
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2009, Article ID 350979, 20 pages
doi:10.1155/2009/350979

Research Article
A New Hybrid Algorithm for Variational
Inclusions, Generalized Equilibrium Problems, and
a Finite Family of Quasi-Nonexpansive Mappings

Prasit Cholamjiak and Suthep Suantai

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Correspondence should be addressed to Suthep Suantai, scmti005@chiangmai.ac.th

Received 12 June 2009; Accepted 28 September 2009

Recommended by Naseer Shahzad

We proposed in this paper a new iterative scheme for finding common elements of the set of
fixed points of a finite family of quasi-nonexpansive mappings, the set of solutions of variational
inclusion, and the set of solutions of generalized equilibrium problems. Some strong convergence
results were derived by using the concept ofW-mappings for a finite family of quasi-nonexpansive
mappings. Strong convergence results are derived under suitable conditions in Hilbert spaces.

Copyright q 2009 P. Cholamjiak and S. Suantai. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and inducted norm ‖ · ‖, and let C be a
nonempty closed and convex subset of H. Then, a mapping T : C → C is said to be

(1) nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C;

(2) quasi-nonexpansive if ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and p ∈ F(T);

(3) L-Lipschitzian if there exists a constant L > 0 such that ‖Tx − Ty‖ ≤ L‖x − y‖, for all
x, y ∈ C. We denoted by F(T) the set of fixed points of T .

In 1953, Mann [1] introduced the following iterative procedure to approximate a fixed
point of a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.1)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in [0, 1].
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However, we note that Mann’s iteration process (1.1) has only weak convergence, in
general; for instance, see [2, 3].

Many authors attempt to modify the process (1.1) so that strong convergence is
guaranteed that has recently been made. Nakajo and Takahashi [4] proposed the following
modification which is the so-called CQmethod and proved the following strong convergence
theorem for a nonexpansive mapping T in a Hilbert space H.

Theorem 1.1 (see [4]). Let C be a nonempty closed convex subset of a Hilbert spaceH and let T be a
nonexpansive mapping of C into itself such that F(T)/= ∅. Suppose that x1 = x ∈ C and {xn} is given
by

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(1.2)

where 0 ≤ αn ≤ a < 1. Then, {xn} converges strongly to z0 = PF(T)x.

Let ϕ : H → R ∪ {∞} be a function and let F be a bifunction from C × C to R such
that C ∩ domϕ/= ∅, where R is the set of real numbers and domϕ = {x ∈ H : ϕ(x) < ∞}. The
generalized equilibrium problem is to find x̂ ∈ C such that

F
(
x̂, y

)
+ ϕ

(
y
) − ϕ(x̂) ≥ 0, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by GEP(F, ϕ); see also [5–7].
If ϕ : H → R ∪ {∞} is replaced by a real-valued function φ : C → R, problem (1.3)

reduces to the following mixed equilibrium problem introduced by Ceng and Yao [8]: find
x̂ ∈ C such that

F
(
x̂, y

)
+ φ

(
y
) − φ(x̂) ≥ 0, ∀y ∈ C. (1.4)

Let ϕ(x) = δC(x), for all x ∈ H. Here δC denotes the indicator function of the set C; that is,
δC(x) = 0 if x ∈ C and δC(x) = ∞ otherwise. Then problem (1.3) reduces to the following
equilibrium problem: find x̂ ∈ C such that

F
(
x̂, y

) ≥ 0, ∀y ∈ C. (1.5)

The set of solutions (1.5) is denoted by EP(F). Problem (1.5) includes, as special
cases, the optimization problem, the variational inequality problem, the fixed point problem,
the nonlinear complementarity problem, the Nash equilibrium problem in noncooperative
games, and the vector optimization problem; see [9–12] and the reference cited therein.

Recently, Tada and Takahashi [13] proposed a new iteration for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points of a
nonexpansive mapping T in a Hilbert space H and then obtain the following theorem.
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Theorem 1.2 (see [13]). Let H be a real Hilbert space, let C be a closed convex subset of H, let
F : C × C → R be a bifunction, and let T : C → C be a nonexpansive mapping such that F(T) ∩
EP(F)/= ∅. For an initial point x1 = x ∈ C, let a sequence {xn} be generated by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0 ∀y ∈ C,

yn = αnxn + (1 − αn)Tun,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, xn − x〉 ≤ 0},
xn+1 = PCn∩Qnx, ∀n ∈ N,

(1.6)

where 0 ≤ αn ≤ a < 1 and lim infn→∞rn > 0. Then, {xn} converges strongly to PF(T)∩EP(F)x.

Let A : H → H be a single-valued nonlinear mapping and let M : H → 2H be a
set-valued mapping. The variational inclusion is to find x̂ ∈ H such that

θ ∈ A(x̂) +M(x̂), (1.7)

where θ is the zero vector in H. The set of solutions of problem (1.7) is denoted by I(A,M).
Recall that a mapping A : H → H is called α-inverse strongly monotone if there exists a
constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ H. (1.8)

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ M(x),
and g ∈ M(y) imply 〈x − y, f − g〉 ≥ 0. A monotone mapping M is maximal if its graph
G(M) := {(f, x) ∈ H × H : f ∈ M(x)} of M is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mappingM is maximal if and only if
for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(M) imply f ∈ M(x). We define the
resolvent operator JM,λ associated withM and λ as follows:

JM,λ(x) = (I + λM)−1(x), x ∈ H, λ > 0. (1.9)

It is known that the resolvent operator JM,λ is single-valued, nonexpansive, and 1-
inverse strongly monotone; see [14], and that a solution of problem (1.7) is a fixed point of
the operator JM,λ(I − λA) for all λ > 0; see also [15]. If 0 < λ < 2α, it is easy to see that
JM,λ(I − λA) is a nonexpansive mapping; consequently, I(A,M) is closed and convex.

