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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖ and let C be a
nonempty closed convex subset of H. Let ϕ : C → R ∪ {+∞} be a function and let F be a
bifunction from C × C to R, where R is the set of real numbers. Ceng and Yao [1] and Bigi et
al. [2] considered the following mixed equilibrium problem:

Find x ∈ C such that F
(
x, y

)
+ ϕ

(
y
) ≥ ϕ(x), ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by MEP(F, ϕ). It is easy to see that x is a solution of
problem (1.1) implies that x ∈ domϕ = {x ∈ C | ϕ(x) < +∞}.
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If ϕ = 0, then the mixed equilibrium problem (1.1) becomes the following equilibrium
problem:

Finding x ∈ C such that F
(
x, y

) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP(F).
If F(x, y) = 0 for all x, y ∈ C, the mixed equilibrium problem (1.1) becomes the

following minimization problem:

Finding x ∈ C such that ϕ
(
y
) ≥ ϕ(x), ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by Argmin(ϕ).
The problem (1.1) is very general in the sense that it includes, as special cases,

optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games, and others; see, for instance, [1–4].

Recall that a mapping S of a closed convex subset C into itself is nonexpansive [5] if
there holds that

∥∥Sx − Sy
∥∥ ≤ ∥∥x − y

∥∥ ∀x, y ∈ C. (1.4)

We denote the set of fixed points of S by Fix(S). Ceng and Yao [1] introduced an
iterative scheme for finding a common element of the set of solutions of problem (1.1) and
the set of common fixed points of a finite family of nonexpansive mappings in a Hilbert space
and obtained a strong convergence theorem.

Some methods have been proposed to solve the problem (1.2); see, for instance,
[3, 4, 6–12] and the references therein. Recently, Combettes and Hirstoaga [6] introduced an
iterative scheme of finding the best approximation to the initial data when EP(F) is nonempty
and proved a strong convergence theorem. Takahashi and Takahashi [7] introduced an
iterative scheme by the viscosity approximation method for finding a common element of the
set of solutions of problem (1.2) and the set of fixed points of a nonexpansive mapping in a
Hilbert space and proved a strong convergence theorem. Su et al. [8] introduced the following
iterative scheme by the viscosity approximation method for finding a common element of the
set of solutions of problem (1.2) and the set of fixed points of a nonexpansive mapping and
the set of solutions of the variational inequality problem for an α-inverse strongly monotone
mapping in a Hilbert space. Starting with an arbitrary x1 ∈ H, define sequences {xn} and
{un} by

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)SPC(un − λnAun), ∀n ∈ N.

(1.5)

They proved that under certain appropriate conditions imposed on {αn}, {rn}, and {λn}, the
sequences {xn} and {un} generated by (1.5) converge strongly to z ∈ Fix(S)∩EP(F)∩VI(C,A),
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where z = PFix(S)∩EP(F)∩VI(C,A)f(z). Tada and Takahashi [9] introduced two iterative schemes
for finding a common element of the set of solutions of problem (1.2) and the set of fixed
points of a nonexpansive mapping in a Hilbert space and obtained both strong convergence
theorem and weak convergence theorem.

On the other hand, for solving the variational inequality problem in the finite-
dimensional Euclidean Rn, Korpelevich [13] introduced the following so-called extragradient
method:

x1 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC

(
xn − λAyn

)

(1.6)

for every n = 0, 1, 2, . . . , where λ ∈ (0, 1/k). She showed that if VI(C,A) is nonempty, then
the sequences {xn} and {yn}, generated by (1.6), converge to the same point z ∈ VI(C,A).
The idea of the extragradient iterative process introduced by Korpelevich was successfully
generalized and extended not only in Euclidean but also inHilbert and Banach spaces; see, for
example, the recent papers of He et al. [14], Gárciga Otero and Iuzem [15], and Solodov and
Svaiter [16], Solodov [17]. Moreover, Zeng and Yao [18] and Nadezhkina and Takahashi [19]
introduced iterative processes based on the extragradient method for finding the common
element of the set of fixed points of nonexpansive mappings and the set of solutions of
variational inequality problem for a monotone, Lipschitz continuous mapping. Yao and
Yao [20] introduced an iterative process based on the extragradient method for finding the
common element of the set of fixed points of nonexpansive mappings and the set of solutions
of variational inequality problem for an α-inverse strongly monotone mapping. Plubtieng
and Punpaeng [11] introduced an iterative process based on the extragradient method for
finding the common element of the set of fixed points of nonexpansive mappings, the set
of solutions of an equilibrium problem, and the set of solutions of variational inequality
problem for α-inverse strongly monotone mappings. Chang et al. [12] introduced some
iterative processes based on the extragradient method for finding the common element of
the set of fixed points of a infinite family of nonexpansive mappings, the set of solutions
of an equilibrium problem, and the set of solutions of variational inequality problem for
an α-inverse strongly monotone mapping. Peng et al. [21] introduced a new approximation
scheme combining the viscosity method with parallel method for finding a common element
of the set of solutions of a generalized equilibrium problem and the set of fixed points of a
finite family of strict pseudocontractions and obtain a strong convergence theorem for the
sequences generated by these processes in Hilbert spaces.

