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1. Introduction

Let E be a real Banach space and let E∗ be the dual space of E. Let A be a maximal monotone
operator from E to E∗. It is well known that many problems in nonlinear analysis and
optimization can be formulated as follows. Find a point u ∈ E satisfying

0 ∈ Au. (1.1)

We denote by A−10 the set of all points u ∈ C such that 0 ∈ Au. Such a problem
contains numerous problems in economics, optimization, and physics and is connected
with a variational inequality problem. It is well known that the variational inequalities are
equivalent to the fixed point problems. There are many authors who studied the problem of
finding a common element of the fixed point of nonlinear mappings and the set of solutions
of a variational inequality in the framework of Hilbert spaces see; for instance, [1–11] and the
reference therein.
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A well-known method to solve problem (1.1) is called the proximal point algorithm:
x0 ∈ E and

xn+1 = Jrnxn, n = 0, 1, 2, 3, . . . , (1.2)

where {rn} ⊂ (0,∞) and Jrn are the resovents of A. Many researchers have studies this
algorithm in a Hilbert space; see, for instance, [12–15] and in a Banach space; see, for instance,
[16, 17].

In 2005, Matsushita and Takahashi [18] proposed the following hybrid iteration
method (it is also called the CQ method) with generalized projection for relatively
nonexpansive mapping T in a Banach space E: x0 = x ∈ C chosen arbitrarily,

un = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx,

(1.3)

where J is the duality mapping on E, {αn} ⊂ [0, 1]. They proved that {xn} generated by (1.3)
converges strongly to a fixed point of T under condition that lim supn→∞αn < 1.

In 2008, Su et al. [19]modified the CQmethod (1.3) for approximation a fixed point of
a closed hemi-relatively nonexpansive mapping in a Banach space. Their method is known
as the monotone hybrid method defined as the following. x0 = x ∈ C chosen arbitrarily, then

x1 = x ∈ C, C−1 = Q−1 = C,

un = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx,

(1.4)

where J is the duality mapping on E, {αn} ⊂ [0, 1]. They proved that {xn} generated by (1.4)
converges strongly to a fixed point of T under condition that lim supn→∞αn < 1.

Note that the hybrid method iteration method presented byMatsushita and Takahashi
[18] can be used for relatively nonexpansive mapping, but it cannot be used for hemi-
relatively nonexpansive mapping.

Very recently, Inoue et al. [20] proved the following strong convergence theorem for
finding a common element of the zero point set of a maximal monotone operator and the
fixed point set of a relatively nonexpansive mapping by using the hybrid method.

Theorem 1.1 (Inoue et al. [20]). Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let A ⊂ E × E∗ be a monotone operator satisfying
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D(A) ⊂ C and let Jr = (J + rA)−1J for all r > 0. Let T : C → C be a relatively nonexpansive
mapping such that F(T) ∩A−10/= ∅. Let {xn} be a sequence generated by x0 = x ∈ C and

un = J−1(αnJxn + (1 − αn)JTJrnxn),

Cn =
{
z ∈ C : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(1.5)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some
a > 0. If lim infn→∞(1 − αn) > 0, then {xn} converges strongly toΠF(T)∩A−10x0, whereΠF(T)∩A−10 is
the generalized projection from C onto F(T) ∩A−10.

Employing the ideas of Inoue et al. [20] and Su et al. [19], we modify iterations
(1.4) and (1.5) to obtain strong convergence theorems for finding a common element of the
zero point set of a maximal monotone operator and the fixed point set of a hemi-relatively
nonexpansive mapping in a Banach space. Using these results, we obtain new convergence
results for resolvents of maximal monotone operators and hemi-relatively nonexpansive
mappings in a Banach space. The results of this paper modify and improve the results of
Inoue et al. [20], and some others.

2. Preliminaries

Throughout this paper, all linear spaces are real. LetN andR be the sets of all positive integers
and real numbers, respectively. Let E be a Banach space and let E∗ be the dual space of E. For
a sequence {xn} of E and a point x ∈ E, the weak convergence of {xn} to x and the strong
convergence of {xn} to x are denoted by xn ⇀ x and xn → x, respectively.

