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1. Introduction

Let E be a Banach space with dual space of E*, and let C a nonempty closed convex subset E.
Let N > 1 be a positive integer, and let A = {1, 2, ..., N}. We denote by J the normalized
duality map from E to 25 defined by

J(x) = {x* €E": (x, x*) =|lx|* = x>, Vxe E}. (1.1)

Amapping T : C — Cissaid to be nonexpansive if |[Tx-Ty| < |x-y|, forallx, y € C.
A mapping f : C — C is called k-contraction if there exists a constant k € (0, 1) such that

If ) - fWI <kllx-yll, VxyeC (1.2)

In the last ten years, many papers have been written on the approximation of fixed point for
nonlinear mappings by using some iterative processes (see, e.g.,[1-20]).

Anoperator A: D(A) C E — Eissaid to be accretive if ||x1—xz|| < ||x1—2x2+s(y1-y2)ll,
forall y; € Ax;, i =1, 2 and s > 0. If A is accretive and [ is identity mapping, then we
define, for each r > 0, a nonexpansive single-valued mapping J, : R(I + rA) — D(A) by
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Jr := (I +rA)™!, which is called the resolvent of A. we also know that for an accretive operator
A, N(A) = Fix(J;), where N(A) = {x €e E: 0 € Ax} and Fix(J,) = {x € E: J,x = x}. An
accretive operator A is said to be m-accretive, if R(I+tA) = E for allt > 0. If E is a Hilbert space,
then accretive operator is monotone operator. There are many papers throughout literature
dealing with the solution of 0 € Ax (x € E) by utilizing certain iterative sequence (see [1-
3,8-10, 13, 16, 20]).

In 2005, Kim and Xu [10] introduced the following Halpern type iterative sequence
for m-accretive operator A: Let C be a nonempty closed convex subset of E. For any u, x, € C, the
sequence {x,} is generated by

Xpi1 = ap+ (1 =) 0, n21, (1.3)

where{a,} C [0, 1] and {r,} C (g, +o0), for some € > 0, satisfy the following conditions:
(C1) lim,, _, ax, = 0,
(C2) >y ay = +oo,
(C3) > lans1 — ay| < +oo, and
(C4) X721 |11 = rys1 /1a| < +oo0.
They proved that the iterative sequence {x,} converges strongly to a zero of A.
Recently, Zegeye and Shahzad [20] proved a strong convergence theorem for a finite

family of accretive operators by using the Halpern type iteration: Let C be a nonempty closed
convex subset of E. For any u, x1 € C, the sequence {x,} is generated by

Xpi1 =agu+ (1—-a,)Sx,, n>1, (1.4)

where S :=agl + a1Ja, +---+anJa, with Ja, = (I+Ai)_1, ai€(0,1),fori=0,1,2, ..., N,
Zfﬁo a; =1,and {a,} C (0,1) satisfies the conditions: (C1), (C2), (C3), or (C3). limy, _, o |tps1 —
“n|/“n+1 = 0)

More recently, Hu and Liu [8] proposed a generalized Halpern type iteration: Let C be
a nonempty closed convex subset of E. For any u, x1 € C, the sequence {x,} is generated by

Xp+1 = Ol + PuXy + YnSr,Xn, n2>1, (1.5)

where S, = agl +ar]} +---+anJN with Ji = (I+rnAl~)_1,for i=1,2 ..., Nyaie (0, 1)
and z{io a; = 1. Assume {a,}, {Bn}, {y.} € (0,1), and {r,} C (0,+o0) satisty the following
conditions: (C1), (C2),

0 <liminfp, <limsupf, <1, limr,=r, forsomer >0, an+Pu+yn=1  (1.6)
n—oo n—oo n—oo

They proved that the sequence {x,} converges strongly to a common zero of {A; : i € A}.

