas if ks > 0 and kt < 0 then W−1
s Wt =

bksgstb
kt which also cannot be in the kernel of h since ks and kt are odd. If kskt > 0 then, if

W−1
s Wt is in the kernel of h, there must exist uwith s < u < t and ku odd, and both gsu and gut

are in the kernel of h. But that would have eliminated these fixed points, so we have proved
that z = 1 is not a solution to (5.8). The argument that there is no solution z to (5.8) with
|z| ≥ 1 depends on word length considerations like those in the proofs of Lemmas 4.1 and 4.2,
which we therefore omit, and we conclude that none of the remaining fixed points in C−{x0}
are equivalent.

Suppose U/= 0 and let xv and xw be the first and last uncancelled fixed points in C −
{x0}, respectively. Assume that η = 0, then either xv or xw is cancelled by x0. The reason is
that, since f(b) = cac−1, it must be that xv ∈ bkv implies that xw ∈ b−kv . If kv > 0, then f(Wv) =
h(Wv) = 1 so xv is cancelled by x0 because W−1

0 f(Wv)Wv = Wv so (2.3) of Lemma 2.2 is
satisfied with z = Wv. Similarly, if kv < 0, then xw is cancelled by x0 because f(Ww) = 1
and therefore (2.3) is satisfied by setting z = bWw. On the other hand, if η = 1, then x0 is not
equivalent to any of the remaining fixed point in C because, under this condition, there is no
solution to (5.8) above when Ws = 1 or Wt = 1. Thus, if fP is a deformation so there are no
fixed points other than x0 on P in the standard form of f , we see that N(f) = U − 1 if η = 0
andN(f) = U + 1 if η = 1. IfU = 0, then x0 is the only uncancelled fixed point andN(f) = 1.

Now suppose fp is not a deformation so the standard form of f has a fixed point y0

in P − {x0}. If U = 0 then y0 and x0 are the only fixed point that do not cancel, so N(f) = 2.
If η = 0, then y0 is not equivalent to any other fixed point by the following argument. Let W
and W denote the Wagner tails of xj . As in the proof of Lemma 4.3, y0 and xj are equivalent
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if and only if az = f(z)W or az = f(z)W for some z and therefore, in the quotient group
G/ker(f), we would have az = f(z)h(W) or az = f(z)h(W). Since η = 0, there is no such
z because az starts with aη1+1 but f(z) starts with aη1 . Since we have seen that one of xv or
xw is cancelled by x0, we conclude that N(f) = U. If η = 1, then, in contrast to Lemma 4.3,
y0 does cancel a fixed point in C. Let z be the Wagner tail Wv of xv then, since h(z) = a, we
see that f(z) = a so f(z)Wv = aWv and therefore y0 cancels xv. Thus we again conclude that
N(f) = U.

Example 5.3. Let c = (b2a)rb−1 and define maps f, g : X → X such that f(a) = g(a) = a

but fP and gP are not deformations, f(b) = cac−1 and g(b) = cabc−1. Then f(b) = bab so, by
Theorem 5.2,N(f) = U = 2. On the other hand, by Theorem 4.6,N(g) = 2r+1. Thus, the class
of maps in Theorem 5.2 are truly very exceptional in their fixed point behavior compared to
those of Section 4.

In the final case, where ε = 1 so f(a) = a and f(b) = acac−1, the kernel of f is the
normal closure of the subgroup of G generated by (ab)2. Let H again be the quotient group
of G by the normal closure of b2. Define k : G → H by k(a) = a and k(b) = ab, then there is
a homomorphism f : H → H such that kf = fk given by f(a) = a and

f(b) = fk(ab) = kf(ab) = k
(

cac−1
)

= aηba · · ·abaη (5.10)

where η = 0 or 1. Let V denote the number of appearances of b in f(b).

Theorem 5.4. Suppose f(a) = a and f(b) = acac−1. If fP is not a deformation, then

N(f) =

{

2 if V = 0,
V if V /= 0.