The equilibrium problems, generalized equilibrium problems, variational inequality
problems, and variational inclusions have been intensively studied by many authors; for
instance, see [8, 16–43].

Motivated by Tada and Takahashi [13] and Peng et al. [7], we introduce a new
approximation scheme for finding a common element of the set of fixed points of a finite
family of quasi-nonexpansive and Lipschitz mappings, the set of solutions of a generalized
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equilibrium problem, and the set of solutions of a variational inclusion with set-valued
maximal monotone and inverse strongly monotone mappings in the framework of Hilbert
spaces.

2. Preliminaries and Lemmas

Let C be a closed convex subset of a real Hilbert space H with norm ‖ · ‖ and inner product
〈·, ·〉. For each x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that
‖x−PCx‖ = miny∈C‖x−y‖. PC is called themetric projection ofH on to C. It is also known that
for x ∈ H and z ∈ C, z = PCx is equivalent to 〈x − z, y − z〉 ≤ 0 for all y ∈ C. Furthermore

∥
∥y − PCx

∥
∥2 + ‖x − PCx‖2 ≤

∥
∥x − y

∥
∥2 (2.1)

for all x ∈ H, y ∈ C; see also [4, 44]. In a real Hilbert space, we also know that

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y
∥∥2 − λ(1 − λ)

∥∥x − y
∥∥2 (2.2)

for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.1 (see [45]). Let C be a nonempty closed convex subset of a Hilbert space H. Then for
points w,x, y ∈ H and a real number a ∈ R, the set

D :=
{
z ∈ C : ‖y − z‖2 ≤ ‖x − z‖2 + 〈w, z〉 + a

}
is closed and convex. (2.3)

For solving the generalized equilibrium problem, let us give the following assump-
tions for F, ϕ, and the set C:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(A4) for each x ∈ C, y �→ F(x, y) is convex;

(A5) for each x ∈ C, y �→ F(x, y) is lower semicontinuous;

(B1) for each x ∈ H and r > 0, there exists a bounded subsetDx ⊆ C and yx ∈ C ∩domϕ
such that for any z ∈ C \Dx,

F
(
z, yx

)
+ ϕ

(
yx

)
+
1
r

〈
yx − z, z − x

〉
< ϕ(z); (2.4)

(B2) C is a bounded set.

Lemma 2.2 (see [7]). Let C be a nonempty closed convex subset of a real Hilbert H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5) and let ϕ : H → R ∪ {∞} be a proper lower
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semicontinuous and convex function such that C∩domϕ/= ∅. For r > 0 and x ∈ H, define a mapping
Sr : H → C as follows:

Sr(x) =
{
z ∈ C : F

(
z, y

)
+ ϕ

(
y
)
+
1
r

〈
y − z, z − x

〉 ≥ ϕ(z), ∀y ∈ C

}
. (2.5)

Assume that either (B1) or (B2) holds. Then, the following conclusions hold:

(1) for each x ∈ H, Sr(x)/= ∅;

(2) Sr is single-valued;

(3) Sr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Sr(x) − Sr(y)
∥∥2 ≤ 〈

Sr(x) − Sr

(
y
)
, x − y

〉
; (2.6)

(4) F(Sr) = GEP(F, ϕ);

(5) GEP(F, ϕ) is closed and convex.

Lemma 2.3 (see [14]). LetM : H → 2H be a maximal monotone mapping and let A : H → H be
a Lipshitz continuous mapping. Then the mapping S = M + A : H → 2H is a maximal monotone
mapping.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a quasi-
nonexpansive and L-Lipschitz mapping of C into itself. Then, F(T) is closed and convex.

Proof. Since T is L-Lipschitz, it is easy to show that F(T) is closed.
Let x, y ∈ F(T) and z = tx + (1 − t)y where t ∈ (0, 1). From (2.2), we have

‖z − Tz‖2 = t‖x − Tz‖2 + (1 − t)
∥∥y − Tz

∥∥2 − t(1 − t)
∥∥x − y

∥∥2

≤ t‖x − z‖2 + (1 − t)
∥∥y − z

∥∥2 − t(1 − t)
∥∥x − y

∥∥2

= t(1 − t)2
∥∥x − y

∥∥2 + (1 − t)t2
∥∥x − y

∥∥2 − t(1 − t)
∥∥x − y

∥∥2 = 0,

(2.7)

which implies z ∈ F(T); consequently, F(T) is convex. This completes the proof.