In this paper, we introduce and study a new iterative sequence: Let C be a nonempty
closed convex subset of E and f : C — C a k-contraction. For any x1 € C, the sequence {x,} is
defined by

X1 = Puxn + (1= Pn)Sr, (anf(xn) + (1 —an)x,), n>1, (1.7)



Fixed Point Theory and Applications 3

where S,, = aol + a1J} + -+ anJN with Ji = (I+1,A)", fori =0,1,2, ..., N, a; €
0, 1) and XNy a; =1, {r,}) € (0,+00) and {a,}, {Bn} C (0,1). The iterative sequence (1.7) is
a natural generalization of all the above mentioned iterative sequences.

(i) In contrast to the iterations (1.3)—(1.5), the convex composition of the iteration (1.7)
deals with only x, instead of u and x,.

(ii) If we take a, =0, for all n > 1, in (1.7), then (1.7) reduces to Mann iteration. In 2000,
Kamimura and Takahashi [9] proved that if E is a Hilbert space and {f,} and {r,}
are chosen such that lim, ., = 0, 3721 fu = +o0 and lim, _, .7, = +oo, then the
Mann iterative sequence,

Xn+l = ﬁnxn + (1 - ﬁn)]rnxnr Vn>1, (1.8)

converges weakly to a zero of A. However, the Mann iteration scheme has only
weak convergence for nonexpansive mappings even in a Hilbert space (see [4]).

Our main purpose is to prove strong convergence theorems for a finite family of
accretive operators on a strictly convex Banach space with uniformly Gateaux differentiable
norm by using viscosity approximation methods. Our theorems extend the comparable
results in the following three aspects.

(1) In contrast to weak convergence results on a Hilbert Space in [9], strong
convergence of the iterative sequence is obtained in the general setup of a Banach
space.

(2) The restrictions (C3), (C3), and (C4) on the results in [10, 20] are dropped.

(3) A single mapping of the results in [3] is replaced by a finite family of mappings.

2. Preliminaries and Lemmas

A Banach space E is said to have Gateaux differentiable norm if the limit

o [ 11l

lim ; (2.1)

exists for each x,y € U, where U = {x € E : |x|| = 1}. The norm of E is uniformly Gateaux
differentiable if for each y € U, the limit is attained uniformly for x € U. The norm of E
is uniformly Fréchet differentiable (E is also called uniformly smooth) if the limit is attained
uniformly for each x,y € U. It is well known that if E is uniformly Gateaux differentiable
norm, then the duality mapping J is single-valued and norm-to-weak” uniformly continuous
on each bounded subset of E.

A Banach space E is called strictly convex if for i € A, a; € (0, 1), and zf;’l a; =1, we
have [[aix; + axx2 +--- + anxn|| < 1for x; € E, i € A and x; # x; for i #j. In a strictly convex
Banach space E, we have that if ||x1]| = ||x2|| = -+ = ||xn]|| = |a1x1 + a2xz + -+ + anxn]|, for
x; €E, a; € (0, 1),iEAande\:]1ai=1,thenx1 =Xy == XN.
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Lemma 2.1 (The Resolvent Identity). For A, u > 0and x € E,
7 (® _#
Jix = ],,( Txt (1 A) ]Ax). (2.2)

We denote by N the set of all natural numbers, and let p be a mean on N, that is, a continuous
linear functional p on 1 satisfying ||| = 1 = u(1). We know that p is a mean on N if and only if

inlg by, < p(f) <supby, (2.3)
ne

neN

foreach f = (by,by,...) €1®. In general, we use LIM(by,) instead of u(f). Let f = (b1,by,...) €1
with b, — b, and let p be a Banach limit on N. Then u(f) = LIM(by,) = b. Further, we know the
following result.

Lemma 2.2 (see [15, 16]). Let C be a nonempty closed convex subset of a Banach space E with
uniformly Gateaux differentiable norm. Assume that {x,} is a bounded sequence in C. Let z € C,
and letLIM a Banach limit. Then LIM||x, — z||* = minyec LIM||x, — x||* if and only if LIM(x —
z,j(x,—2)) <0, forall x € C.