(5.11)

and, if fP is a deformation, then

N(f) =

{

V − 1 if η = 0, V /= 0,
V + 1 otherwise.

(5.12)

Proof. Let ϕ, ψ : X → X be maps such that ϕP = ψP = idP and ϕC and ψC are maps in standard
form representing homomorphisms such that ϕ(b) = ab and ψ(b) = cac−1 so f = ψ ◦ ϕ. Let
e = ϕ ◦ ψ, then N(f) = N(e) by the commutativity property of the Nielsen number. We note
that e(a) = a and e(b) = ϕ ◦ ψ(b) = ϕ(cac−1) = ϕ(c)aϕ(c)−1 so e or a map e′ : X → X
that induces e′(a) = a and e′(b) = ae(b)a satisfies the hypotheses of Theorem 5.2. Since (2.3)
of Lemma 2.2 is satisfied for e if and only if it is satisfied for e′, we may assume that we
can apply Theorem 5.2 to e. Thus if eP is not a deformation, then N(f) = 2 if U = 0, and
N(f) = U if U/= 0, and if eP is a deformation, then N(f) = U − 1 if η = 0 and U/= 0, and
N(f) = U + 1 otherwise, where U is the number of appearances of b in e(b), where he = eh
for h : G → g/ker(e). Since ϕP = ψP = idP , then fP is a deformation if and only if eP is a
deformation. Noting that k = h◦ϕ, we have f = e so V = U and the conclusion of the theorem
follows.
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Example 5.5. Let c = (ba)rb−1 for r ≥ 1 and define maps f, g : X → X such that f(a) =
g(a) = a but fP and gP are not deformations, f(b) = acac−1 and g(b) = acabc−1. Then,
by Theorem 5.4, N(f) = V = 2 if r is even and N(f) = 4 if r is odd. On the other hand,
N(g) = 2r + 2 by Theorem 4.7 and we find that the maps of Theorem 5.4 also have very
different fixed point behavior compared to the maps of Section 4.

6. Proof of Lemma 4.2

Suppose xp and xq are equivalent fixed points of f where f(b) = acdc−1 and d /=a. Lemma 4.2
asserts that eitherWp = Wq or Wp = Wq. We now present the proof of this assertion.

In the notation introduced at the beginning of Section 4, we write

z = aη1b�1ab�2 · · ·ab�naη2 , (6.1)

R = W−1
p f(z)Wq = W−1

p aη1
(

acdc−1
)�1

a
(

acdc−1
)�2 · · ·a(acdc−1)�naη2Wq

= W−1
p aλ1cdδ1

(

c−1acdδ1
)|�1|−1

g1id
δ2
(

c−1acdδ2a
)|�2|−1

g2

· · · gn−1dδn
(

c−1acdδn
)|�n|−1

c−1aλ2Wq,

(6.2)

where λi = 0, 1,

δi =

{

1 if �i > 0,
−1 if �i < 0

, gi =

{

1 if �i · �i+1 > 0,
c−1ac if �i · �i+1 < 0.

(6.3)

Let G be the sum of the |gi|.

Case 1. There are no cancellations betweenW−1
p and the first dδ1 nor between the last dδn and

Wq. As in Case 1 of Lemma 4.1, we will prove that there are no equivalent fixed points xp and
xq for which W−1

p and Wq possess these noncancellation properties.

Subcase 1.1. |d| ≥ 3. Then,

|R| = ∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + 2(L − n)|c| + (L − n)|a| +G + L|d|
≥ 3L (because |d| ≥ 3)

≥ n + 1 + L (because L ≥ n ≥ 1)

≥ η1 + η2 + n − 1 + L

= |z|.

(6.4)

Since R = z, all equalities must hold, and thus we have

η1 = η2 = 1, L = n = 1, W−1
p aλ1c = 1, c−1aλ2Wq = 1, G = 0. (6.5)

This implies that z = aba or z = ab−1a, and R = d or R = d−1. Since z = R, we conclude that
d = aba or d = ab−1a, which is contrary to the hypothesis that d is cyclically reduced.
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Subcase 1.2. |d| = 2. We first consider the case of |c| ≥ 1 and then the case of |c| = 0. For |c| ≥ 1,
we have

|R| = ∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + 2(L − n)|c| + (L − n)|a| +G + L|d|
=
∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + (2|c| + 1)(L − n) +G + 2L

≥ ∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + (2|c| + 1)(L − n) +G + n + L

≥ η1 + η2 + n − 1 + L (because of the claim below)

= |z|.