Lemma 2.5 (see [46]). In a strictly convex Banach space X, if

‖x‖ =
∥∥y

∥∥ =
∥∥λx + (1 − λ)y

∥∥ (2.8)

for all x, y ∈ X and λ ∈ (0, 1), then x = y.
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In 1999, Atsushiba and Takahashi [47] introduced the concept of the W-mapping as
follows:

U1 = β1T1 +
(
1 − β1

)
I,

U2 = β2T2U1 +
(
1 − β2

)
I,

...

UN−1 = βN−1TN−1UN−2 +
(
1 − βN−1

)
I,

W = UN = βNTNUN−1 +
(
1 − βN

)
I,

(2.9)

where {Ti}Ni=1 is a finite mapping of C into itself and βi ∈ [0, 1] for all i = 1, 2, . . . ,N with∑N
i=1 βi = 1.

Such a mapping W is called the W-mapping generated by T1, T2, . . . , TN and
β1, β2, . . . , βN ; see also [48–50]. Throughout this paper, we denote F :=

⋂N
i=1F(Ti).

Next, we prove some useful lemmas concerning the W-mapping.

Lemma 2.6. LetC be a nonempty closed convex subset of a strictly convex Banach spaceX. Let {Ti}Ni=1
be a finite family of quasi-nonexpansive and Li-Lipschitz mappings of C into itself such that F :=⋂N

i=1F(Ti)/= ∅ and let β1, β2, . . . , βN be real numbers such that 0 < βi < 1 for all i = 1, 2, . . . ,N−1, 0 <
βN ≤ 1, and

∑N
i=1 βi = 1. Let W be the W-mapping generated by T1, T2, . . . , TN and β1, β2, . . . , βN .

Then, the followings hold:

(i) W is quasi-nonexpansive and Lipschitz;

(ii) F(W) =
⋂N

i=1F(Ti).

Proof. (i) For each x ∈ C and z ∈ F, we observe that

‖T1x − z‖ ≤ ‖x − z‖. (2.10)

Let k ∈ {2, 3, . . . ,N}, then

‖Ukx − z‖ =
∥∥βkTkUk−1x +

(
1 − βk

)
x − z

∥∥

≤ βk‖Uk−1x − z‖ + (
1 − βk

)‖x − z‖.
(2.11)

Hence,

‖Wx − z‖ = ‖UNx − z‖
≤ βN‖UN−1x − z‖ + (

1 − βN
)‖x − z‖

≤ βN
(
βN−1‖UN−2x − z‖ + (

1 − βN−1
)‖x − z‖) + (

1 − βN
)‖x − z‖
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≤ βN
(
βN−1

(
βN−2‖UN−3x − z‖ + (

1 − βN−2
)‖x − z‖) + (

1 − βN−1
)‖x − z‖)

+
(
1 − βN

)‖x − z‖
...

≤ βN
(
βN−1

(
βN−2 · · ·

(
β2
(
β1‖T1x − z‖ + (

1 − β1
)‖x − z‖) + (

1 − β2
)‖x − z‖)

+ · · · + (
1 − βN−2

)‖x − z‖) + (
1 − βN−1

)‖x − z‖) + (
1 − βN

)‖x − z‖
≤ βN

(
βN−1

(
βN−2 · · ·

(
β2
(
β1‖x − z‖ + (

1 − β1
)‖x − z‖) + (

1 − β2
)‖x − z‖)

+ · · · + (
1 − βN−2

)‖x − z‖) + (
1 − βN−1

)‖x − z‖) + (
1 − βN

)‖x − z‖
= βN

(
βN−1

(
βN−2 · · ·

(
β3
(
β2‖x − z‖ + (

1 − β2
)‖x − z‖) + (

1 − β3
)‖x − z‖)

+ · · · + (
1 − βN−2

)‖x − z‖) + (
1 − βN−1

)‖x − z‖) + (
1 − βN

)‖x − z‖
= ‖x − z‖.

(2.12)

This shows that W is a quasi-nonexpansive mapping.
Next, we claim that W is a Lipschitz mapping. Note that Ti is Li-Lipschitz for all i =

1, 2, . . . ,N. For each x, y ∈ C, we observe

∥∥U1x −U1y
∥∥ =

∥∥β1T1x +
(
1 − β1

)
x − β1T1y − (

1 − β1
)
y
∥∥

≤ β1
∥∥T1x − T1y

∥∥ +
(
1 − β1

)∥∥x − y
∥∥

≤ (
β1L1 +

(
1 − β1

))∥∥x − y
∥∥.

(2.13)

Let k ∈ {2, 3, . . . ,N}, then

∥∥Ukx −Uky
∥∥ =

∥∥βkTkUk−1x +
(
1 − βk

)
x − βkTkUk−1y − (

1 − βk
)
y
∥∥

≤ βkLk

∥∥Uk−1x −Uk−1y
∥∥ +

(
1 − βk

)∥∥x − y
∥∥.