Let E be a Banach space. Then the duality mapping J from E into 2E
∗
is defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E. (2.1)

Let S(E) be the unit sphere centered at the origin of E. Then the space E is said to be
smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists uniformly
in x, y ∈ S(E). A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever
x, y ∈ S(E) and x /=y. It is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0
such that ‖(x + y)/2‖ < 1 − δ whenever x, y ∈ S(E) and ‖x − y‖ ≥ ε. We know the following
(see, [21]):

(i) if E in smooth, then J is single valued;

(ii) if E is reflexive, then J is onto;
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(iii) if E is strictly convex, then J is one to one;

(iv) if E is strictly convex, then J is strictly monotone;

(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

Let E be a smooth strictly convex and reflexive Banach space and let C be a closed
convex subset of E. Throughout this paper, define the function φ : E × E → R by

φ
(
y, x

)
=
∥
∥y

∥
∥2 − 2

〈
y, Jx

〉
+ ‖x‖2, ∀y, x ∈ E. (2.3)

Observe that, in a Hilbert space H, (2.3) reduces to φ(x, y) = ‖x − y‖2, for all x, y ∈ H. It is
obvious from the definition of the function φ that for all x, y ∈ E,

(1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉,
(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 ≤ ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖.
Following Alber [22], the generalized projection ΠC from E onto C is a map that

assigns to an arbitrary point x ∈ E the minimum point of the functional φ(y, x); that is,
ΠCx = x, where x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.4)

Existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J. In a Hilbert space, ΠC is the metric
projection of H onto C.

LetC be a closed convex subset of a Banach spaceE, and let T be amapping fromC into
itself.We use F(T) to denote the set of fixed points of T ; that is, F(T) = {x ∈ C : x = Tx}.Recall
that a self-mapping T : C → C is hemi-relatively nonexpansive if F(T)/= ∅ and φ(u, Tx) ≤ φ(u, x)
for all x ∈ C and u ∈ F(T).

A point u ∈ C is said to be an asymptotic fixed point of T if C contains a sequence
{xn} which converges weakly to u and limn→∞‖xn − Txn‖ = 0. We denote the set of all
asymptotic fixed points of T by F̂(T). A hemi-relative nonexpansive mapping T : C → C

is said to be relatively nonexpansive if F̂(T) = F(T)/= ∅. The asymptotic behavior of a relatively
nonexpansive mapping was studied in [23].

Recall that an operator T in a Banach space is call closed, if xn → x and Txn → y, then
Tx = y.

We need the following lemmas for the proof of our main results.

Lemma 2.1 (Kamimura and Takahashi [13]). Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be two sequences in E such that either {xn} or {yn} is bounded. If
limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.2 (Matsushita and Takahashi [18]). Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E and let T be a relatively hemi-nonexpansive mapping from C
into itself. Then F(T) is closed and convex.
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Lemma 2.3 (Alber [22], Kamimura and Takahashi [13]). Let C be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space, x ∈ E and let z ∈ C. Then, z = ΠCx if and only
if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C.

Lemma 2.4 (Alber [22], Kamimura and Takahashi [13]). Let C be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.5)

Let E be a smooth, strictly convex, and reflexive Banach space, and let A be a set-
valued mapping from E to E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax}, domain D(A) = {z ∈
E : Az/= ∅}, and range R(A) = ∪{Az : z ∈ D(A)}. We denote a set-valued operator A from E
to E∗ by A ⊂ E × E∗.A is said to be monotone of 〈x − y, x∗ − y∗〉 ≥ 0, for all (x, x∗), (y, y∗) ∈ A.
A monotone operator A ⊂ E × E∗ is said to be maximal monotone if its graph is not properly
contained in the graph of any other monotone operator. It is known that a monotonemapping
A is maximal if and only if for (x, x∗) ∈ E × E∗, 〈x − y, x∗ − y∗〉 ≥ 0 for every (y, y∗) ∈ G(A)
implies that x∗ ∈ Ax. We know that if A is a maximal monotone operator, then A−10 = {z ∈
D(A) : 0 ∈ Az} is closed and convex; see [19] for more details. The following result is well
known.