(6.6)

Claim 1. |W−1
p aλ1c| + |c−1aλ2Wq| + (2|c| + 1)(L − n) +G ≥ η1 + η2 − 1. The inequality is obvious

except for the case of L = n, G = 0 and η1 = η2 = 1. In that case, we know that all the �i
have the same sign and therefore either λ1 or λ2 is equal to zero. Since |c| ≥ 1, if λ1 = 0 then
|W−1

p aλ1c| > 0 and if λ2 = 0 then |c−1aλ2Wq| > 0. Since R = z, the equalities above must hold
and so we have

L = n,
∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ +G = η1 + η2 − 1. (6.7)

Since ηi ≤ 1, this implies thatG = 0 and thus all �i have the same sign. Suppose that η1 = 0 and
η2 = 1. (The case of η1 = 1 and η2 = 0 is similar.) Since all �i have the same sign, aλ1 = aλ2 and
therefore Wp = aλ1c = aλ2c = Wq. If Vp /=Vq, that would imply either that xp ∈ b and xq ∈ b−1

or xp ∈ b−1 and xq ∈ b in adjacent arcs in C, contrary to the assumption that f(b) is reduced.
Thus Vp = Vq which, since f is in standard form, would imply xp = xq, a contradiction. Now
suppose that η1 = 1 and η2 = 1. All the �i have the same sign; suppose it is negative and thus
all �i = −1. Then |W−1

p ac| + |c−1Wq| = 1 where ε1 = 1 implies that Wq /= c so Wq = 1, c = b or
b−1 and W−1

p ac = 1 so R = (d−1)nc−1. If c = b then either d = ba and thus z = R = (ab−1)nb−1

or d = ab−1 and thus z = R = (ba)nb−1, both of which contradict the assumption that η2 = 1.
If c = b−1, substituting d = ab or d = b−1a again leads to a contradiction, now to η2 = 1. If all
�i = 1 then, similarly, all cases lead to a contradiction to the assumption that η1 = 1.

Suppose that |c| = 0. Since |d| = 2, we have d = b2 or d = b−2, which is a subword of
R = z and thus L ≥ n + 1. Therefore,

|R| = ∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + (L − n)|a| +G + L|d|
=
∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + (L − n) +G + 2L

≥ ∣

∣W−1
p aλ1c

∣

∣ +
∣

∣c−1aλ2Wq

∣

∣ + 2 + n + L (because L ≥ n + 1)

> η1 + η2 + n − 1 + L

= |z|

(6.8)

This is a contradiction so, if there are no such cancellations, there cannot be a solution to (2.3)
of Lemma 2.2.

Subcase 1.3. d = b or b−1. If c = 1, then f(b) = b or f(b) = b−1 and the lemma is obviously true.
Thus we assume that |c| ≥ 1. We will consider only the case d = b because the other is similar.
Since we suppose xp and xq equivalent, we are assuming there exists z such that z = R. But
then, as in Subcase 1.2, wewill show that, for any choice of zwe have |R| = |W−1

p f(z)Wq| > |z|.
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We will do it by dividing z into subwords such that their image under f is reduced in R and
of greater word length. We first consider each subword ab�i of z for which |�i| ≥ 2. Then
f(ab�i) = a(acbc−1)�i contains the subword bδi(c−1acbδi)�i that is reduced in R and

∣

∣bδi
(

c−1acbδi
)�i∣

∣ ≥ 4
(∣

∣�i
∣

∣ − 1
)

+ 1 =
∣

∣�i
∣

∣ +
(

3
∣

∣�i
∣

∣ − 3
)