(2.14)

Hence,

∥∥Wx −Wy
∥∥ ≤ βNLN

∥∥UN−1x −UN−1y
∥∥ +

(
1 − βN

)∥∥x − y
∥∥

≤ βNLNβN−1LN−1
∥∥UN−2x −UN−2y

∥∥

+
(
βNLN

(
1 − βN−1

)
+
(
1 − βN

))∥∥x − y
∥∥

...
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≤ βNLNβN−1LN−1 · · · β2L2
∥
∥U1x −U1y

∥
∥

+
(
βNLNβN−1LN−1 · · · β3L3

(
1 − β2

)

+ βNLNβN−1LN−1 · · · β4L4
(
1 − β3

)

+ · · · + βNLN

(
1 − βN−1

)
+
(
1 − βN

))∥∥x − y
∥
∥

≤ βNLNβN−1LN−1 · · · β2L2
(
β1L1 +

(
1 − β1

)∥∥x − y
∥
∥)

+
(
βNLNβN−1LN−1 · · · β3L3

(
1 − β2

)

+ βNLNβN−1LN−1 · · · β4L4
(
1 − β3

)

+ · · · + βNLN

(
1 − βN−1

)
+
(
1 − βN

))∥∥x − y
∥
∥

=
(
βNLNβN−1LN−1 · · · β1L1

+ βNLNβN−1LN−1 · · · β2L2
(
1 − β1

)

+ βNLNβN−1LN−1 · · · β3L3
(
1 − β2

)

+ βNLNβN−1LN−1 · · · β4L4
(
1 − β3

)

+ · · · + βNLN

(
1 − βN−1

)
+
(
1 − βN

))∥∥x − y
∥∥.

≤ (LNLN−1 · · ·L1 + LNLN−1 · · ·L2 + LNLN−1 · · ·L3

+LNLN−1 · · ·L4 + · · · + LNLN−1 + LN + 1)
∥∥x − y

∥∥.

(2.15)

Since Li > 0 for all i = 1, 2, . . . ,N, we get that W is a Lipschitz mapping.
(ii) Since F ⊂ F(W) is trivial, it suffices to show that F(W) ⊂ F. To end this, let p ∈

F(W) and x∗ ∈ F. Then, we have

∥∥p − x∗∥∥ =
∥∥Wp − x∗∥∥ =

∥∥βN
(
TNUN−1p − x∗) +

(
1 − βN

)(
p − x∗)∥∥

≤ βN
∥∥UN−1p − x∗∥∥ +

(
1 − βN

)∥∥p − x∗∥∥

= βN
∥∥βN−1

(
TN−1UN−2p − x∗) +

(
1 − βN−1

)(
p − x∗)∥∥ +

(
1 − βN

)∥∥p − x∗∥∥

≤ βNβN−1
∥∥UN−2p − x∗∥∥ +

(
1 − βNβN−1

)∥∥p − x∗∥∥

= βNβN−1
∥∥βN−2

(
TN−2UN−3p − x∗) +

(
1 − βN−2

)(
p − x∗)∥∥ +

(
1 − βNβN−1

)∥∥p − x∗∥∥

≤ βNβN−1βN−2
∥∥UN−3p − x∗∥∥ +

(
1 − βNβN−1βN−2

)∥∥p − x∗∥∥

...

= βNβN−1 · · · β3
∥∥β2

(
T2U1p − x∗) +

(
1 − β2

)(
p − x∗)∥∥ +

(
1 − βNβN−1 · · · β3

)∥∥p − x∗∥∥
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≤ βNβN−1 · · · β2
∥
∥T2U1p − x∗∥∥ +

(
1 − βNβN−1 · · · β2

)∥∥p − x∗∥∥

≤ βNβN−1 · · · β2
∥
∥U1p − x∗∥∥ +

(
1 − βNβN−1 · · · β2

)∥∥p − x∗∥∥

= βNβN−1 · · · β2
∥
∥β1

(
T1p − x∗) +

(
1 − β1

)(
p − x∗)∥∥ +

(
1 − βNβN−1 · · · β2

)∥∥p − x∗∥∥

≤ βNβN−1 · · · β2β1
∥
∥T1p − x∗∥∥ +

(
1 − βNβN−1 · · · β2β1

)∥∥p − x∗∥∥

≤ βNβN−1 · · · β2β1
∥
∥p − x∗∥∥ +

(
1 − βNβN−1 · · · β2β1

)∥∥p − x∗∥∥ =
∥
∥p − x∗∥∥.

(2.16)

This shows that

∥
∥p − x∗∥∥ = βNβN−1 · · · β2

∥
∥β1

(
T1p − x∗) +

(
1 − β1

)(
p − x∗)∥∥ +

(
1 − βNβN−1 · · · β2

)∥∥p − x∗∥∥,
(2.17)

and hence

∥∥p − x∗∥∥ =
∥∥β1

(
T1p − x∗) +

(
1 − β1

)(
p − x∗)∥∥. (2.18)

Again by (2.16), we see that ‖p − x∗‖ = ‖T1p − x∗‖. Hence

∥∥p − x∗∥∥ =
∥∥T1p − x∗∥∥ =

∥∥β1
(
T1p − x∗) +

(
1 − β1

)(
p − x∗)∥∥. (2.19)

Applying Lemma 2.5 to (2.19), we get that T1p = p and hence U1p = p.
Again by (2.16), we have

∥∥p − x∗∥∥ = βNβN−1 · · · β3
∥∥β2

(
T2U1p − x∗) +

(
1 − β2

)(
p − x∗)∥∥ +

(
1 − βNβN−1 · · · β3

)∥∥p − x∗∥∥,
(2.20)

and hence

∥∥p − x∗∥∥ =
∥∥β2

(
T2U1p − x∗) +

(
1 − β2

)(
p − x∗)∥∥. (2.21)

