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1. Introduction and Preliminarie

In 1929, Knaster et al. [1] had proved the well-known KKM theorem on n-simplex. Besides,
in 1961, Fan [2] had generalized the KKM theorem to an infinite dimensional topological
vector space. Later, Amini et al. [3] had introduced the class of KKM-typemappings onmetric
spaces and established some fixed point theorems for this class. In this paper, we define a
weaker Meir-Keeler type function and establish the fixed point theorems for a weaker Meir-
Keeler type ψ-set contraction in metric spaces.

Throughout this paper, byR+ we denote the set of all real nonnegative numbers, while
N is the set of all natural numbers. We digress briefly to list some notations and review some
definitions. Let X and Y be two Hausdorff topological spaces, and let T : X → 2Y be a set-
valued mapping. Then T is said to be closed if its graph GT = {(x, y) ∈ X × Y : y ∈ T(x)}
is closed. T is said to be compact if the image T(X) of X under T is contained in a compact
subset of Y . IfD is a nonempty subset of X, then 〈D〉 denotes the class of all nonempty finite
subsets of D. And, the following notations are used:

(i) T(x) = {y ∈ Y : y ∈ T(x)},
(ii) T(A) = ∪x∈AT(x),

(iii) T−1(y) = {x ∈ X : y ∈ T(x)}, and
(iv) T−1(B) = {x ∈ X : T(x) ∩ B /=φ}.



2 Fixed Point Theory and Applications

Let (M,d) be a metric space, X ⊂ M and δ > 0. Let BM(X, δ) = {x ∈ M : d(x,X) � δ},
and let NM(X, δ) = {x ∈ M : d(x,X) < δ}.

Suppose that X is a bounded subset of a metric space (M,d). Then we define the
following

(i) co(X) = ∩{B ⊂ M : B is a closed ball in M such that X ⊂ B}, and
(ii) X is said to be subadmissible [3], if for each A ∈ 〈X〉, co(A) ⊂ X.

In 1996, Chang and Yen [4] introduced the family KKM(X,Y ) on the topological vector
spaces and got results about fixed point theorems, coincidence theorems, and its applications
on this family. Later, Amini et al. [3] introduced the following concept of the KKM(X,Y )
property on a subadmissible subset of a metric space (M,d).

Let X be an nonempty subadmissible subset of a metric space (M,d), and let Y a
topological space. If T, F : X → 2Y are two set-valued mappings such that for any A ∈ 〈X〉,
T(co(A)) ⊂ F(A), then F is called a generalized KKM mapping with respect to T . If the
set-valued mapping T : X → 2Y satisfies the requirement that for any generalized KKM
mapping F with respest to T , the family {F(x) : x ∈ X} has finite intersection property, then
T is said to have the KKM property. The class KKM(X,Y ) is denoted to be the set {T : X →
2Y : T has the KKM property}.

Recall the notion of the Meir-Keeler type function. A function ψ : R+ → R+ is said to
be a Meir-Keeler type function (see [5]), if for each η ∈ R+, there exists δ = δ(η) > 0 such that
for t ∈ R+ with η ≤ t < η + δ, we have ψ(t) < η.

We now define a new weaker Meir-Keeler type function as follows.

Definition 1.1. We call ψ : R+ → R+ a weaker Meir-Keeler type function, if for each η > 0,
there exists δ > 0 such that for t ∈ R+ with η ≤ t < η + δ, and there exists n0 ∈ N such that
ψn0(t) < η.

A function ψ : R+ → R+ is said to be upper semicontinuous, if for each t0 ∈ R+,
limt→ t0 sup ψ(t) ≤ ψ(t0). Recall also that ψ : R+ → R+ is said to be a comparison function
(see [6]) if it is increasing and limn→∞ψn(t) = 0. As a consequence, we also have that for each
t > 0, ψ(t) < t, and ψ(0) = 0, ψ is continuous at 0. We generalize the comparison function to
be the other form, as follows.

Definition 1.2. We call ψ : R+ → R+ a generalized comparison function, if ψ is upper
semicontinuous with ψ(0) = 0 and ψ(t) < t for all t > 0.