In the present paper, we introduce a new approximation scheme combining the
viscosity method with extragradient method for finding a common element of the set of
solutions of a mixed equilibrium problem, the set of fixed points of a finite family of
nonexpansive mappings, and the set of solutions of the variational inequality for a monotone,
Lipschitz continuous mapping. We obtain a strong convergence theorem for the sequences
generated by these processes. Based on this result, we also get some new and interesting
results. The results in this paper generalize and improve some well-known results in the
literature.
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H. Let symbols → and ⇀ denote strong and weak convergence,
respectively. In a real Hilbert space H, it is well known that

∥
∥λx + (1 − λ)y

∥
∥2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥2 − λ(1 − λ)

∥
∥x − y

∥
∥2 (2.1)

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the metric projection of H onto
C. We know that PC is a nonexpansive mapping fromH onto C. It is also known that PCx ∈ C
and

〈
x − PC(x), PC(x) − y

〉 ≥ 0 (2.2)

for all x ∈ H and y ∈ C.
It is easy to see that (2.2) is equivalent to

∥∥x − y
∥∥2 ≥ ‖x − PC(x)‖2 +

∥∥y − PC(x)
∥∥2 (2.3)

for all x ∈ H and y ∈ C.
A mapping A of C intoH is called monotone if

〈
Ax −Ay, x − y

〉 ≥ 0 (2.4)

for all x, y ∈ C. A mappingA of C intoH is called α-inverse strongly monotone if there exists
a positive real number α such that

〈
x − y,Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2 (2.5)

for all x, y ∈ C. A mapping A : C → H is called k-Lipschitz continuous if there exists a
positive real number k such that

∥∥Ax −Ay
∥∥ ≤ k

∥∥x − y
∥∥ (2.6)

for all x, y ∈ C. It is easy to see that if A is α-inverse strongly monotone mappings, then A
is monotone and Lipschitz continuous. The converse is not true in general. The class of α-
inverse strongly monotone mappings does not contain some important classes of mappings
even in a finite-dimensional case. For example, if the matrix in the corresponding linear
complementarity problem is positively semidefinite, but not positively definite, then the
mapping A is monotone and Lipschitz continuous, but not α-inverse strongly monotone.
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Let A be a monotone mapping of C intoH. In the context of the variational inequality
problem the characterization of projection (2.2) implies the following:

u ∈ VI(C,A) =⇒ u = PC(u − λAu), λ > 0,

u = PC(u − λAu) for some λ > 0 =⇒ u ∈ VI(C,A).
(2.7)

It is also known thatH satisfies Opial’s condition [22], that is, for any sequence {xn} ⊂
H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.8)

holds for every y ∈ H with x /=y.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and

g ∈ Ty imply 〈x−y, f−g〉 ≥ 0. Amonotonemapping T : H → 2H is maximal if its graphG(T)
of T is not properly contained in the graph of any other monotone mapping. It is known that
a monotone mapping T is maximal if and only if for (x, f) ∈ H×H, 〈x−y, f −g〉 ≥ 0 for every
(y, g) ∈ G(T) implies f ∈ Tx. Let A be a monotone, k-Lipschitz continuous mapping ofC into
H and letNCv be normal cone to C at v ∈ C, that is,NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}.
Define

Tv =

⎧
⎨

⎩

Av +NCv if v ∈ C,

∅ if v /∈C.
(2.9)

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A) (see [23]).
For solving the mixed equilibrium problem, let us give the following assumptions for

the bifunction F, ϕ and the set C:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(A4) for each x ∈ C, y �→ F(x, y) is convex;

(A5) for each x ∈ C, y �→ F(x, y) is lower semicontinuous;

(B1) for each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C such that
for any z ∈ C \Dx,

F
(
z, yx

)
+ ϕ

(
yx

)
+
1
r

〈
yx − z, z − x

〉
< ϕ(z); (2.10)

(B2) C is a bounded set;

(B3) for each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C such that
for any z ∈ C \Dx,

ϕ
(
yx

)
+
1
r

〈
yx − z, z − x

〉
< ϕ(z); (2.11)
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(B4) for each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C such that
for any z ∈ C \Dx,

F
(
z, yx

)
+
1
r

〈
yx − z, z − x

〉
< 0. (2.12)

We will use the following results in the sequel.

Lemma 2.1 (see [21, 24]). Let C be a nonempty closed convex subset of H. Let F be a bifunction
from C ×C to R satisfying (A1)–(A5) and let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+ ϕ

(
y
)
+
1
r

〈
y − z, z − x

〉 ≥ ϕ(z), ∀y ∈ C

}
(2.13)

for all x ∈ H. Then the following conclusions hold:

(1) for each x ∈ H, Tr(x)/= ∅;
(2) Tr is single-valued;

(3) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Tr(x) − Tr(y)
∥∥2 ≤ 〈

Tr(x) − Tr
(
y
)
, x − y

〉
; (2.14)

(4) Fix(Tr) = MEP(F, ϕ);

(5) MEP(F, ϕ) is closed and convex.

Lemma 2.2 (see [25, 26]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.15)

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑∞

n=1 γn = ∞;

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then, limn→∞αn = 0.

Lemma 2.3. In a real Hilbert spaceH, there holds the following inequality:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, x + y

〉
(2.16)

for all x, y ∈ H.
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Lemma 2.4 (see [21]). Let {xn} and {wn} be bounded sequences in a Banach space, and let {βn} be
a sequence of real numbers such that 0 < lim infn→∞βn ≤ lim supn→∞βn < 1 for all n = 0, 1, 2, . . . .
Suppose that xn+1 = (1− βn)wn + βnxn for all n = 0, 1, 2, . . . and lim supn→∞‖wn+1 −wn‖+ ‖xn+1 −
xn‖ ≤ 0. Then, limn→∞‖wn − xn‖ = 0.

Let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into itself and let
λ1, λ2, . . . , λN be real numbers such that 0 ≤ λi ≤ 1 for every i = 1, 2, . . . ,N. We define a
mapping W of C into itself as follows:

U1 = λ1T1 + (1 − λ1)I,

U2 = λ2T2U1 + (1 − λ2)I,

...

UN−1 = λN−1TN−1UN−2 + (1 − λN−1)I,

W := UN = λNTNUN−1 + (1 − λN)I.

(2.17)

Such a mapping W is called the W-mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . It
is easy to see that nonexpansivity of each Ti ensures the nonexpansivity of W. The concept
of W-mappings was introduced in [27, 28]. It is now one of the main tools in studying
convergence of iterative methods for approaching a common fixed point of nonlinear
mappings; more recent progresses can be found in [10, 29, 30] and the references cited therein.