From (2.16), we know that ‖U1p − x∗‖ = ‖T2U1p − x∗‖. Since U1p = p, we have

∥∥p − x∗∥∥ =
∥∥T2p − x∗∥∥ =

∥∥β2
(
T2p − x∗) +

(
1 − β2

)(
p − x∗)∥∥. (2.22)

Applying Lemma 2.5 to (2.22), we get that T2p = p and hence U2p = p.
By proving in the same manner, we can conclude that Tip = p and Uip = p for all

i = 1, 2, . . . ,N − 1. Finally, we also have

∥∥p − TNp
∥∥ ≤ ∥∥p −Wp

∥∥ +
∥∥Wp − TNp

∥∥ =
∥∥p −Wp

∥∥ +
(
1 − βN

)∥∥p − TNp
∥∥, (2.23)

which yields that p = TNp since p ∈ F(W). Hence p ∈ F :=
⋂N

i=1F(Ti).
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Lemma 2.7. Let C be a nonempty closed convex subset of a Banach space X. Let {Ti}Ni=1 be a finite
family of quasi-nonexpansive and Li-Lipschitz mappings of C into itself and {βn,i}Ni=1 sequences in
[0, 1] such that βn,i → βi as n → ∞. Moreover, for every n ∈ N, let W and Wn be the W-mappings
generated by T1, T2, . . . , TN and β1, β2, . . . , βN and T1, T2, . . . , TN and βn,1, βn,2, . . . , βn,N , respectively.
Then

lim
n→∞

‖Wnx −Wx‖ = 0, ∀x ∈ C. (2.24)

Proof. Let x ∈ C and Uk and Un,k be generated by T1, T2, . . . , Tk and β1, β2, . . . , βk and
T1, T2, . . . , Tk and βn,1, βn,2, . . . , βn,k, respectively. Then

‖Un,1x −U1x‖ =
∥
∥(βn,1 − β1

)
(T1x − x)

∥
∥ ≤ ∣

∣βn,1 − β1
∣
∣‖T1x − x‖. (2.25)

Let k ∈ {2, 3, . . . ,N} and M = max{‖TkUk−1x‖ + ‖x‖ : k = 2, 3, . . . ,N}. Then

‖Un,kx −Ukx‖ =
∥∥βn,kTkUn,k−1x +

(
1 − βn,k

)
x − βkTkUk−1 −

(
1 − βk

)
x
∥∥

=
∥∥βn,kTkUn,k−1x − βn,kx − βkTkUk−1 + βkx

∥∥

≤ βn,k‖TkUn,k−1x − TkUk−1x‖ +
∣∣βn,k − βk

∣∣‖TkUk−1x‖ +
∣∣βn,k − βk

∣∣‖x‖
≤ Lk‖Un,k−1x −Uk−1x‖ +

∣∣βn,k − βk
∣∣M.

(2.26)

It follows that

‖Wnx −Wx‖ = ‖Un,Nx −UNx‖
≤ LN‖Un,N−1x −UN−1x‖ +

∣∣βn,N − βN
∣∣M

≤ LN

(
LN−1‖Un,N−2x −UN−2x‖ +

∣∣βn,N−1 − βN−1
∣∣M

)
+
∣∣βn,N − βN

∣∣M

= LNLN−1‖Un,N−2x −UN−2x‖ + LN

∣∣βn,N−1 − βN−1
∣∣M +

∣∣βn,N − βN
∣∣M

...

≤ LNLN−1 · · ·L3
(
L2‖Un,1x −U1x‖ +

∣∣βn,2 − β2
∣∣M

)

+ LNLN−1 · · ·L4
∣∣βn,3 − β3

∣∣M + · · · + LN

∣∣βn,N−1 − βN−1
∣∣M +

∣∣βn,N − βN
∣∣M

≤ LNLN−1 · · ·L2
∣∣βn,1 − β1

∣∣‖T1x − x‖ + LNLN−1 · · ·L3
∣∣βn,2 − β2

∣∣M

+ LNLN−1 · · ·L4
∣∣βn,3 − β3

∣∣M + · · · + LN

∣∣βn,N−1 − βN−1
∣∣M +

∣∣βn,N − βN
∣∣M.

(2.27)

Since βn,i → βi as n → ∞ (i = 1, 2, . . . ,N), we obtain the result.
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3. Strong Convergence Theorems

In this section, we prove a strong convergence theorem which solves the problem of finding
a common element of the set of solutions of a generalized equilibrium problem and the set
of solutions of a variational inclusion and the set of common fixed points of a finite family of
quasi-nonexpansive and Lipschitz mappings.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH, let F : C×C → R
be a bifunction satisfying (A1)–(A5), let ϕ : C → R ∪ {∞} be a proper lower semicontinuous and
convex function, letA : H → H be an α-inverse strongly monotone mapping, letM : H → 2H be a
maximal monotone mapping, and let {Ti}Ni=1 be a finite family of quasi-nonexpansive and Li-Lipschitz
mappings of C into itself. Assume that Ω :=

⋂N
i=1F(Ti) ∩ GEP(F, ϕ) ∩ I(A,M)/= ∅ and either (B1)

or (B2) holds. Let Wn be the W-mapping generated by T1, T2, . . . , TN and βn,1, βn,2, . . . , βn,N . For
an initial point x0 ∈ H with C1 = C and x1 = PC1x0, let {xn}, {yn}, {zn}, and {un} be sequences
generated by

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Wnun,

zn = JM,λn

(
yn − λnAyn

)
,

Cn+1 =
{
z ∈ Cn : ‖zn − z‖ ≤ ∥∥yn − z

∥∥ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ∈ N,

(3.1)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞) and {λn} ⊂ [c, d] for
some c, d ∈ (0, 2α).