Proposition 1.3. If ψ : R+ → R+ is a generalized comparison function, then there exists a strictly
increasing, continuous function α : R+ → R+ such that ψ(t) ≤ α(t) < t, for all t > 0.

Proof. Let φ(t) = t − ψ(t). Since ψ : R+ → R+ is an upper semicontinuous function, hence it
attains its minimum in any closed bounded interval of R+.

For each n ∈ N, we first define four sequences {an}, {bn}, {cn}, and {dn} as follows:

(i) an = mint∈[n,n+1]φ(t),

(ii) bn = mint∈[1/(n+1),1/n]φ(t),

(iii) c1, d1 = min{a1, b1},
(iv) cn = min{c1, a1, a2, . . . , an} for n ≥ 2, and

(v) dn = min{c1, b1, b2, . . . , bn, 1/n(n + 1)} for n ≥ 2.
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And, we next let a function α : R+ → R+ satisfy the following:

(1) α(0) = 0, α(n) = n − cn, α(1/n) = 1/n − dn,

(2) if n ≤ t ≤ n + 1, then

α(t) = (t − n)α(n + 1) + (n + 1 − t)α(n), (1.1)

(3) if 1/(n + 1) ≤ t ≤ 1/n, then

α(t) = α

(
1

n + 1

)
+ n(n + 1)

[
α

(
1
n

)
− α

(
1

n + 1

)](
t − 1

n + 1

)
. (1.2)

Then by the definition of the function α, we are easy to conclude that α is strictly increasing,
continuous. We complete the proof by showing that ψ(t) ≤ α(t) for all t > 0.

If n ≤ t ≤ n + 1, then

α(t) = (t − n)α(n + 1) + (n + 1 − t)α(n)

= (t − cn) + (t − n)(cn − cn+1)

≥ t − [
t − ψ(t)

]
+ (t − n)(cn − cn+1)

≥ ψ(t).

(1.3)

If 1/(n + 1) ≤ t ≤ 1/n, then

α(t) = α

(
1

n + 1

)
+ n(n + 1)

[
α

(
1
n

)
− α

(
1

n + 1

)](
t − 1

n + 1

)

= t − dn + (dn − dn+1)[(n + 1) − n(n + 1)t]

≥ t − [
t − ψ(t)

]
+ (dn − dn+1)[(n + 1) − n(n + 1)t]

≥ ψ(t).

(1.4)

So ψ(t) ≤ α(t) for all t > 0.
Since α(n) < n and α(1/n) < 1/n for all n ∈ N, so α(t) < t for all t > 0.

Proposition 1.4. If ψ : R+ → R+ is a generalized comparison function, then there exists a strictly
increasing, continuous function α : R+ → R+ such that

ψ(t) ≤ α(t) < t, for all t > 0,

lim
t→∞

α(t) = ∞.
(1.5)

Proof. By Proposition 1.3, there exists a strictly increasing, continuous function α : R+ → R+

such that ψ(t) ≤ α(t), for all t > 0. So, we may assume that limt→∞α(t) = ∞, by letting
α(t) = (α(t) + t)/2 for all t ∈ R+.
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Remark 1.5. In the above case, the function α is invertible. If for each t > 0, we let α0(t) =
t and α−n(t) = α−1(α−n+1(t)) for all n ∈ N, then we have that limn→∞α−n(t) = ∞; that is,
limn→∞αn(t) = 0.

Proof. We claim that limn→∞αn(t) = 0, for t > 0. Suppose that limn→∞α−n(t) = η for some
positive real number η. Then

η = lim
n→∞

α−n(t) = α−1
(

lim
n→∞

α−n+1(t)
)

= α−1(η) > η, (1.6)

which is a contradiction. So limn→∞αn(t) = 0.

We now are going to give the axiomatic definition for the measure of noncompactness
in a complete metric space.