Lemma 2.5 (Rockafellar [24]). Let E be a smooth, strictly convex, and reflexive Banach space and
letA ⊂ E ×E∗ be a monotone operator. ThenA is maximal if and only if R(J + rA) = E∗ for all r > 0.

Let E be a smooth, strictly convex, and reflexive Banach space, let C be a nonempty
closed convex subset of E, and let A ⊂ E × E∗ be a monotone operator satisfying

D(A) ⊂ C ⊂ J−1
(
⋂

r>0

R(J + rA)

)

. (2.6)

Then we can define the resolvent Jr : C → D(A) by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz}, ∀x ∈ C. (2.7)

We know that Jrx consists of one point. For r > 0, the Yosida approximation Ar : C → E∗ is
defined by Arx = (Jx − JJrx)/r for all x ∈ C.

Lemma 2.6 (Kohsaka and Takahashi [25]). LetE be a smooth, strictly convex, and reflexive Banach
space, let C be a nonempty closed convex subset of E, and let A ⊂ E × E∗ be a monotone operator
satisfying

D(A) ⊂ C ⊂ J−1
(
⋂

r>0

R(J + rA)

)

. (2.8)
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Let r > 0 and let Jr andAr be the resolvent and the Yosida approximation ofA, respectively. Then, the
following hold:

(i) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x), for all x ∈ C, u ∈ A−10;

(ii) (Jrx,Arx) ∈ A, for all x ∈ C;

(iii) F(Jr) = A−10.

Lemma 2.7 (Kamimura and Takahashi [13]). Let E be a uniformly convex and smooth Banach
space and let r > 0. Then there exists a strictly increasing, continuous and convex function g :
[0, 2r] → [0,∞) such that g(0) = 0 and

g
(∥∥x − y

∥
∥) ≤ φ

(
x, y

)
(2.9)

for all x, y ∈ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ r}.

3. Main Results

In this section, we prove a strong convergence theorem for finding a common element of the
zero point set of a maximal monotone operator and the fixed point set of a hemi-relatively
nonexpansive mapping in a Banach space by using the monotone hybrid iteration method.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. LetA ⊂ E×E∗ be a monotone operator satisfyingD(A) ⊂ C and
let Jr = (J + rA)−1J for all r > 0. Let T : C → C be a closed hemi-relatively nonexpansive mapping
such that F(T) ∩A−10/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C, C−1 = Q−1 = C,

un = J−1(αnJxn + (1 − αn)JTJrnxn),

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnxl

(3.1)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some
a > 0. If lim infn→∞(1 − αn) > 0, then {xn} converges strongly toΠF(T)∩A−10x0, whereΠF(T)∩A−10 is
the generalized projection from C onto F(T) ∩A−10.

Proof. We first show that Cn andQn are closed and convex for each n ≥ 0. From the definition
of Cn andQn, it is obvious that Cn is closed andQn is closed and convex for each n ≥ 0. Next,
we prove that Cn is convex.

Since

φ(z, un) ≤ φ(z, xn) (3.2)
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is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈z, Jxn − Jun〉, (3.3)

which is affine in z, and hence Cn is convex. So, Cn ∩Qn is a closed and convex subset of E for
all n ≥ 0. Let u ∈ F(T) ∩A−10. Put yn = Jrnxn for all n ≥ 0. Since T and Jrn are hemi-relatively
nonexpansive mappings, we have

φ(u, un) = φ
(
u, J−1

(
αnJxn + (1 − αn)JTyn

))

= ‖u‖2 − 2
〈
u, αnJxn + (1 − αn)JTyn

〉
+
∥
∥αnJxn + (1 − αn)JTyn

∥
∥2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)
〈
u, JTyn

〉
+ αn‖xn‖2 + (1 − αn)

∥
∥Tyn

∥
∥2

= αnφ(u, xn) + (1 − αn)φ
(
u, Tyn

)

≤ αnφ(u, xn) + (1 − αn)φ
(
u, yn

)

= αnφ(u, xn) + (1 − αn)φ(u, Jrnxn)

≤ αnφ(u, xn) + (1 − αn)φ(u, xn)

= φ(u, xn).