Then, {xn}, {yn}, {zn}, and {un} converge strongly to z0 = PΩx0.

Proof. Since 0 < c ≤ λn ≤ d < 2α for all n ∈ N, we get that JM,λn(I−λnA) is nonexpansive for all
n ∈ N. Hence,

⋂∞
n=1F(JM,λn(I − λnA)) = I(A,M) is closed and convex. By Lemma 2.2(5), we

know that GEP(F, ϕ) is closed and convex. By Lemma 2.4, we also know that F :=
⋂N

i=1F(Ti) is
closed and convex. Hence,Ω :=

⋂N
i=1F(Ti)∩GEP(F, ϕ)∩ I(A,M) is a nonempty closed convex

set; consequently, PΩx0 is well defined for every x0 ∈ H.
Next, we divide the proof into seven steps.

Step 1. Show that Ω ⊂ Cn for all n ∈ N.

By Lemma 2.1, we see that Cn is closed and convex for all n ∈ N. Hence PCn+1x0 is well
defined for every x0 ∈ H, n ∈ N. Let p ∈ Ω. From un = Srnxn and p = JM,λn(p − λnAp) for all
n ∈ N, we have

∥∥zn − p
∥∥ =

∥∥JM,λn

(
yn − λnAyn

) − JM,λn

(
p − λnAp

)∥∥

≤ ∥∥yn − p
∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥Wnun − p
∥∥

≤ αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥un − p
∥∥

= αn

∥∥xn − p
∥∥ + (1 − αn)

∥∥Srnxn − Srnp
∥∥

≤ ∥∥xn − p
∥∥.

(3.2)

It follows that p ∈ Cn+1, and hence Ω ⊂ Cn for all n ∈ N.



12 Fixed Point Theory and Applications

Step 2. Show that limn→∞‖xn − x0‖ exists.

Since Ω is a nonempty closed convex subset of C, there exists a unique element z0 =
PΩx0 ∈ Ω ⊂ Cn. From xn = PCnx0, we obtain

‖xn − x0‖ ≤ ‖z0 − x0‖. (3.3)

Hence {‖xn − x0‖} is bounded; so are {yn}, {zn}, and {un}.
Since xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we also have

‖xn − x0‖ ≤ ‖xn+1 − x0‖. (3.4)

From (3.3) and (3.4), we get that limn→∞‖xn − x0‖ exists.

Step 3. Show that {xn} is a Cauchy sequence.

By the construction of the set Cn, we know that xm = PCmx0 ∈ Cm ⊂ Cn form > n. From
(2.1), it follows that

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2 −→ 0, (3.5)

asm,n → ∞. Hence {xn} is a Cauchy sequence. By the completeness ofH and the closeness
of C, we can assume that xn → q ∈ C.

Step 4. Show that q ∈ F.

From (3.5), we get

‖xn+1 − xn‖ −→ 0, (3.6)

as n → ∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ −→ 0, (3.7)

as n → ∞. Hence, zn → q as n → ∞. By the nonexpansiveness of JM,λn and the inverse
strongly monotonicity of A, we obtain that

∥∥zn − p
∥∥2 ≤ ∥∥yn − λnAyn − (p − λnAp)

∥∥2

≤ ∥∥yn − p
∥∥2 + λn(λn − 2α)

∥∥Ayn −Ap
∥∥2

≤ ∥∥xn − p
∥∥2 + c(d − 2α)

∥∥Ayn −Ap
∥∥2
.

(3.8)
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This implies that

c(2α − d)
∥
∥Ayn −Ap

∥
∥2 ≤ ∥

∥xn − p
∥
∥2 − ∥

∥zn − p
∥
∥2

≤ ‖xn − zn‖
(∥∥xn − p

∥
∥ +

∥
∥zn − p

∥
∥).

(3.9)

It follows from (3.7) that

lim
n→∞

∥
∥Ayn −Ap

∥
∥ = 0. (3.10)

Since JM,λn is 1-inverse strongly monotone, we have

∥
∥zn − p

∥
∥2 =

∥
∥JM,λn

(
yn − λnAyn

) − JM,λn

(
p − λnAp

)∥∥2

≤ 〈(
yn − λnAyn

) − (
p − λnAp

)
, zn − p

〉

=
1
2

(∥∥(yn − λnAyn

) − (p − λnAp)
∥∥2 +

∥∥zn − p
∥∥2

−∥∥(yn − λnAyn) − (p − λnAp) − (zn − p)
∥∥2
)

≤ 1
2

(∥∥yn − p
∥∥2 +

∥∥zn − p
∥∥2 − ∥∥(yn − zn) − λn(Ayn −Ap)

∥∥2
)

≤ 1
2

(∥∥xn − p
∥∥2 +

∥∥zn − p
∥∥2 − ∥∥yn − zn

∥∥2 + 2λn
〈
yn − zn,Ayn −Ap

〉)

≤ 1
2

(∥∥xn − p
∥∥2 +

∥∥zn − p
∥∥2 − ∥∥yn − zn

∥∥2 + 2λn
∥∥yn − zn

∥∥∥∥Ayn −Ap
∥∥
)
.