Definition 1.6. Let (M,d) be a metric space, and let B(M) the family of bounded subsets of
M. A map

Φ : B(M) → [0,∞) (1.7)

is called a measure of noncompactness defined on M if it satisfies the following properties:

(i) Φ(D1) = 0 if and only if D1 is precompact, for each D1 ∈ B(M),

(ii) Φ(D1) = Φ(D1), for each D1 ∈ B(M),

(iii) Φ(D1 ∪D2) = max{Φ(D1),Φ(D2)}, for each D1, D2 ∈ B(M),

(iv) Φ(D1) = Φ(co(D1)), for each D1 ∈ B(M).

The above notion is a generalization of the set measure of noncompactness in metric
spaces. The following α-measure is a well-known measure of noncompactness.

Definition 1.7. Let (M,d) be a complete metric space, and let B(M) the family of bounded
subsets of M. For each D ∈ B(M), we define the set measure of noncompactness α(D) by:

α(D) = inf
{
ε > 0 : D can be covered by finitely many sets with diameter � ε

}
. (1.8)

Definition 1.8. LetX be a nonempty subset of a metric space (M,d). If a mapping T : X → 2M

with for each A ⊂ X, A and T(A) are bounded, then T is called

(i) a k-set contraction, if for each A ⊂ X, α(T(A)) ≤ kα(A), where k ∈ [0, 1),

(ii) a weaker Meir-Keeler type ψ-set contraction, if for each A ⊂ X, α(T(A)) ≤ ψ(α(A)),
where ψ : R+ → R+ is a weaker Meir-Keeler type function,

(iii) a generalized comparison (comparison) type ψ-set contraction, if for each A ⊂ X,
α(T(A)) ≤ ψ(α(A)), where ψ : R+ → R+ is a generalized comparison (comparison)
function.

Remark 1.9. It is clear that if T : X → 2M is a k-set contraction, then T is a weaker Meir-Keeler
type ψ-set contraction, but the converse does not hold.
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2. Main Results

Using the conception of the weaker Meir-Keeler type function, we establish the following
important theorem.

Theorem 2.1. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If
T : X → 2X is a weaker Meir-Keeler type ψ-set contraction with for each t ∈ R+, {ψn(t)}n∈N is
nonicreasing, then X contains a precompact subadmissible subset K with T(K) ⊂ K.

Proof. Take y ∈ X, and let

X0 = X, X1 = co
(
T(X0) ∪

{
y
})

,

Xn+1 = co
(
T(Xn) ∪

{
y
})

, for each n ∈ N.
(2.1)

Then

(1) Xn is a subadmissible subset of X, for each n ∈ N;

(2) T(Xn) ⊂ Xn+1 ⊂ Xn, for each n ∈ N.

Since T : X → 2X is a weaker Meir-Keeler type ψ-set contraction, then α(T(Xn)) ≤
ψ(α(Xn)) and α(Xn+1) = α(co(T(Xn) ∪ {y})) ≤ α(T(Xn)). Hence, we conclude that α(Xn) ≤
ψn(α(X)).

Since {ψn(α(X))}n∈N is nonincreasing, it must converge to some η with η ≥ 0; that
is, limn→∞ψn(α(X)) = η ≥ 0. We now claim that η = 0. On the contrary, assume that η >
0.Then by the definition of the weaker Meir-Keeler type function, there exists δ > 0 such that
for each A ⊂ X with η ≤ α(A) < η + δ, there exists n0 ∈ Nsuch that ψn0(α(A)) < η.Since
limn→∞ψn(α(X)) = η, there exists m0 ∈ N such that η ≤ ψm(α(X)) < η + δ, for all m ≥ m0.
Thus, we conclude that ψm0+n0(α(X)) < η. So we get a contradiction. So limn→∞ψn(α(X)) = 0,
and so limn→∞α(Xn) = 0.

Let X∞ = ∩n∈NXn. Then X∞ is a nonempty precompact subadmissible subset of X, and
by (2), we have T(X∞) ⊂ X∞.

Remark 2.2. In the process of the proof of Theorem 2.1, we call the set X∞ a Meir-Keeler type
precompact-inducing subadmissible subset of X.