Let C C E be a closed convex and, let Q a mapping of E onto C. Then Q is said to be
sunny [12, 13] if Q(x + t(x — Qx)) = Qx for all x € E and ¢ > 0. A mapping Q of E onto C is
said to be retraction if Q> = Q; If a mapping Q is a retraction then Qx = x for any x € R(Q),
the range of Q. A subset C of E is said to be a sunny nonexpansive retraction of E if there exists
a sunny nonexpansive retraction of E onto C, and it is said to be a nonexpansive retraction of E
if there exists a nonexpansive retraction of E onto C. In a smooth Banach space E, it is known
([5, Page 48]) that Q : E — C is a sunny nonexpansive retraction if and only if the following
condition holds: {(x — Q(x), J(z-Q(x))) <0,x e Eand z € C.

Lemma 2.3 (see [14]). Let {x,} and {y,} be bounded sequences in a Banach space E such that
Xps1 = Puxn + (L= Pu)yn, n20, (2.4)
where {P,} is a sequence in (0, 1) such that 0 < liminf, _, f, <limsup, B, < 1. Assume

limsup (|| yne1 = ¥l = ll2ne1 = xall) <0 (2.5)

n—oo

Then limy, -, o0 || yn — xull = 0.

Lemma 2.4. Let E be a real Banach space. Then for all x, y in E and j(x +y) € J(x + y), the
following inequality holds

e+ yII* < IxI + 2y, j(x+ ). (26)
Lemma 2.5 ([18]). Let {a,} is a sequence of nonnegative real number such that

Ans1 < (1 - 6n)an + 6n§nr Vn >0, (27)
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where {6,,} is a sequence in [0, 1] and {¢&,} is a sequence in R satisfying the following conditions:
(1) X521 6n = +oo;
(ii) imsup, , &, <00r 372 6ulén| < +o0.

Then lim,, _, ,a, = 0.

Lemma 2.6 (see [8]). Let C be a nonempty closed convex subset of a strictly convex Banach space
E. Suppose that {A; : 1 <i < N} : C — E is a finite family of accretive operators such that
N, N(A;) # 0 and satisfies the range conditions:

d(D(A)) CCc(RUI+rAy), i=1,2, ..., N. (2.8)

>0

Let {a; : i € {0} U A} be real numbers in (0, 1) with XN, a; = 1and S, = agl + a1J} -~ + an N,
where Ji = (I + rA;) Vand r > 0. Then S, is nonexpansive and Fix(S,) = ﬂgljv(Ai).

3. Main Results

For the sake of convenience, we list the assumptions to be used in this paper as follows.

(i) E is a strictly convex Banach space which has uniformly Gateaux differentiable
norm, and C is a nonempty closed convex subset of E which has the fixed point
property for nonexpansive mappings.

(ii) The real sequence {a,} satisfies the conditions: (C1). lim,_,a, = 0 and (C2).
e @n = +00.
We will employ the viscosity approximation methods [11, 19] to obtain a strong
convergence theorem. The method of proof is closely related to [2, 3, 19].

Theorem 3.1. Let {A; : i € A} : C — E be a finite family of accretive operators satisfying the
following range conditions:

d(D(A) CCc(RUI+rAy), i=1,2, ..., N. (3.1)

r>0

Assume that F := ﬂgl,/U(Ai) #0. Let f : C — C be a k-contraction with k € (0,1). For t € (0,1),
the net {x;} is generated by

Xt = tf(xt) + (1 - t)Snxt, (I)

where Sy, == aol + a1 ]} + -+ anJN with Ji = (I+nA;) ", fori=0,1,...,N, a; € (0, 1) and
Zfﬁo a; = 1. Iflimy_,¢ r = r, then the net {x;} converges strongly tov € F,ast — 0, where v is the
unique solution of a variational inequality:

(v-f(),J(v-p))<0, VpeF. (VI)
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Proof. Put Wyx :=tf(x) + (1-1)S,x, forall x € Cand t € (0,1). Then we have

|[Wix - Wiy = ||t (x) + (1 -1)S,x - tf (y) - (1 - 1)S,y||
<HIfE) = fFW) I+ A =D][Snx = Snyl (3.2)
<A-t1-k)|lx-y|.

and so W; is a contraction of C into itself. Hence, for each t € (0,1), there exists a unique
element x; € C such that

xi = tf () + (1 - DS, x:. (33)

Thus the net {x;} is well defined.
Lemma 2.6 implies that F = Fix(S,,) = NN, /V(A;) #0. Taking p € F, we have for any
te(0,1)

[l = pll < £l £ ee) = pll + (L= ]| Srxe = p|

(3.4)
< tklx=pll + £ f(p) —pll + A =B]lx = p]|-
Consequently, we get
1
% =pll < 7= 17 () =PI, (3.5)
that is, the net {x;} is bounded, and so are { f(x;)} and {S,,x;}. Rewriting (I) to find
1-t¢
X = foxe) = ——— (% = Spxp), (3.6)
and hence for any p € F, it yields that
1-t
(i = f(xi), J (= p)) = —T<xt = Syxy, J(xi—p))
1-t
== S)xi = (1= S)p, ] (x1-p)) 37
<0 (Since (I -S,,) is monotone).
Obviously, estimate (I) yields
llct = Srxill < | f () = Sy
(3.8)

<H@+k)[|x—-pl +]f(p) -pl]) — 0, as t—0.
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In view of the Resolvent Identity, we deduce

. . ST r . .
xi- Jix| = f;(r—txt + (1 - z) ;fxt) ~ Jix
(3.9)
r r\ r ;
< ||—xt + <1 - —>ﬂ,xt x| £ |1 - —“'xt - ];txt”/
Tt Tt Tt
and so
N . .
||Sr‘xt - ert” = Za,-( ;}xt - ];xt>
i=1
l (3.10)
N - '
< Za,- 1-— ”xt —];txt” — 0, ast—0.
i=1 Tt
Combining (3.8) and the above inequality, we obtain
|lxt — Syxt]| — 0, ast—0. (3.11)

Assumet, — 0,asn — oo. Set x,, := x;, and define y : C — R (R is the set of all real
numbers) by

p(x) = LIM||x, - x|>, x€C, (3.12)
where LIM is a Banach limit on [*. Let

K = {q €C:pu(q) = min LIM|x, - x||2}. (3.13)
X€!

It is easy to see that K is a nonempty closed convex and bounded subset of E and K is
invariant under S,. Indeed, as n — oo, we have for any g € K,

w(S:q) = LIM||x, = S,q||* = LIM||S, 2, = Syq* < LIM||xa —q* = pu(q),  (3.14)

and so S,q is an element of K. Since C has the fixed point property for nonexpansive
mappings, S, has a fixed point v in K. Using Lemma 2.2, we have

LIM(x-v, J(x, —v)) <0, xeC. (3.15)
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Clearly
llxe = oI* = £(f () = v, ] (2 = ©)) + (1 = £)(Spxe = v, ] (3¢ = V)
<SHf () = f(0), J(xi = 0)) +H{f(0) =0, J(x = 0)) + 1= D]x ~ 0l (3.16)
< (1-t(1—-k))|lxe — 0| + H{f(©) = v, J (x¢ = V).
Consequently, by (3.15), we obtain

LIM||x, — o|* < LIM ﬁ(f(v) -0, J(x - v)) <0, (3.17)

, that is,

LIM||x, —o|* =0, (3.18)

and there exists a subsequence which is still denoted by {x,} such that x, — v.
On the other hand, let {x} of {x} be such that x;, — v € F. Now (3.7) implies