(3.11)

This implies that

∥∥zn − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ∥∥yn − zn
∥∥2 + 2λn

∥∥yn − zn
∥∥∥∥Ayn −Ap

∥∥. (3.12)

It follows that

∥∥yn − zn
∥∥2 ≤ ‖xn − zn‖

(∥∥xn − p
∥∥ +

∥∥zn − p
∥∥)

+ 2d
∥∥yn − zn

∥∥∥∥Ayn −Ap
∥∥.

(3.13)

From (3.7) and (3.10)we get

lim
n→∞

∥∥yn − zn
∥∥ = 0. (3.14)

It follows from (3.7) and (3.14) that

‖Wnun − xn‖ =
1

1 − αn

∥∥yn − xn

∥∥ −→ 0, (3.15)
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as n → ∞. Since Srn is firmly nonexpansive and un = Srnxn, we have

∥
∥un − p

∥
∥2 =

∥
∥Srnxn − Srnp

∥
∥2

≤ 〈
Srnxn − Srnp, xn − p

〉

=
〈
un − p, xn − p

〉

=
1
2

(∥
∥un − p

∥
∥2 +

∥
∥xn − p

∥
∥2 − ‖xn − un‖2

)
,

(3.16)

which implies that

∥∥un − p
∥∥2 ≤ ∥∥xn − p

∥∥2 − ‖xn − un‖2. (3.17)

It follows from (3.17) that

∥∥yn − p
∥∥2 ≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥Wnun − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

∥∥un − p
∥∥2

≤ αn

∥∥xn − p
∥∥2 + (1 − αn)

(∥∥xn − p
∥∥2 − ‖xn − un‖2

)

=
∥∥xn − p

∥∥2 − (1 − αn)‖xn − un‖2,

(3.18)

which yields that

(1 − a)‖xn − un‖2 ≤
∥∥xn − p

∥∥2 − ∥∥yn − p
∥∥2
. (3.19)

Hence, from (3.7) and (3.14), we also have

lim
n→∞

‖xn − un‖ = 0. (3.20)

It follows from (3.15) and (3.20) that

lim
n→∞

‖un −Wnun‖ = 0. (3.21)

By Lemma 2.7, we also get that limn→∞‖un − Wun‖ = 0. From Lemma 2.6(i), we know that
W is Lipschitz. Since un → q as n → ∞, it is easy to verify that q ∈ F(W). Moreover, by
Lemma 2.6(ii), we can conclude that q ∈ F :=

⋂N
i=1F(Ti).
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Step 5. Show that q ∈ GEP(F, ϕ).

Since un = Srnxn, we have

F
(
un, y

)
+ ϕ

(
y
)
+

1
rn

〈
y − un, un − xn

〉 ≥ ϕ(un), ∀y ∈ C. (3.22)

From (A2), we have

ϕ
(
y
)
+

1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
+ ϕ(un), ∀y ∈ C. (3.23)

It follows from (A5) and theweakly lower semicontinuity of ϕ, ‖xn−un‖/rn → 0, and un → q
that

F
(
y, q

)
+ ϕ

(
q
) ≤ ϕ

(
y
)
, ∀y ∈ C. (3.24)

Put yt = ty+(1−t)q for all t ∈ (0, 1] and y ∈ C∩domϕ. Since y ∈ C∩domϕ and q ∈ C∩domϕ,
we obtain yt ∈ C ∩ domϕ, and hence F(yt, q) + ϕ(q) ≤ ϕ(yt). So by (A1), (A4), and the
convexity of ϕ, we have

0 = F
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tF
(
yt, y

)
+ (1 − t)F

(
yt, q

)
+ tϕ

(
y
)
+ (1 − t)ϕ

(
q
) − ϕ

(
yt

)

≤ t
[
F
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
.

(3.25)

Hence,

F
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

) ≥ 0. (3.26)

Letting t → 0, it follows from (A3) and the weakly semicontinuity of ϕ that

F
(
q, y

)
+ ϕ

(
y
) ≥ ϕ

(
q
)

(3.27)

for all y ∈ C ∩ domϕ. Observe that if y ∈ C \ domϕ, then F(q, y) + ϕ(y) ≥ ϕ(q) holds. Hence
q ∈ GEP(F, ϕ).

Step 6. Show that q ∈ I(A,M).

First observe that A is an (1/α)-Lipschitz monotone mapping and D(A) = H. From
Lemma 2.3, we know that M + A is maximal monotone. Let (v, g) ∈ G(M + A), that is,
g −Av ∈ M(v). Since zn = JM,λn(yn − λnAyn), we get yn − λnAyn ∈ (I + λnM)(zn), that is,

1
λn

(
yn − zn − λnAyn

) ∈ M(zn). (3.28)
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By the maximal monotonicity of M +A, we have

〈
v − zn, g −Av − 1

λn

(
yn − zn − λnAyn

)
〉

≥ 0, (3.29)

and so

〈v − zn, g〉 ≥
〈
v − zn,Av +

1
λn

(
yn − zn − λnAyn

)
〉

=
〈
v − zn,Av −Azn +Azn −Ayn +

1
λn

(
yn − zn

)
〉

≥ 0 +
〈
v − zn,Azn −Ayn

〉
+
〈
v − zn,

1
λn

(
yn − zn

)
〉
.