Lemma 2.5 (see [29]). Let C be a nonempty closed convex set of a strictly convex Banach space.
Let T1, T2, . . . , TN be nonexpansive mappings of C into itself such that

⋂N
i=1 F(Ti)/= ∅ and let

λ1, λ2, . . . , λN be real numbers such that 0 < λi < 1 for every i = 1, 2, . . . ,N − 1 and 0 < λN ≤ 1. Let
W be the W-mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . Then Fix(W) =

⋂N
i=1 Fix(Ti).

Lemma 2.6 (see [10]). Let C be a nonempty convex subset of a Banach space. Let {Ti}Ni=1 be a
finite family of nonexpansive mappings of C into itself and let {λn,1}{λn,2}, . . . , {λn,N} be sequences
in [0, 1] such that λn,i → λi (i = 1, . . . ,N). Moreover for every integer n ≥ 1, let W and
Wn be the W-mappings generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN and T1, T2, . . . , TN and
{λn,1}{λn,2}, . . . , {λn,N}, respectively. Then for every x ∈ C, it follows that

lim
n→∞

‖Wnx −Wx‖ = 0. (2.18)

3. Strong Convergence Theorems

In this section, we show a strong convergence of an iterative algorithm based on both
viscosity approximation method and extragradient method which solves the problem of
finding a common element of the set of solutions of a mixed equilibrium problem, the set
of fixed points of a finite family of nonexpansive mappings, and the set of solutions of the
variational inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5) and let ϕ : C → R ∪ {+∞} be a proper lower
semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of
C into H. Let T1, T2, . . . , TN be a finite family of nonexpansive mappings of C into H such that
Ω =

⋂N
n=1 Fix(Ti) ∩VI(C,A) ∩MEP(F, ϕ)/= ∅. Let {λn,1}, {λn,2}, . . . , {λn,N} be sequences in [ε1, ε2]

with 0 < ε1 ≤ ε2 < 1. Let Wn be the W-mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N .
Assume that either (B1) or (B2) holds. Let f be a contraction of H into itself and let {xn}, {un}, and
{yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC

(
un − γnAun

)
,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
WnPC

(
un − γnAyn

)

(3.1)

for every n = 1, 2, . . . where {γn}, {rn}, {αn}, {λn1}, {λn2}, . . . , {λnN}, and {βn} are sequences of
numbers satisfying the conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) limn→∞γn = 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(C5) limn→∞|λn,i − λn−1,i| = 0 for all i = 1, 2, . . . ,N.

Then, {xn}, {un}, and {yn} converge strongly to w = PΩf(w).

Proof. We show that PΩf is a contraction of C into itself. In fact, there exists a ∈ [0, 1) such
that ‖f(x) − f(y)‖ ≤ a‖x − y‖ for all x, y ∈ C. So, we have

∥∥PΩf(x) − PΩf
(
y
)∥∥ ≤ ∥∥f(x) − f

(
y
)∥∥ ≤ a

∥∥x − y
∥∥ (3.2)

for all x, y ∈ C. Since H is complete, there exists a unique element u0 ∈ C such that u0 =
PΩf(u0).
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Put tn = PC(un − γnAyn) for every n = 1, 2, . . . . Let u ∈ Ω and let {Trn} be a sequence of
mappings defined as in Lemma 2.1. Then u = PC(u − γnAu). From un = Trn(xn) ∈ C, we have

‖un − u‖ = ‖Trn(xn) − Trn(u)‖ ≤ ‖xn − u‖. (3.3)

From (2.3), the monotonicity of A, and u ∈ VI(C,A), we have

‖tn − u‖2

≤ ∥
∥un − γnAyn − u

∥
∥2 − ∥

∥un − γnAyn − tn
∥
∥2

= ‖un − u‖2 − ‖un − tn‖2 + 2γn
〈
Ayn, u − tn

〉

= ‖un − u‖2 − ‖un − tn‖2 + 2γn
(〈
Ayn −Au, u − yn

〉
+
〈
Au, u − yn

〉
+
〈
Ayn, yn − tn

〉)

≤ ‖un − u‖2 − ‖un − tn‖2 + 2γn
〈
Ayn, yn − tn

〉

≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − 2〈un − yn, yn − tn〉 −
∥∥yn − tn

∥∥2 + 2γn
〈
Ayn, yn − tn

〉

= ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + 2〈un − γnAyn − yn, tn − yn〉.

(3.4)

Further, Since yn = PC(un − γnAun) and A is k-Lipschitz continuous, we have

〈
un − γnAyn − yn, tn − yn

〉
= 〈un − γnAun − yn, tn − yn〉 +

〈
γnAun − γnAyn, tn − yn

〉

≤ 〈
γnAun − γnAyn, tn − yn

〉 ≤ γnk
∥∥un − yn

∥∥∥∥tn − yn

∥∥.
(3.5)

So, it follows from (C3) that the following inequality holds for n ≥ n0, where n0 is a positive
integer:

‖tn − u‖2 ≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + 2γnk

∥∥un − yn

∥∥∥∥tn − yn

∥∥

≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + γn

2k2∥∥un − yn

∥∥2 +
∥∥tn − yn

∥∥2

= ‖un − u‖2 +
(
γn

2k2 − 1
)∥∥un − yn

∥∥2

≤ ‖un − u‖2.