>
∣

∣�i
∣

∣ + 1 =
∣

∣ab�i
∣

∣ (6.9)

because |�i| ≥ 2, so |f(ab�i)| > |ab�i |.
Now consider a subword of z of the form b�j ab�j+1a · · ·ab�j+r ab�j+r+1 where �j+1 = · · · =

�j+r = 1 but �j /= 1 and �j+r+1 /= 1. Suppose �j < 0 (or j = 0) and �j+r+1 < 0 (or j + r = n). Then
f(ab�j+1a) · · ·ab�j+r = f(aba · · ·ab) contains a subword abrc−1 which is reduced in R. In the
case r = 1 we have |ab| < |cbc−1|, so we consider r ≥ 2. Since we are assuming that z = R,
it must be that b�k = br for some k. Since r ≥ 2, it follows that f(ab�k) contains a subword
b(c−1acb)r−1 that is reduced in R and

∣

∣ab�j+1a · · ·ab�j+r ∣∣ + ∣

∣ab�k
∣

∣ = 2r + (r + 1) < (r + 2) + (4r − 3)

≤ ∣

∣cbrc−1
∣

∣ +
∣

∣b
(

c−1acb
)r−1∣

∣

≤ ∣

∣f
(

ab�j+1a · · ·ab�j+r)∣∣ + ∣

∣f
(

ab�k
)∣

∣.

(6.10)

If, instead, �j ≥ 2 and �j+r+1 < 0 (or j + r = n), then

f
(

ab�j ab�j+1a · · ·ab�j+r) = acb
(

c−1acb
)�j−1

brc−1 (6.11)

contains cbr+1c−1 as a subword that is reduced in R. The assumption that z = R then implies
that b�k = br+1 for some k. The length of the image under f of the subword of z consisting
of ab�k and ab�j ab�j+1a · · ·ab�j+r is greater than that of the word itself. The same holds for the
appropriate choice of subwords of zwhen �j /= 1 and �j+r+1 ≥ 2.

Suppose instead that we consider a subword of z of the form b�j ab�j+1a · · ·ab�j+r ab�j+r+1
where now �j+1 = · · · = �j+r = −1 but �j /= − 1 and �j+r+1 /= − 1. An analysis like that just
presented again leads to the conclusion that f increases the word length of subwords of z.
Thus we have established that |z| < |R| and consequently there are no solutions to (2.3) of
Lemma 2.2.

Case 2. Suppose there is a cancellation between W−1
p and the first dδ1 but no cancellation

between the last dδn and Wq. If �1 > 0 and η1 = 1 or �1 < 0 and η1 = 0, then R begins with
W−1

p c and no such cancellation is possible. If �1 < 0 and η1 = 1, an argument like that of
Case 2 of Lemma 4.1 shows that a cancellation would contradict the assumption that d is
cyclically reduced. Thus, we can conclude that �1 > 0 and η1 = 0 so z = bz′ and so, similarly
to Lemma 4.1,

z′ = W
−1
p

(

acdc−1
)�1−1

a
(

acdc−1
)�2 · · ·a(acdc−1)�naη2Wq. (6.12)

There are no further cancellations and thus, as in the previous case, there is no solution to
(2.3) unless z′ = 1 so that z = b and Wp = Wq.
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Case 3. Suppose there is no cancellation betweenW−1
p and the first dδ1 but there is cancellation

between the last dδn and Wq. An argument similar to that of Case 2 demonstrates that z =
z′b−1 but then a solution is possible only if z′ = 1 and thus that Wq = Wp.

Case 4. Suppose that there is a cancellation between W−1
p and the first dδ1 and also between

Wq and the last dδn . Following Cases 2 and 3, we conclude that z = bz′b−1 and that

z′ = W
−1
p

(

acdc−1
)�1−1

a
(

acdc−1
)�2 · · ·a(acdc−1)�n+1Wq. (6.13)

There are now no cancellations so z′ = 1 and Wp = Wq. Since f is in standard form, the
condition Wp = Wq also implies that xp = xq and thus there is no solution of this type.
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