(3.4)

So, u ∈ Cn for all n ≥ 0, which implies that F(T)∩A−10 ⊂ Cn. Next, we show that F(T)∩A−10 ⊂
Qn for all n ≥ 0. We prove that by induction. For k = 0, we have F(T) ∩ A−10 ⊂ C = Q−1.
Assume that F(T) ∩ A−10 ⊂ Qk−1 for some k ≥ 0. Because xk is the projection of x0 onto
Ck−1 ∩Qk−1 by Lemma 2.3, we have

〈xk − z, Jx0 − Jxk〉 ≥ 0, ∀z ∈ Ck−1 ∩Qk−1. (3.5)

Since F(T) ∩A−10 ⊂ Ck−1 ∩Qk−1, we have

〈xk − z, Jx0 − Jxk〉 ≥ 0, ∀z ∈ F(T) ∩A−10. (3.6)

This together with definition ofQn implies that F(T)∩A−10 ⊂ Qk and hence F(T)∩A−10 ⊂ Qn

for all n ≥ 0. So, we have that F(T)∩A−10 ⊂ Cn∩Qn for all n ≥ 0. This implies that {xn} is well
defined. From definition ofQn we have xn = ΠQnx0. So, from xn+1 = ΠCn∩Qnx0 ∈ Cn∩Qn ⊂ Qn,
we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3.7)

Therefore, {φ(xn, x0)} is nondecreasing. It follows from Lemma 2.4 and xn = ΠQnx0 that

φ(xn, x0) = φ
(
ΠQnx0, x0

) ≤ φ(u, x0) − φ
(
u,ΠQnx0

) ≤ φ(u, x0) (3.8)
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for all u ∈ F(T) ∩A−1 ⊂ Qn. Therefore, {φ(xn, x0)} is bounded. Moreover, by definition of φ,
we know that {xn} and {Jrnxn} = {yn} are bounded. So, the limit of {φ(xn, x0)} exists. From
xn = ΠQnx0,we have that for any positive integer,

φ(xn+k, xn) = φ
(
xn+k,ΠQnx0

) ≤ φ(xn+k, x0) − φ
(
ΠQnx0, x0

)
= φ(xn+k, x0) − φ(xn, x0). (3.9)

This implies that limn→∞φ(xn+k, xn) = 0. Since {xn} is bounded, there exists r > 0 such that
{xn} ⊂ Br(0). Using Lemma 2.7, we have, form,n withm > n,

g(‖xm − xn‖) ≤ φ(xm, xn) ≤ φ(xm, x0) − φ(xn, x0), (3.10)

where g : [0, 2r] → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0. Then the properties of the function g yield that {xn} is a Cauchy sequence in C. So
there exists w ∈ C such that xn → w. In view of xn+1 = ΠCn∩Qnx0 ∈ Cn and definition of Cn,
we also have

φ(xn+1, un) ≤ φ(xn+1, xn). (3.11)

It follows that limn→∞φ(xn+1, un) = limn→∞φ(xn+1, xn) = 0. Since E is uniformly convex and
smooth, we have from Lemma 2.1 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0. (3.12)

So, we have limn→∞‖xn−un‖ = 0. Since J is uniformly norm-to-norm continuous on bounded
sets, we have

lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jun‖ = lim
n→∞

‖Jxn − Jun‖ = 0. (3.13)

On the other hand, we have

‖Jxn+1 − Jun‖ =
∥∥Jxn+1 − αnJxn − (1 − αn)JTyn

∥∥

=
∥∥αn(Jxn+1 − Jxn) + (1 − αn)

(
Jxn+1 − JTyn

)∥∥

=
∥∥(1 − αn)

(
Jxn+1 − JTyn

) − αn(Jxn − Jxn+1)
∥∥

≥ (1 − αn)
∥∥Jxn+1 − JTyn

∥∥ − αn‖Jxn − Jxn+1‖.