(3.6)

PutM0 = max{‖x1−u‖, (1/(1−a))‖f(u)−u‖}. It is obvious that ‖x1−u‖ ≤ M0. Suppose
‖xn − u‖ ≤ M0. By Lemma 2.5, we know thatWn is nonexpansive and Fix(Wn) =

⋂N
i=1 Fix(Ti).
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From (3.3), (3.6) and xn+1 = αnf(xn) + βnxn + (1 − αn − βn)Wntn, we have u = Wnu and

‖xn+1 − u‖ =
∥
∥αnf(xn) + βnxn +

(
1 − αn − βn

)
Wntn − u

∥
∥

≤ αn

∥
∥f(xn) − f(u)

∥
∥ + αn

∥
∥f(u) − u

∥
∥ + βn‖xn − u‖ + (

1 − αn − βn
)‖Wntn − u‖

≤ αna‖xn − u‖ + αn

∥
∥f(u) − u

∥
∥ + βn‖xn − u‖ + (

1 − αn − βn
)‖Wntn − u‖

≤ αna‖xn − u‖ + αn

∥
∥f(u) − u

∥
∥ + βn‖xn − u‖ + (

1 − αn − βn
)‖tn − u‖

≤ αna‖xn − u‖ + αn

∥
∥f(u) − u

∥
∥ + βn‖xn − u‖ + (

1 − αn − βn
)‖xn − u‖

= (1 − a)αn

∥
∥f(u) − u

∥
∥

1 − a
+ (1 − (1 − a)αn)‖xn − u‖

≤ (1 − a)αnM0 + (1 − (1 − a)αn)M0 = M0

(3.7)

for every n = 1, 2, . . .. Therefore, {xn} is bounded. From (3.3) and (3.6), we also obtain that
{tn} and {un} are bounded.

From yn = PC(un − γnAun) and the monotonicity and the Lipschitz continuity ofA, we
have

∥∥yn − u
∥∥2

=
∥∥PC(un − γnAun) − PC(u − γnAu)

∥∥2

≤ ∥∥un − γnAun − (u − γnAu)
∥∥2

= ‖un − u‖2 − 2γn〈Aun −Au, un − u〉 + γ2n‖Aun −Au‖2

≤ ‖un − u‖2 + γ2nk
2‖un − u‖2

=
(
1 + γ2nk

2
)
‖un − u‖2.

(3.8)

Hence, we obtain that {yn} is bounded. It follows from the Lipschitz continuity of A that
{Axn}, {Aun}, and {Ayn} are bounded. Since f and Wn are nonexpansive, we know that
{f(xn)} and {Wntn} are also bounded. From the definition of tn, we get

‖tn+1 − tn‖ =
∥∥PC

(
un+1 − γn+1Ayn+1

) − PC

(
un − γnAyn

)∥∥

≤ ∥∥(un+1 − γn+1Ayn+1
) − (

un − γnAyn

)∥∥

≤ ∥∥(un+1 − γn+1Aun+1
) − (

un − γn+1Aun

)
+ γn+1

(
Aun+1 −Ayn+1 −Aun

)
+ γnAyn

∥∥

≤ ‖un+1 − un‖ + γn+1‖Aun+1 −Aun‖ + γn+1
∥∥Aun+1 −Ayn+1 −Aun

∥∥ + γn
∥∥Ayn

∥∥

≤ ‖un+1 − un‖ + kγn+1‖un+1 − un‖ + γn+1
∥∥Aun+1 −Ayn+1 −Aun

∥∥ + γn
∥∥Ayn

∥∥

≤ ‖un+1 − un‖ +
(
γn+1 + γn

)
M1,

(3.9)
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where M1 is an approximate constant such that

M1 ≥ sup
n≥1

{
k‖un+1 − un‖ +

∥
∥Aun+1 −Ayn+1 −Aun

∥
∥ +

∥
∥Ayn

∥
∥}. (3.10)

On the other hand, from un = Trn(xn) and un+1 = Trn+1(xn+1), we have

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.11)

F
(
un+1, y

)
+ ϕ

(
y
) − ϕ(un+1) +

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0, ∀y ∈ C. (3.12)

Putting y = un+1 in (3.11) and y = un in (3.12), we have

F(un, un+1) + ϕ(un+1) − ϕ(un) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0 ,

F(un+1, un) + ϕ(un) − ϕ(un+1) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.13)

So, from the monotonicity of F, we get

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0, (3.14)

and hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1
(un+1 − xn+1)

〉
≥ 0. (3.15)

Without loss of generality, let us assume that there exists a real number b such that rn > b > 0
for all n ∈ N. Then,

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
{
‖xn+1 − xn‖ +

∣∣∣∣1 −
rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
}
,

(3.16)

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ + 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ + 1
b
|rn+1 − rn|M2,

(3.17)

where M2 = sup{‖un − xn‖ : n ∈ N}.
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It follows from (3.9) and (3.7) that

‖tn+1 − tn‖ ≤ ‖xn+1 − xn‖ + 1
b
|rn+1 − rn|M2 +

(
γn+1 + γn

)
M1, (3.18)

Define a sequence {vn} such that

xn+1 = βnxn +
(
1 − βn

)
vn, ∀n ≥ 1. (3.19)

Then, we have

vn+1 − vn =
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1f(xn+1) +

(
1 − αn+1 − βn+1

)
Wn+1tn+1

1 − βn+1
− αnf(xn) +

(
1 − αn − βn

)
Wntn

1 − βn

=
αn+1

1 − βn+1
f(xn+1) − αn

1 − βn
f(xn) +Wn+1tn+1 −Wntn

+
αn

1 − βn
Wntn − αn+1

1 − βn+1
Wn+1tn+1,

(3.20)

Next we estimate ‖Wn+1tn+1 −Wntn‖. It follows from the definition of Wn that

‖Wn+1tn −Wntn‖ = ‖λn+1,NTNUn+1,N−1tn + (1 − λn+1,N)tn − λn,NTNUn,N−1tn − (1 − λn,N)tn‖
≤ |λn+1,N − λn,N |‖tn‖ + ‖λn+1,NTNUn+1,N−1tn − λn,NTNUn,N−1tn‖
≤ |λn+1,N − λn,N |‖tn‖ + ‖λn+1,N(TNUn+1,N−1tn − TNUn,N−1tn)‖
+ |λn+1,N − λn,N |‖TNUn,N−1tn‖

≤ 2M3|λn+1,N − λn,N | + λn+1,N‖Un+1,N−1tn −Un,N−1tn‖,
(3.21)

where M3 is an approximate constant such that

M3 ≥ max

{

sup
n≥1

{‖tn‖}, sup
n≥1

{‖TkUn,k−1tn‖} | k = 1, 2, . . . ,N

}

. (3.22)
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Since 0 < λni ≤ 1 for all n ≥ 1 and i = 1, 2, . . . ,N, we have