Applying Proposition 1.3, 1.4, and Remark 1.5, we are easy to conclude the following
corollary.

Corollary 2.3. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If
T : X → 2X is a generalized comparison (comparison) type ψ-set contraction, then X contains a
precompact subadmissible subset K with T(K) ⊂ K.

Proof. The proof is similar to the proof of Theorem 2.1; we omit it.

Remark 2.4. In the process of the proof of Corollary 2.3, we also call the set X∞ a generalized
comparison type precompact-inducing subadmissible subset of X.

Corollary 2.5. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If T :
X → 2X is a k-set contraction, thenX contains a precompact subadmissible subsetK with T(K) ⊂ K.
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Following the concepts of the KKM(X,Y ) family (see [3]), we immediately have the
following Lemma 2.6.

Lemma 2.6. Let X be a nonempty subadmissible subset of a metric space (M,d), and let Y a
topological spaces. Then T |D ∈ KKM(D,Y ), whenever T ∈ KKM(X,Y ), and D is a nonempty
subadmissible subset of X.

We now concern a fixed point theorem for a weaker Meir-Keeler type ψ-set contraction
in a complete metric space, which needs not to be a compact map.

Theorem 2.7. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If T ∈
KKM(X,X) is a weaker Meir-Keeler type ψ-set contraction with for each t ∈ R+, {ψn(t)}n∈N is
nonicreasing, and closed with T(X) ⊂ X, then T has a fixed point in X.

Proof. By the same process of Theorem 2.1, we get a weaker Meir-Keeler type precompact-
inducing subadmissible subset X∞ of X. Since T(X) ⊂ X and T(Xn+1) ⊂ T(Xn) ⊂ T(X) for
each n ∈ N, we have T(Xn+1) ⊂ T(Xn) ⊂ X for each n ∈ N. Since α(T(Xn)) → 0 as n → ∞,
by the above Lemma 2.6, we have that T(X∞) is a nonempty compact subset of X.

Since T ∈ KKM(X,X) and X∞ is a nonempty subadmissible subset of X, by
Lemma 2.6, T |X∞ ∈ KKM(X∞, X).

We now claim that for each ε, there exists an xε ∈ X∞ such that B(xε, ε) ∩ T(xε)/=φ. If
the above statement is not true, then there exists ε′ such that B(x, ε′)∩T(x) = φ, for all x ∈ X∞.
Let K = T(X∞) ⊂ X. Then we now define F : X∞ → 2K by

F(x) = K \N(
x, ε′

)
, for each x ∈ X∞. (2.2)

Then

(1) F(x) is compact, for each x ∈ X∞, and

(2) F is a generalized KKMmapping with respect to T |X∞ .

We prove (2) by contradiction. Suppose F is not a generalized KKMmapping with respect to
T |X∞ . Then there exists A = {x1, x2, . . . , xn} ∈ 〈X∞〉 such that

T(co{x1, x2, . . . , xn})/⊆∪n
i=1F(xi). (2.3)

Choose μ ∈ co{x1, x2, . . . , xn} and ν ∈ T(μ) ⊂ T(X∞) = K such that ν /∈∪n
i=1F(xi). From

the definition of F, it follows that ν ∈ N(xi, ε
′), for each i ∈ {1, 2, . . . , n}. Since μ ∈

co{x1, x2, . . . , xn}, ν ∈ T(μ), we have μ ∈ co(A) ⊂ B(ν, ε′), which implies that ν ∈ B(μ, ε′).
Therefore, ν ∈ T(μ)∩B(μ, ε′). This contradicts to T(μ)∩B(μ, ε′) = φ. Hence, F is a generalized
KKMmapping with respect to T |X∞ .