(3.14)

This follows

∥∥Jxn+1 − JTyn

∥∥ ≤ 1
1 − αn

(‖Jxn+1 − Jun‖ + αn‖Jxn − Jxn+1‖). (3.15)

From (3.13) and lim infn→∞(1 − αn) > 0, we obtain that limn→∞‖Jxn+1 − JTyn‖ = 0.
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Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥xn+1 − Tyn

∥
∥ = 0. (3.16)

From

∥
∥xn − Tyn

∥
∥ ≤ ‖xn − xn+1‖ +

∥
∥xn+1 − Tyn

∥
∥, (3.17)

we have

lim
n→∞

∥
∥xn − Tyn

∥
∥ = 0. (3.18)

From (3.4), we have

φ
(
u, yn

) ≥ 1
1 − αn

(
φ(u, un) − αnφ(u, xn)

)
. (3.19)

Using yn = Jrnxn and Lemma 2.6, we have

φ
(
yn, xn

)
= φ(Jrnxn, xn) ≤ φ(u, xn) − φ(u, Jrnxn) = φ(u, xn) − φ

(
u, yn

)
. (3.20)

It follows that

φ
(
yn, xn

) ≤ φ(u, xn) − φ
(
u, yn

)

≤ φ(u, xn) − 1
1 − αn

(
φ(u, un) − αnφ(u, xn)

)

=
1

1 − αn

(
φ(u, xn) − φ(u, un)

)

=
1

1 − αn

(
‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉

)

≤ 1
1 − αn

(∣∣∣‖xn‖2 − ‖un‖2
∣∣∣ + 2|〈u, Jxn − Jun〉|

)

≤ 1
1 − αn

(|‖xn‖ − ‖un‖|(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖)

≤ 1
1 − αn

(‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖).

(3.21)

From (3.13) and limn→∞‖xn − un‖ = 0, we have limn→∞φ(yn, xn) = 0.



10 Fixed Point Theory and Applications

Since E is uniformly convex and smooth, we have from Lemma 2.1 that

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.22)

From limn→∞‖xn − Tyn‖ = 0, we have

lim
n→∞

∥
∥yn − Tyn

∥
∥ = 0. (3.23)

Since xn → w and limn→∞‖xn − yn‖ = 0, we have yn → w. Since T is a closed operator and
yn → w,w is a fixed point of T . Next, we showw ∈ A−10. Since J is uniformly norm-to-norm
continuous on bounded sets, from (3.22)we have

lim
n→∞

∥∥Jxn − Jyn

∥∥ = 0. (3.24)

From rn ≥ a, we have

lim
n→∞

1
rn

∥∥Jxn − Jyn

∥∥ = 0. (3.25)

Therefore, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1
rn

∥∥Jxn − Jyn

∥∥ = 0. (3.26)

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p − yn, p
∗ − Arnxn〉 ≥ 0 for all n ≥ 0.

Letting n → ∞, we get 〈p−w, p∗〉 ≥ 0. From the maximality ofA, we havew ∈ A−10. Finally,
we prove that w = ΠF(T)∩A−10x0. From Lemma 2.4, we have

φ
(
w,ΠF(T)∩A−10x0

)
+ φ

(
ΠF(T)∩A−10x0, x0

) ≤ φ(w,x0). (3.27)

Since xn+1 = ΠCn∩Qnx0 and w ∈ F(T) ∩A−10 ⊂ Cn ∩Qn,we get from Lemma 2.4 that

φ
(
ΠF(T)∩A−10x0, xn+1

)
+ φ(xn+1, x0) ≤ φ

(
ΠF(T)∩A−10x0, x0

)
. (3.28)

By the definition of φ, it follows that φ(w,x0) ≤ φ(ΠF(T)∩A−10x0, x0) and φ(w,x0) ≥
φ(ΠF(T)∩A−10x0, x0), whence φ(w,x0) = φ(ΠF(T)∩A−10x0, x0). Therefore, it follows from the
uniqueness of the ΠF(T)∩A−10x0 that w = ΠF(T)∩A−10x0.
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As direct consequences of Theorem 3.1, we can obtain the following corollaries.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space. Let A ⊂ E × E∗ be
a maximal monotone operator with A−10/= ∅ and let Jr = (J + rA)−1J for all r > 0. Let {xn} be a
sequence generated by x0 = x ∈ E and

un = Jrnxn,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.29)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1], and {rn} ⊂ [a,∞) for some
a > 0. Then {xn} converges strongly to ΠA−10x0, where ΠA−10 is the generalized projection from C
onto A−10.