‖Un+1,N−1tn −Un,N−1tn‖
= ‖λn+1,N−1TN−1Un+1,N−2tn + (1 − λn+1,N−1)tn − λn,N−1TN−1Un,N−2tn − (1 − λn,N−1)tn‖
≤ |λn+1,N−1 − λn,N−1|‖tn‖ + ‖λn+1,N−1TN−1Un+1,N−2tn − λn,N−1TN−1Un,N−2tn‖
≤ |λn+1,N−1 − λn,N−1|‖tn‖ + λn+1,N−1‖TN−1Un+1,N−2tn − TN−1Un,N−2tn‖
+ |λn+1,N−1 − λn,N−1|‖TN−1Un,N−2tn‖

≤ 2M3|λn+1,N−1 − λn,N−1| + ‖Un+1,N−2tn −Un,N−2tn‖.
(3.23)

It follows that

‖Un+1,N−1tn −Un,N−1tn‖
≤ 2M3|λn+1,N−1 − λn,N−1| + 2M3|λn+1,N−2 − λn,N−2| + ‖Un+1,N−3tn −Un,N−3tn‖

≤ 2M3

N−1∑

i=2
|λn+1,i − λn,i| + ‖Un+1,1tn −Un,1tn‖

= 2M3

N−1∑

i=2
|λn+1,i − λn,i| + ‖λn+1,1T1tn + (1 − λn+1,1)tn − λn,1T1tn − (1 − λn,1)tn‖

≤ 2M3

N−1∑

i=1

|λn+1,i − λn,i|.

(3.24)

Substituting (3.24) into (3.21) yields that

‖Wn+1tn −Wntn‖ ≤ 2M3|λn+1,N − λn,N | + 2λn+1,NM3

N−1∑

i=1

|λn+1,i − λn,i|

≤ 2M3

N∑

i=1

|λn+1,i − λn,i|.
(3.25)

Hence, we have

‖Wn+1tn+1 −Wntn‖ ≤ ‖Wn+1tn+1 −Wn+1tn‖ + ‖Wn+1tn −Wntn‖

≤ ‖tn+1 − tn‖ + 2M3

N∑

i=1

|λn+1,i − λn,i|.
(3.26)
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From (3.20), (3.26), and (3.18), we have

‖vn+1 − vn‖ − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1

(∥∥f(xn+1)
∥
∥ + ‖Wn+1tn+1‖

)
+

αn

1 − βn

(∥∥f(xn)
∥
∥ + ‖Wntn‖

)

+ ‖Wn+1tn+1 −Wntn‖ − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1

(∥∥f(xn+1)
∥
∥ + ‖Wn+1tn+1‖

)
+

αn

1 − βn

(∥∥f(xn)
∥
∥ + ‖Wntn‖

)

+ ‖tn+1 − tn‖ + 2M3

N∑

i=1

|λn+1,i − λn,i| − ‖xn+1 − xn‖

≤ αn+1

1 − βn+1

(∥∥f(xn+1)
∥∥ + ‖Wn+1tn+1‖

)
+

αn

1 − βn

(∥∥f(xn)
∥∥ + ‖Wntn‖

)
+ 2M3

N∑

i=1

|λn+1,i − λn,i|

+
1
b
|rn+1 − rn|M2 +

(
γn+1 + γn

)
M1.

(3.27)

It follows from (C1)–(C5) that

lim sup
n→∞

(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0. (3.28)

Hence by Lemma 2.4, we have limn→∞‖vn − xn‖ = 0. Consequently

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖vn − xn‖ = 0. (3.29)

Since xn+1 = αnf(xn) + βnxn + (1 − αn − βn)Wntn, we have

‖xn −Wntn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 −Wntn‖
≤ ‖xn+1 − xn‖ + αn

∥∥f(xn) −Wntn
∥∥ + βn‖xn −Wntn‖,

(3.30)

and thus

‖xn −Wntn‖ ≤ 1
1 − βn

(‖xn+1 − xn‖ + αn

∥∥f(xn) −Wntn
∥∥). (3.31)

It follows from (C1) and (C2) that limn→∞‖xn −Wntn‖ = 0.
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Since xn+1 = αnf(xn) + βnxn + (1 − αn − βn)Wntn, for u ∈ Ω, it follows from (3.3) and
(3.6) that

‖xn+1 − u‖2 = ∥
∥αnf(xn) + βnxn + (1 − αn − βn)Wntn − u

∥
∥2

≤ αn

∥
∥f(xn) − u

∥
∥2 + βn‖xn − u‖2 + (

1 − αn − βn
)‖Wntn − u‖2

≤ αn

∥
∥f(xn) − u

∥
∥2 + βn‖xn − u‖2 + (

1 − αn − βn
)‖tn − u‖2

≤ αn

∥
∥f(xn)−u

∥
∥2+βn‖xn−u‖2+

(
1−αn−βn

)[‖un−u‖2+
(
γn

2k2−1
)∥
∥un−yn

∥
∥2

]

≤ αn

∥
∥f(xn) − u

∥
∥2 + (1 − αn)‖xn − u‖2 + (

1 − αn − βn
)(

γn
2k2 − 1

)∥
∥un − yn

∥
∥2

(3.32)

from which it follows that

∥∥un − yn

∥∥2 ≤ αn(
1 − αn − βn

)(
1 − γn2k2

)
(∥∥f(xn) − u

∥∥2 − ‖xn − u‖2
)

+
1

(
1 − αn − βn

)(
1 − γn2k2

)
(
‖xn − u‖2 − ‖xn+1 − u‖2

)

≤ αn(
1 − αn − βn

)(
1 − γn2k2

)
(∥∥f(xn) − u

∥∥2 − ‖xn − u‖2
)

+
1

(
1 − αn − βn

)(
1 − γn2k2

) (‖xn − u‖ − ‖xn+1 − u‖)‖xn+1 − xn‖.