Since T |X∞ ∈ KKM(X∞, X), the family {F(x) : x ∈ X∞} has the finite intersection
property, and so we conclude that ∩x∈X∞F(x)/=φ. Choose η ∈ ∩x∈X∞F(x), then η ∈ K\N(x, ε′)
for all x ∈ X∞. But, since η ∈ ∩x∈X∞F(x) and K ⊂ X∞ ⊂ ∪x∈X∞N(x, (1/2)ε′), so there exists an
x0 ∈ X∞ such that η ∈ N(x0, ε

′). So, we have reached a contradiction.
Therefore, we have proved that for each ε > 0, there exists an xε ∈ X∞ such that

B(xε, ε) ∩ T(xε)/=φ. Let yε ∈ B(xε, ε) ∩ T(ε). Since yε ⊂ K and K is compact, we may assume
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that {yε} converges to some y ∈ K, then xε also converges to y. Since T is closed, we have
y ∈ T(y). This completes the proof.

Corollary 2.8. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If T ∈
KKM(X,X) is a generalized composion type ψ-set contraction and closed with T(X) ⊂ X, then T has
a fixed point in X.

Corollary 2.9. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If T ∈
KKM(X,X) is a k-set contraction and closed with T(X) ⊂ X, then T has a fixed point in X.

The Φ-spaces, in an abstract convex space setting, were introduced by Amini et al.[7].
An abstract convex space (X,C) consists of a nonempty topological space X and a family C
of subsets of X such that X and φ belong to C, and C is closed under arbitrary intersection.
Let (X,C) be an abstract convex space, and let Y a topological space. A map T : Y → 2X is
called a Φ-mapping if there exists a multifunction F : Y → 2X such that

(i) for each y ∈ Y , A ∈ 〈F(y)〉 implies adC(A) ⊂ T(y);

(ii) Y = ∪x∈XintF−1(x).

The mapping F is called a companion mapping of T . Furthermore, if the abstract
convex space (X,C) which has a uniformity U and U has an open symmetric base family N,
then X is called a Φ-space if for each entourage V ∈ N, there exists a Φ-mapping T : X → 2X

such that GT ⊂ V . Following the conceptions of the abstract convex space and the Φ-space,
we are easy to know that a bounded metric space M is an important example of the abstract
convex space, and if X1 ⊂ X and C1 = {C ∩X1 : C ∈ C}, then (X1,C1) is also a Φ-space.

Applying Theorem 2.5 of Amini et al. [7], we can deduce the following theorem in
metric spaces.

Theorem 2.10. Let X be a nonempty subadmissible subset of a metric space (M,d). If T ∈
KKM(X,X) is compact, then for each r > 0, there exists xr ∈ X; such that B(xr, r) ∩ T(xr)/=φ.

Proof. Consider the family C of all subadmissible subsets of M and for each r > 0, x ∈ X, we
set Vr[x] = B(x, r). Let

N =
{
Vr | Vr = ∪x∈M

{(
x, y

)
: y ∈ Vr[x], r > 0

}}
. (2.4)

Then N is a basis of a uniformity of X. For each Vr ∈ N, we define two set-valued
mappings G,F : X → 2X by G(x) = T(x) = Vr[x] for each x ∈ X. Then we have

(i) for each x ∈ X, adC(G(x)) = adC(Vr[x]) = Vr[x] = T(x) ⊂ Vr[T(x)];

(ii) X = ∪x∈XintG−1(x).

So, G is a companion mapping of F. This implies that F is a Φ-mapping such that
GF ⊂ Vr . Therefore, (X,C) is a Φ-space.

Now we let s : X → X be an identity mapping, all of the the conditions of Theorem
2.5 of Amini et al. [7] are fulfilled, and we can obtain the results.
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Applying Theorems 2.1 and 2.10, we can conclude the following fixed point theorems.

Theorem 2.11. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If T ∈
KKM(X,X) is a weaker Meir-Keeler type ψ-set contraction with for each t ∈ R+, {ψn(t)}n∈N is
noincreasing, and closed with T(X) ⊂ X, then T has a fixed point in X.

Theorem 2.12. Let X be a nonempty bounded subadmissible subset of a metric space (M,d). If
T ∈ KKM(X,X) is a generalized comparison (comparison) type ψ-set contraction and closed with
T(X) ⊂ X, then T has a fixed point in X.
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