(x, = f (%), J (¥ ~v) ) <0, weF. (3.19)
Thus
(v-f(@),J(@-v))<0, veF. (3.20)
Interchange  and v to get
(v-f(),J](v-2))<0, veF. (3.21)

Addition of (3.20) and (3.21) yields
(T~ f@) -v+f(v),](D-0)) <0, (3.22)
and so we have
o -ol* < (f(@) - f(v), ] (@ -0)) < kl[o - o|". (323)

Since k € (0, 1), it follows that © = v. Consequently x; — v ast — 0. Likewise, using (3.7), it
implies forallp € F

(2t = f(xr), J (2 —p)) <0. (3.24)
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Letting t — 0 yields
(v-f(v),J(v-p)) <0, (3.25)

forallp € F. O

Remark 3.2. In addition, if E is a uniformly smooth Banach space in Theorem 3.1 and we
define Q(f) := lim;_o x;, then we obtain from Theorem 3.1 and [19, Theorem 4.1] that the
net {x;} converges strongly tov € F,ast — 0, where v = Qrf(v) and QF is a sunny
nonexpansive retraction of C onto F.

Theorem 3.3. Let {A; : i € A} : C — E be a finite family of accretive operators satisfying the
following range conditions:

(D(A)) CC c(RU +r1A), i=1,2, ..., N. (3.26)

>0

Assume that F := ﬂgl./U(Ai) #0.Let f : C — C bea k-contraction with k € (0,1). For any x1 € C,
the sequence {x,} is generated by (1.7). Suppose further that sequences in the iterative sequence (1.7)
satisfy the conditions:

0 <liminf g, <limsup g, <1, limr,=7r, r>0. (3.27)
n— oo n— o0 n— oo

Then the sequence {x,} converges strongly to v € F, where v is the unique solution of a variational
inequality (VI).

Proof. Lemma 2.6 implies that F = Fix(S,,) = ﬂglﬂ (A;) #0. Rewrite (1.7) as follows:
Xni1 = Pndn + (1= Pn)SrYn, (3.28)
where
Yn=anf(xn) + (L-an)x,, Vn=1 (3.29)
Taking p € F, we obtain

% =pll - = Bullxn = pll + (1= B [ISnyx - pll
< Pullxn = pll + (1= Ba) (@all f () = pl| + (1 = @) |20 = p][)
< Pallxn =pll + (1= pu) (@akllxn = p| +aull f(p) =Pl + 1 = an)|xn = pll)

= (1= (1= p)an(1= 1) [oen =l + (1= )1 =K [ F(p) = p

C e el

< max{ |1 -p
(3.30)
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Therefore, the sequence {x,} is bounded, and so are the sequences {f(x,)}, {Sr,xn}, {yn},

{ ]in y,} and, {5y, y,}. We estimate from (3.29)

”yn+1 - yn” < an+1”f(xn+1) _f(xn)” + (1= ans)|xne1 = xall

+ |an - ‘Xrll”f(xn) - xn”

< (1= ana(1=k))|lxna1 = xnll + a1 — anl”f(xn) - xn”-

In view of the Resolvent Identity, we get

]rn< Yn+1 + <1 - 1>]rn+1yn+1> - ]i,,]/n

< ‘%(ynu _yn) + (1 - rrn >< £n+1y"+1 _y">

];,M Yn+1 — ];n Yn

n+1
< -l + 1= 2y
Tl
where
My = sup{||yn = T}, yua||, i€ A},

n>1

Since S,, = aol + 3, a;Ji , we have

i
P Y+l — ]rnyn

< | v ao (1= ) M - wall +
T+l

,
1 +a0< > (1= ape1 (1= k) ||2%ns1 = 2l
Tn+l Tn+l

”Srmyrﬁl rnyn” < aOllyn+1 yﬂll + Zal

M

T+l

<

’ [r:+1 " “°<1 - —>] ot = atul [ f () = 26|

r
+(1-
T+

M;.

lim, ., »a, = 0 and lim, _, 1, = r imply

lim sup(||Sr,,+1yn+1 - Sr,,]/n” = [lxna - xn”) <0.

n—oo
Consequently, by Lemma 2.3, we obtain

i |8,y — | = 0.