(3.33)

It follows from (C1)–(C3) and ‖xn+1 − xn‖ → 0 that ‖un − yn‖ → 0.
By the same argument as in (3.6), we also have

‖tn − u‖2 ≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + 2γnk

∥∥un − yn

∥∥∥∥tn − yn

∥∥

≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 +

∥∥un − yn

∥∥2 + γn
2k2∥∥tn − yn

∥∥2

= ‖un − u‖2 +
(
γn

2k2 − 1
)∥∥yn − tn

∥∥2
.

(3.34)

Combining the above inequality and (3.32), we have

‖xn+1 − u‖2 ≤ αn

∥∥f(xn) − u
∥∥2 + βn‖xn − u‖2 + (

1 − αn − βn
)‖tn − u‖2

≤ αn

∥∥f(xn)−u
∥∥2+βn‖xn−u‖2+

(
1−αn−βn

)[‖un−u‖2+
(
γn

2k2−1)∥∥yn−tn
∥∥2

]

≤ αn

∥∥f(xn) − u
∥∥2 + (1 − αn)‖xn − u‖2 + (

1 − αn − βn
)(

γn
2k2 − 1

)∥∥yn − tn
∥∥2
,

(3.35)
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and thus

∥
∥tn − yn

∥
∥2 ≤ αn(

1 − αn − βn
)(
1 − γn2k2

)
(∥
∥f(xn) − u

∥
∥2 − ‖xn − u‖2

)

+
1

(
1 − αn − βn

)(
1 − γn2k2

)
(
‖xn − u‖2 − ‖xn+1 − u‖2

)

≤ αn(
1 − αn − βn

)(
1 − γn2k2

)
(∥
∥f(xn) − u

∥
∥2 − ‖xn − u‖2

)

+
1

(
1 − αn − βn

)(
1 − γn2k2

) (‖xn − u‖ − ‖xn+1 − u‖)‖xn+1 − xn‖,

(3.36)

which implies that ‖tn − yn‖ → 0.
From ‖un − tn‖ ≤ ‖un − yn‖ + ‖yn − tn‖we also have ‖un − tn‖ → 0. As A is k-Lipschitz

continuous, we have ‖Ayn −Atn‖ → 0.
For u ∈ Ω, we have, from Lemma 2.1,

‖un − u‖2 = ‖Trnxn − Trnu‖2 ≤ 〈Trnxn − Trnu, xn − u〉

= 〈un − u, xn − u〉 =
1
2

{
‖un − u‖2 + ‖xn − u‖2 − ‖xn − un‖2

}
.

(3.37)

Hence,

‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2. (3.38)

By(3.3), (3.6), (3.32), and (3.38), we have

‖xn+1 − u‖2 ≤ αn

∥∥f(xn) − u
∥∥2 + βn‖xn − u‖2 + (

1 − αn − βn
)‖tn − u‖2

≤ αn

∥
∥f(xn) − u

∥∥2 + βn‖xn − u‖2 + (
1 − αn − βn

)‖un − u‖2

≤ αn

∥∥f(xn) − u
∥∥2 + βn‖xn − u‖2 + (

1 − αn − βn
)[‖xn − u‖2 − ‖xn − un‖2

]

≤ αn

∥∥f(xn) − u
∥∥2 + (1 − αn)‖xn − u‖2 − (

1 − αn − βn
)‖xn − un‖2.

(3.39)

Hence,

(
1 − αn − βn

)‖xn − un‖2 ≤ αn

∥∥f(xn) − u
∥∥2 − αn‖xn − u‖2 + ‖xn − u‖2 − ‖xn+1 − u‖2

≤ αn

∥∥f(xn) − u
∥∥2 − αn‖xn − u‖2 + (‖xn − u‖ + ‖xn+1 − u‖)‖xn − xn+1‖.

(3.40)

It follows from (C1), (C2), and ‖xn − xn+1‖ → 0 that limn→∞‖xn − un‖ = 0.
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Since

∥
∥Wnyn − yn

∥
∥ ≤ ∥

∥Wnyn −Wntn
∥
∥ + ‖Wntn − xn‖ + ‖xn − un‖ +

∥
∥un − yn

∥
∥

≤ ∥
∥yn − tn

∥
∥ + ‖Wntn − xn‖ + ‖xn − un‖ +

∥
∥un − yn

∥
∥.

(3.41)

It follows that

lim
n→∞

∥∥Wnyn − yn

∥∥ = 0. (3.42)

Next we show that

lim sup
n→∞

〈
f(u0) − u0, xn − u0

〉 ≤ 0, (3.43)

where u0 = PΩf(u0). To show this inequality, we can choose a subsequence {xnj} of {xn} such
that

lim
n→∞

〈
f(u0) − u0, xnj − u0

〉
= lim sup

n→∞

〈
f(u0) − u0, xn − u0

〉
. (3.44)

Since {xni} is bounded, there exists a subsequence {xnij} of {xni} which converges
weakly tow. Without loss of generality, we can assume that {xni} ⇀ w. From ‖xn − un‖ → 0,
we obtain that uni ⇀ w. From ‖un−yn‖ → 0, we also obtain that yni ⇀ w. From ‖un−tn‖ → 0,
we also obtain that tni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

In order to show that w ∈ Ω, we first show w ∈ MEP(F, ϕ). By un = Trnxn, we know
that

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.45)

It follows from (A2) that

ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
, ∀y ∈ C. (3.46)

Hence,

ϕ
(
y
) − ϕ(uni) +

〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
, ∀y ∈ C. (3.47)

It follows from (A4), (A5), and the weakly lower semicontinuity of ϕ, (uni −xni)/rni →
0 and uni ⇀ w that

F
(
y,w

)
+ ϕ(w) − ϕ

(
y
) ≤ 0, ∀y ∈ C. (3.48)
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For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and w ∈ C, we obtain
yt ∈ C and hence F(yt,w) + ϕ(w) − ϕ(yt) ≤ 0. So by (A4) and the convexity of ϕ, we have

0 = F
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tF
(
yt, y

)
+ (1 − t)F

(
yt,w

)
+ tϕ

(
y
)
+ (1 − t)ϕ(w) − ϕ

(
yt

)

≤ t
[
F
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
.