Proof. Putting T = I, C = E, and αn = 0 in Theorem 3.1, we obtain Corollary 3.2.

Let E be a Banach space and let f : E → (−∞,∞] be a proper lower semicontinuous
convex function. Define the subdifferential of f as follows:

∂f(x) =
{
x∗ ∈ E : f

(
y
) ≥ 〈

y − x, x∗〉 + f(x), ∀y ∈ E
}

(3.30)

for each x ∈ E. Then, we know that ∂f is a maximal monotone operator; see [21] for more
details.

Corollary 3.3 (Su et al. [19, Theorem 3.1]). Let E be a uniformly convex and uniformly smooth
Banach space, let C be a nonempty closed convex subset of E, and let T be a closed hemi-relatively
nonexpansive mapping from C into itself such that F(T)/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C, C−1 = Q−1 = C,

un = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.31)

for all n ∈ N∪{0}, where J is the duality mapping on E and {αn} ⊂ [0, 1]. If lim infn→∞(1−αn) > 0,
then {xn} converges strongly toΠF(T)x0, whereΠF(T) is the generalized projection from C onto F(T).
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Proof. Set A = ∂iC in Theorem 3.1, where iC is the indicator function; that is,

iC =

⎧
⎨

⎩

0, x ∈ C,

∞, otherwise.
(3.32)

Then, we have that A is a maximal monotone operator and Jr = ΠC for r > 0, in fact, for any
x ∈ E and r > 0, we have from Lemma 2.3 that

z = Jrx ⇐⇒ Jz + r∂iC(z) � Jx

⇐⇒ Jx − Jz ∈ r∂iC(z)

⇐⇒ iC
(
y
) ≥

〈
y − z,

Jx − Jz

r

〉
+ iC(z), ∀y ∈ E

⇐⇒ 0 ≥ 〈
y − z, Jx − Jz

〉
, ∀y ∈ C

⇐⇒ z = arg min
y∈C

φ
(
y, x

)

⇐⇒ z = ΠCx.

(3.33)

So, we obtain the desired result by using Theorem 3.1.

Since every relatively nonexpansive mapping is a hemi-relatively one, the following
theorem is obtained directly from Theorem 3.1.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let A ⊂ E × E∗ be a monotone operator satisfying D(A) ⊂ C
and let Jr = (J + rA)−1J for all r > 0. Let T : C → C be a closed relatively nonexpansive mapping
such that F(T) ∩A−10/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C, C−1 = Q−1 = C,

un = J−1(αnJxn + (1 − αn)JTJrnxn),

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.34)

for all n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some
a > 0. If lim infn→∞(1 − αn) > 0, then {xn} converges strongly toΠF(T)∩A−10x0, whereΠF(T)∩A−10 is
the generalized projection from C ontoF(T) ∩A−10.
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Corollary 3.5 (Su et al. [19, Theorem 3.2]). Let E be a uniformly convex and uniformly smooth
Banach space, let C be a nonempty closed convex subset of E, and let T be a closed relatively
nonexpansive mapping from C into itself such that F(T)/= ∅. Let {xn} be a sequence generated by

x0 = x ∈ C, C−1 = Q−1 = C,

un = J−1(αnJxn + (1 − αn)JTxn),

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)

}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(3.35)

for all n ∈ N∪{0}, where J is the duality mapping on E and {αn} ⊂ [0, 1]. If lim infn→∞(1−αn) > 0,
then {xn} converges strongly toΠF(T)x0, whereΠF(T) is the generalized projection from C onto F(T).

Proof. Set A = ∂iC in Theorem 3.4, where iC is the indicator function. So, from Theorem 3.4,
we obtain the desired result.
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