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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From (3.29), we get
i [|y - ) = L) ]| =0,
and so it follows from (3.36) and (3.37) that
Jim [|ys = Sp,yall = 0.

Using the Resolvent Identity and S,, = aol + Zﬁl a; ];'n, we discover

N

Sai(Jhyn = Tiyn)

i=1

1S,y = Srymll =

N
< Zai
i=1

— 0,

Yn =I5 Yn

r
-2
Tn

N
<
i=1
Hence, we have

[y = Sryull < lyn = Sryull + 1Sr,yn = Srvall — 0,

if T T\ i
]r(rnyn+ (1 rn> rnyn> JiYn

11

(3.37)

(3.38)

(3.39)

(3.40)

It follows from Theorem 3.1 that {x;} generated by x; = tf(x;) + (1 — t)S,x; converges
strongly to v € F,ast — 0, where v is the unique solution of a variational inequality (VI).

Furthermore,
xt =Y = (L=1)(Spxy = yn) + t(f(x2) = Yn)-
In view of Lemma 2.4, we find

e = all* < (1= OIS et = yall® + 26(F () =y, (3= )

(3.41)

< <1——2t+t2>(”5rxt—-5ryn”4—”Sryn"yn”)z-F2t<f(XO-—xh J(xte = yn))

+ 24| - g

< (1+2) | =yull® + (14 2) [y = Srvall @llxe = yull + [y = Srall)

+2¢(f () = xt, J (%t = yn)),

(3.42)
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and hence

t 1+ ) |lyn — Sryn
(F -1 T =) < £yl ISl iy, = S,

(3.43)

Since the sequences {y,}, {x;}, and {S,y,} are bounded and lim, .||y, — S;yxll/2t = 0, we
obtain

limsup(f(xt) —xt, J(yn—xt)) < %Mz, (3.44)

n— oo
where My = sup,. o)t = ynlI*}. We also know that

(f)=v, J(yn—0)) = (f(xr) =xt, J(Yn—2x1)) +{(f(0) = f(x1) +xs =0, J(Yn—xt))

+{(f(©) =0, j(Yn-0) = J(yn—xt))-
(3.45)

From the facts that x; — v € F,ast — 0, {y,} is bounded and the duality mapping | is
norm-to-weak” uniformly continuous on bounded subset of E, it follows that

(f©) =, j(ya-) ~ I (g~ x)) — 0, as t—0,

(3.46)
(f)=flx)+x—v, J(Yn—x)) — 0, as t — 0.
Combining (3.44), (3.45), and the two results mentioned above, we get
limsup(f(v) —v, J(y.—v)) <0. (3.47)

n—oo

Similarly, from (3.29) and the duality mapping J is norm-to-weak” uniformly continuous on
bounded subset of E, it follows that

Jim [(fGen) = £@), ] (ya = ©) = J (xa = )] = 0. (3.48)
Write

X1 =0 = Pu(xy —0) + (1= ) Sy, (yn —0), (3.49)
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and apply Lemma 2.4 to find

et = 01 < Bulln = oI + (1= B)[|Sr, v — |

< Bullocn = ol + (1= Bu) o (f (2tn) = ©) + (1 = @) (xa - 0) |°

< Bullxn = ol* + (1= ) (1 = @n)? |1, = 0|I”
+2(1 = B)an( f(xn) =0, ] (Yn —0))

< Bullocn =0l + (1= ) (1 = )l = oI +2(1 = Bu) ankl|x = o
+2(1=Bu)an(f () —v, ] (yn —v)) (3.50)
+2(1 = Bu)an( f (xn) = f(0), ] (Yn = 0) = J(xa = 0))