(3.49)

Dividing by t, we get

F
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

) ≥ 0. (3.50)

Letting t → 0, it follows from (A3) and the weakly lower semicontinuity of ϕ that

F
(
w,y

)
+ ϕ

(
y
) − ϕ(w) ≥ 0 (3.51)

for all y ∈ C and hence w ∈ MEP(F, ϕ).
Now we show that w ∈ VI(C,A). Put

Tw1 =

⎧
⎨

⎩

Aw1 +NCw1 if w1 ∈ C,

∅ if w1 /∈C,
(3.52)

where NCw1 is the normal cone to C at w1 ∈ C. We have already mentioned that in this case
the mapping T is maximal monotone, and 0 ∈ Tw1 if and only if w1 ∈ VI(C,A). Let (w1, g) ∈
G(T). Then Tw1 = Aw1+NCw1 and hence g−Aw1 ∈ NCw1. So, we have 〈w1− t, g−Aw1〉 ≥ 0
for all t ∈ C. On the other hand, from tn = PC(un − λnAyn) and w1 ∈ C we have

〈
un − λnAyn − tn, tn −w1

〉 ≥ 0, (3.53)

and hence

〈
w1 − tn,

tn − un

λn
+Ayn

〉
≥ 0. (3.54)
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Therefore, we have

〈
w1 − tni , g

〉 ≥ 〈w1 − tni , Aw1〉

≥ 〈w1 − tni , Aw1〉 −
〈
w1 − tni ,

tni − uni

λni

+Ayni

〉

=
〈
w1 − tni , Aw1 −Ayni −

tni − uni

λni

〉

=
〈
w1 − tni , Aw1 −Atni +Atni −Ayni −

tni − uni

λni

〉

= 〈w1 − tni , Aw1 −Atni〉 +
〈
w1 − tni , Atni −Ayni

〉 −
〈
v − tni ,

tni − uni

λni

〉

≥ 〈
w1 − tni , Atni −Ayni

〉 −
〈
w1 − tni ,

tni − uni

λni

〉
.

(3.55)

Hence we obtain 〈w1 − w, g〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have
w ∈ T−10 and hence w ∈ VI(C,A).

We next show that w ∈ ⋂N
i=1 Fix(Ti). To see this, we observe that we may assume (by

passing to a further subsequence if necessary) λni,k → λk for k = 1, 2, . . . ,N. Let W be the
W-mapping generated by T1, T2, . . . , TN and λ1, λ2, . . . , λN . By Lemma 2.5, we know thatW is
nonexpansive and

⋂N
i=1 Fix(Ti) = Fix(W). it follows from Lemma 2.6 that

Wnix −→ Wx, ∀x ∈ C. (3.56)

Assume w/∈ Fix(W). Since xni ⇀ w and w/=Ww, it follows from the Opial condition, (3.42),
and (3.56) that

lim inf
i→∞

‖xni −w‖ < lim inf
i→∞

‖xni −Ww‖

≤ lim inf
i→∞

{‖xni −Wnixni‖ + ‖Wnixni −Wxni‖ + ‖Wxni −Ww‖}

≤ lim inf
i→∞

‖xni −w‖,

(3.57)

which is a contradiction. Hence, we have w ∈ Fix(W) =
⋂N

i=1 Fix(Ti). This implies w ∈ Ω.
Therefore, we have

lim sup
n→∞

〈
f(u0) − u0, xn − u0

〉
= lim

j→∞

〈
f(u0) − u0, xnj − u0

〉
=

〈
f(u0) − u0, w − u0

〉 ≤ 0. (3.58)

Finally, we show that xn → u0, where u0 = PΩf(u0).
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From Lemma 2.3, we have

‖xn+1 − u0‖2 =
∥
∥αn(f(xn) − u0) + βn(xn − u0) + (1 − αn − βn)(Wntn − u0)

∥
∥2

≤ ∥
∥βn(xn − u0) + (1 − αn − βn)(Wntn − u0)

∥
∥2 + 2αn〈f(xn) − u0, xn+1 − u0〉

≤ (
1 − αn − βn

)‖Wntn − u0‖2 + βn‖xn − u0‖2 + 2αn〈f(xn) − u0, xn+1 − u0〉

≤ (
1 − αn − βn

)‖Wntn − u0‖2 + βn‖xn − u0‖2 + 2αn〈f(xn) − f(u0), xn+1 − u0〉
+ 2αn〈f(u0) − u0, xn+1 − u0〉

≤ (
1 − αn − βn

)‖tn − u0‖2 + βn‖xn − u0‖2 + 2αna‖xn − u0‖‖xn+1 − u0‖
+ 2αn〈f(u0) − u0, xn+1 − u0〉

≤ (1−αn)‖xn−u0‖2+αna
(
‖xn−u0‖2+‖xn+1−u0‖2

)
+2αn

〈
f(u0)−u0, xn+1−u0

〉
,

(3.59)

and thus

‖xn+1 − u0‖2 ≤
(
1 − αn

1 − aαn

)
‖xn − u0‖2 + αn

1 − aαn

〈
2f(u0) − 2u0, xn+1 − u0

〉
. (3.60)

It follows from Lemma 2.2, (3.58), and (3.60) that limn→∞‖xn − u0‖ = 0. From ‖xn −
un‖ → 0 and ‖yn −un‖ → 0, we have un → u0 and yn → u0. The proof is now complete.