(3.30)

It follows from ‖yn − zn‖ → 0, ‖Ayn −Azn‖ → 0 and zn → q that

lim
n→∞

〈v − zn, g〉 = 〈v − q, g〉 ≥ 0. (3.31)

By the maximal monotonicity ofM +A, we have θ ∈ (M +A)(q); consequently, q ∈ I(A,M).

Step 7. Show that q = z0 = PΩx0.

Since xn = PCnx0 and Ω ⊂ Cn, we obtain

〈
x0 − xn, xn − p

〉 ≥ 0 ∀p ∈ Ω. (3.32)

By taking the limit in (3.32), we obtain

〈
x0 − q, q − p

〉 ≥ 0 ∀p ∈ Ω. (3.33)

This shows that q = PΩx0 = z0.
From Steps 1–7, we can conclude that {xn}, {yn}, {zn}, and {un} converge strongly to

z0 = PΩx0. This completes the proof.

4. Applications

As a direct consequence of Theorem 3.1, we obtain some new and interesting results in a
Hilbert space as the following theorems. Recall that VI(A,C) is the solution set of the classical
variational inequality

〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C. (4.1)
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Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH, let F : C×C → R
be a bifunction satisfying (A1)–(A5), let ϕ : C → R ∪ {∞} be a proper lower semicontinuous and
convex function, let A : C → H be an α-inverse strongly monotone mapping, and let {Ti}Ni=1 be
a finite family of quasi-nonexpansive and Li-Lipschitz mappings of C into itself. Assume that Ω :=⋂N

i=1F(Ti) ∩ GEP(F, ϕ) ∩ VI(A,C)/= ∅ and either (B1) or (B2) holds. Let Wn be the W-mapping
generated by T1, T2, . . . , TN and βn,1, βn,2, . . . , βn,N . For an initial point x0 ∈ H with C1 = C and
x1 = PC1x0, let {xn}, {yn}, {zn}, and {un} be sequences generated by

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Wnun,

zn = PC

(
yn − λnAyn

)
,

Cn+1 =
{
z ∈ Cn : ‖zn − z‖ ≤ ∥∥yn − z

∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, ∀n ∈ N,

(4.2)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞), and {λn} ⊂ [c, d] for
some c, d ∈ (0, 2α).

Then, {xn}, {yn}, {zn}, and {un} converge strongly to z0 = PΩx0.

Proof. In Theorem 3.1, take M = ∂δC : H → 2H , where δC : H → [0,∞] is the indicator
function of C. It is well known that the subdifferential ∂δC is a maximal monotone operator.
Then, problem (1.7) is equivalent to problem (4.1) and the resolvent operator JM,λn = PC for
all n ∈ N. This completes the proof.

Next, we give a strong convergence theorem for finding a common element of the set
of solutions of an equilibrium problem, the set of solutions of a variational inclusion and the
set of common fixed points of a finite family of quasi-nonexpansive and Lipschitz mappings.
In order to do this, let us assume that

(B3) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊆ C and yx ∈ C such
that for any z ∈ C \Dx,

F
(
z, yx

)
+
1
r

〈
yx − z, z − x

〉
< 0. (4.3)

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert spaceH, let F : C×C → R
be a bifunction satisfying (A1)–(A5), let A : H → H be an α-inverse strongly monotone mapping,
let M : H → 2H be a maximal monotone mapping, and let {Ti}Ni=1 be a finite family of quasi-
nonexpansive and Li-Lipschitz mappings of C into itself. Assume that Ω :=

⋂N
i=1F(Ti) ∩ EP(F) ∩

I(A,M)/= ∅ and either (B1) or (B3) holds. LetWn be theW-mapping generated by T1, T2, . . . , TN and
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βn,1, βn,2, . . . , βn,N . For an initial point x0 ∈ H with C1 = C and x1 = PC1x0, let {xn}, {yn}, {zn},
and {un} be sequences generated by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = αnxn + (1 − αn)Wnun,

zn = JM,λn

(
yn − λnAyn

)
,

Cn+1 =
{
z ∈ Cn : ‖zn − z‖ ≤ ∥

∥yn − z
∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, ∀n ∈ N,

(4.4)

where {αn} ⊂ [0, a] for some a ∈ [0, 1), {rn} ⊂ [b,∞) for some b ∈ (0,∞), and {λn} ⊂ [c, d] for
some c, d ∈ (0, 2α).

Then, {xn}, {yn}, {zn}, and {un} converge strongly to z0 = PΩx0.

Proof. In Theorem 3.1, take ϕ(x) = δC(x), for all x ∈ H. Then problem (1.3) reduces to the
equilibrium problem (1.5).

Remark 4.3. Theorem 3.1 improves and extends the main results in [4, 13] and the
corresponding results.
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