< [1=2(1 =) (1 = K)ay]||xn = o> +2(1 = Bn) s
x [@nllxn = 0]l + [{f () = f(©), ] (Y = ©) = ] (xa = 0))]
+{(f(©) =, ] (yn—0))]

= [1- (1= K)6u]llxn = I* + Enén,

where

6,=2(1-pn)an,

(3.51)
&n = apllxn, — o + |<f(xn) _f(v)r]<]/n —U) = J(xn _U)>| + <f(v) _U/](]/n _U)>'

From (3.47), (3.48), (C1), (C2), and 0 < liminf, ., p, < limsup,_,  f, < 1, it follows
that 377, 6, = +co and limsup, , ¢, < 0. Consequently applying Lemma 2.5 to (3.50), we
conclude that lim,, _, o ||x, — v|| = 0. O

If we take f(x) = u, for all x € C, in the iteration (1.7), then, from Theorem 3.3, we
have what follows

Corollary 3.4. Let {A; : i€ A}, {an}, {Pn}, and {r,} be as in Theorem 3.3. For any u,x; € C, the
sequence {x,} is generated by

X1 = Pnxn + (1= Pu)Sr (anu+ (1 - ay)x,), n>1, (3.52)

where S,, = agl + a1 ]} +---+anJN with J. = (I + rmA), fori=0,1,2, ..., N,a;€(0, 1)
and XN, a; = 1. Then the sequence {x,} converges strongly to v € F.

Remark 3.5. Theorem 3.3 and Corollary 3.4 prove strong convergence results of the new
iterative sequences which are different from the iterative sequences (1.4) and (1.5). In contrast
o0 [20], the restriction: (C3). X721 |@n+1 — an| < 400 or (C3%) limy,_, o |@tns1 — an|/@Ans1 = 0 is
removed.
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If we consider the case of an accretive operator A, then as a direct consequence of
Theorem 3.1 and Theorem 3.3, we have the following corollaries.

Corollary 3.6 ([3, Theorem 3.1]). Let A : C — E (not strictly convex) be an accretive operator
satisfying the following range condition:

c(D(A)) € C c[RU +rA). (3.53)

>0

Assume that F := N(A)#0. Let f : C — C be a k-contraction with k € (0,1). For t € (0,1), the
net {x;} is given by:

xp=tf(x) + (1=t) ] xi, (3.54)

where J,, :== (I + rtA)_l. Ifinfico1y1e > €, for some € > 0, then {x;} converges strongly to v € ¥, as
t — 0, where v is the unique solution of a variational inequality:

(v-f(v),J(v-p))<0, Vpe¥. (VT

Corollary 3.7. Let A : C — E (not strictly convex) be an accretive operator satisfying the following
range condition:

c(D(A)) CCc(\RU +rA). (3.55)

>0

Assume that F = N(A)#0. Let f : C — C be a k-contraction with k € (0,1). Suppose that
{an} and {B,} are real sequences in (0, 1) and {r,} is a sequence in R*, satisfying the conditions:
0 < liminf, B, < limsup,_, fBn < 1and inf,»11, > €, for some € > 0. For any x; € C, the
sequence {x,} is generated by

Xn+1 = pnxn + (1 - ﬂn)]rn (“nf(xn) +(1- “n)xn>/ n>1, (3.56)

where J,, = (I +r,A)"". Then the sequence |x,} converges strongly to v € F, where v is the unique
solution of a variational inequality (VT').

Remark 3.8.

(i) Corollary 3.7 describes strong convergence result in Banach spaces for a modifica-
tion of Mann iteration scheme in contrast to the weak convergence result on Hilbert
spaces given in [9, Theorem 3].

(ii) In contrast to the result [10, Theorem4.2], the iterative sequence in Corollary 3.7
is different from the iteration (1.3), and the conditions >, ; |an+1 — ay| < +o0 and
> |1 = 1no1/ 1| < +o0 are not required.
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