4. Applications

By Theorem 3.1, we can obtain some new and interesting strong convergence theorems as
follows.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5) and let ϕ : C → R ∪ {+∞} be a proper lower
semicontinuous and convex function. Let T1, T2, . . . , TN be a finite family of nonexpansive mappings
of C into H such that Σ =

⋂N
n=1 Fix(Ti) ∩MEP(F, ϕ)/= ∅. Let {λn,1}, {λn,2}, . . . , {λn,N} be sequences

in [ε1, ε2] with 0 < ε1 ≤ ε2 < 1. Let Wn be the W-mapping generated by T1, T2, . . . , TN and
λn,1, λn,2, . . . , λn,N . Assume that either (B1) or (B2) holds. Let f be a contraction of H into itself
and let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
Wnun

(4.1)
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for every n = 1, 2, . . . where {rn}, {αn}, {λn1}, {λn2}, . . ., {λnN}, and {βn} are sequences of numbers
satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(C5) limn→∞|λn,i − λn−1,i| = 0 for all i = 1, 2, . . . ,N.

Then, {xn}, {un}, and {yn} converge strongly to w = PΣf(w).

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5). Let A be a monotone and k-Lipschitz continuous
mapping of C intoH. Let T1, T2, . . . , TN be a finite family of nonexpansive mappings of C intoH such
that Λ =

⋂N
n=1 Fix(Ti)∩VI(C,A)∩EP(F)/= ∅. Let {λn,1}, {λn,2}, . . . , {λn,N} be sequences in [ε1, ε2]

with 0 < ε1 ≤ ε2 < 1. Let Wn be the W-mapping generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N .
Assume that either (B4) or (B2) holds. Let f be a contraction of H into itself and let {xn}, {un}, and
{yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC

(
un − γnAun

)
,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
WnPC

(
un − γnAyn

)

(4.2)

for every n = 1, 2, . . . where {γn}, {rn}, {αn}, {λn1}, {λn2}, . . ., {λnN}, and {βn} are sequences of
numbers satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) limn→∞γn = 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(C5) limn→∞|λn,i − λn−1,i| = 0 for all i = 1, 2, . . . ,N.

Then, {xn}, {un}, and {yn} converge strongly to w = PΛf(w).

Proof. Putting ϕ = 0, by Theorem 3.1 we obtain the desired result.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : C →
R∪{+∞} be a proper lower semicontinuous and convex function. LetA be a monotone and k-Lipschitz
continuous mapping of C into H. Let T1, T2, . . . , TN be a finite family of nonexpansive mappings of
C intoH such that Θ =

⋂N
n=1 Fix(Ti) ∩VI(C,A) ∩Argmin(ϕ)/= ∅. Let {λn,1}, {λn,2}, . . . , {λn,N} be

sequences in [ε1, ε2] with 0 < ε1 ≤ ε2 < 1. LetWn be theW-mapping generated by T1, T2, . . . , TN and
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λn,1, λn,2, . . . , λn,N . Assume that either (B3) or (B2) holds. Let f be a contraction of H into itself and
let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC

(
un − γnAun

)
,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
WnPC

(
un − γnAyn

)

(4.3)

for every n = 1, 2, . . . . where {γn}, {rn}, {αn}, {λn1}, {λn2}, . . ., {λnN}, and {βn} are sequences of
numbers satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) limn→∞γn = 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(C5) limn→∞|λn,i − λn−1,i| = 0 for all i = 1, 2, . . . ,N.

Then, {xn}, {un}, and {yn} converge strongly to w = PΘf(w).

Proof. Let F(x, y) = 0 for all x, y ∈ C, by Theorem 3.1 we obtain the desired result.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5) and let ϕ : C → R ∪ {+∞} be a proper lower
semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C
intoH. Let S be a nonexpansive mapping of C intoH such that Fix(S) ∩VI(C,A) ∩MEP(F, ϕ)/= ∅.
Assume that either (B1) or (B2) holds. Let f be a contraction of H into itself and let {xn}, {un}, and
{yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC

(
un − γnAun

)
,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
SPC

(
un − γnAyn

)

(4.4)

for every n = 1, 2, . . . where {γn}, {rn}, {αn} and {βn} are sequences of numbers satisfying the
following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) limn→∞γn = 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Then, {xn}, {un}, and {yn} converge strongly to w = PFix(S)∩VI(C,A)∩MEP(F,ϕ)f(w).

Proof. Let Wn = S, by Theorem 3.1 we obtain the desired result.
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Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be a monotone and k-Lipschitz continuous mapping of C into H. Let T1, T2, . . . , TN be a finite
family of nonexpansive mappings of C into H such that Γ =

⋂N
n=1 Fix(Ti) ∩ VI(C,A)/= ∅. Let

{λn,1}, {λn,2}, . . . , {λn,N} be sequences in [ε1, ε2] with 0 < ε1 ≤ ε2 < 1. Let Wn be the W-mapping
generated by T1, T2, . . . , TN and λn,1, λn,2, . . . , λn,N . Let {xn} and {yn} be sequences generated by

x1 = x ∈ C,

yn = PC

(
xn − γnAxn

)
,

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

)
WnPC

(
xn − γnAyn

)
(4.5)

for every n = 1, 2, . . . where {γn}, {αn}, {λn1}, {λn2}, . . ., {λnN}, and {βn} are sequences of numbers
satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) limn→∞γn = 0;

(C5) limn→∞|λn,i − λn−1,i| = 0 for all i = 1, 2, . . . ,N.

Then, {xn} and {yn} converge strongly to w = PΓf(w).

Proof. Let ϕ = 0 and let F(x, y) = 0 for all x, y ∈ C. Then un = PCxn = xn. By Theorem 3.1 we
obtain the desired result.

Remark 4.6. (1) Since the α-inverse-strongly-monotonicity of A has been weakened by the
monotonicity and Lipschitz continuity of A. Theorems 3.1, 4.2, and 4.4 generalize and
improve Theorem 3.1 in [11], Theorem 3.1 in [12], and Theorem 3.1 in [8] and themain results
in [31]. Theorem 4.5 improves Theorem 3.1 in [20].

(2) It is easy to see that Theorems 3.1, 4.2, and 4.4 also generalize and improve
Theorems 3.1, and 4.2 in [9].

(3) It is clear that Theorem 4.5 generalizes, extends, and improves Theorem 3.1 in [18]
and Theorem 3.1 in [19].

(4) Theorem 3.1 improves and extends Theorem 3.1 in [1].
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