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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized by Aoki [3]
for additive mappings and by Rassias [4] for linear mappings by considering an unbounded
Cauchy difference.

Theorem 1.1 (see [4]). Let f : E→E′ be a mapping from a normed vector space E into a Banach space
E′ subject to the inequality

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then, the limit

L(x) = lim
n→∞

f
(

2nx
)

2n
(1.2)
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exists for all x ∈ E and L : E→E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.3)

for all x ∈ E. Also, if for each x ∈ E the mapping f(tx) is continuous in t ∈ R, then L is R-linear.

The above inequality (1.1) has provided a lot of influence in the development of what is
now known as aHyers-Ulam-Rassias stability of functional equations. A generalization of Th. M.
Rassias’ theorem was obtained by Găvruţa [5] by replacing the unbounded Cauchy difference
by a general control function in the spirit of Rassias’ approach. The result of Găvruţa [5] is a
special case of a more general theorem, which was obtained by Forti [6]. The stability problems
of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [7–18]).

J. M. Rassias [19] following the spirit of the innovative approach of Th. M. Rassias [4] for
the unbounded Cauchy difference proved a similar stability theorem in which he replaced the
factor ‖x‖p + ‖y‖p by ‖x‖p·‖y‖q for p, q ∈ R with p + q /= 1 (see also [20] for a number of other
new results).

Theorem 1.2 (see [19–21]). Let X be a real normed linear space and Y a real complete normed linear
space. Assume that f : X→Y is an approximately additive mapping for which there exist constants
θ ≥ 0 and p ∈ R − {1} such that f satisfies inequality

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ θ·∥∥x∥∥p/2·∥∥y∥∥p/2 (1.4)

for all x, y ∈ X. Then, there exists a unique additive mapping L : X→Y satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ θ

∣
∣2p − 2

∣
∣

∥
∥x

∥
∥
p (1.5)

for all x ∈ X. If, in addition, f : X→Y is a mapping such that the transformation t→ f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

We recall two fundamental results in fixed point theory.

Theorem 1.3 (see [22]). Let (X, d) be a complete metric space and let J : X→X be strictly contractive,
that is,

d(Jx, Jy) ≤ Lf(x, y), ∀x, y ∈ X (1.6)

for some Lipschitz constant L < 1. Then, the following conditions hold.

(1) The mapping J has a unique fixed point x∗ = Jx∗.

(2) The fixed point x∗ is globally attractive, that is,

lim
n→∞

Jnx = x∗ (1.7)

for any starting point x ∈ X.



C. Park and J. S. An 3

(3) One has the following estimation inequalities:

d
(

Jnx, x∗) ≤ Lnd
(

x, x∗),

d
(

Jnx, x∗) ≤ 1
1 − L

d
(

Jnx, Jn+1x
)

,

d
(

x, x∗) ≤ 1
1 − L

d(x, Jx)

(1.8)

for all nonnegative integers n and all x ∈ X.

LetX be a set. A function d : X×X→ [0,∞] is called a generalized metric onX if d satisfies
the following conditions:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x), for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Theorem 1.4 (see [23]). Let (X, d) be a complete generalized metric space and let J : X→X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d
(

Jnx, Jn+1x
)

= ∞ (1.9)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy), for all y ∈ Y .

This paper is organized as follows. In Section 2, using the fixed point method, we
prove the Hyers-Ulam-Rassias stability of C∗-algebra homomorphisms for the Cauchy-Jensen
functional equation.

In Section 3, using the fixed point method, we prove the Hyers-Ulam-Rassias stability of
generalized derivations on C∗-algebras for the Cauchy-Jensen functional equation.

Throughout this paper, assume that A is a C∗-algebra with norm ‖·‖A and that B is a
C∗-algebra with norm ‖·‖B.

2. Stability of C∗-algebra homomorphisms

For a given mapping f : A→B, we define

Cμf(x, y, z) := 2μf
(
x + y

2
+ z

)

− f(μx) − f(μy) − 2f(μz), (2.1)

for all μ ∈ T
1 := {ν ∈ C : |ν| = 1} and all x, y, z ∈ A.

We prove the Hyers-Ulam-Rassias stability of C∗-algebra homomorphisms for the
functional equation Cμf(x, y, z) = 0.
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Theorem 2.1. Let f : A→B be a mapping for which there exists a function ϕ : A3 → [0,∞) such that

lim
j→∞

1
2j
ϕ
(

2jx, 2jy, 2jz
)

= 0, (2.2)

∥
∥Cμf(x, y, z)

∥
∥
B ≤ ϕ(x, y, z), (2.3)

∥
∥f(xy) − f(x)f(y)

∥
∥
B ≤ ϕ(x, y, 0), (2.4)

∥
∥f(x∗) − f(x)∗

∥
∥
B ≤ ϕ(x, x, x) (2.5)

for all μ ∈ T
1 and all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, x, x) ≤ 2Lϕ(x/2, x/2, x/2)

for all x ∈ A, then there exists a unique C∗-algebra homomorphismH : A→B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 1

4 − 4L
ϕ(x, x, x) (2.6)

for all x ∈ A.

Proof. Consider the set

X := {g : A→B} (2.7)

and introduce the generalized metric on X as follows:

d(g, h) = inf
{

C ∈ R+ :
∥
∥g(x) − h(x)

∥
∥
B ≤ Cϕ(x, x, x), ∀x ∈ A

}

. (2.8)

It is easy to show that (X, d) is complete.
Now, we consider the linear mapping J : X→X such that

Jg(x) :=
1
2
g(2x) (2.9)

for all x ∈ A.
By [22, Theorem 3.1],

d(Jg, Jh) ≤ Ld(g, h) (2.10)

for all g, h ∈ X.
Letting μ = 1 and y = z = x in (2.3), we get

‖2f(2x) − 4f(x)‖B ≤ ϕ(x, x, x) (2.11)

for all x ∈ A. So

∥
∥f(x) − 1

2
f(2x)

∥
∥
B ≤ 1

4
ϕ(x, x, x) (2.12)

for all x ∈ A. Hence, d(f, Jf) ≤ 1/4.
By Theorem 1.4, there exists a mapping H : A→B such that the following conditions

hold.
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(1) H is a fixed point of J , that is,

H(2x) = 2H(x) (2.13)

for all x ∈ A. The mappingH is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f, g) < ∞}

. (2.14)

This implies that H is a unique mapping satisfying (2.13) such that there exists C ∈
(0,∞) satisfying

∥
∥H(x) − f(x)

∥
∥
B ≤ Cϕ(x, x, x) (2.15)

for all x ∈ A.

(2) d(Jnf,H)→ 0 as n→∞. This implies the equality

lim
n→∞

f
(

2nx
)

2n
= H(x) (2.16)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ 1
4 − 4L

. (2.17)

This implies that inequality (2.6) holds.

It follows from (2.2), (2.3), and (2.16) that
∥
∥
∥
∥
2H

(
x + y

2
+ z

)

−H(x) −H(y) − 2H(z)
∥
∥
∥
∥
B

= lim
n→∞

1
2n

∥
∥2f

(

2n−1(x + y) + 2nz
) − f

(

2nx
) − f

(

2ny
) − 2f

(

2nz
)∥
∥
B

≤ lim
n→∞

1
2n

ϕ
(

2nx, 2ny, 2nz
)

= 0

(2.18)

for all x, y, z ∈ A. So

2H
(
x + y

2
+ z

)

= H(x) +H(y) + 2H(z) (2.19)

for all x, y, z ∈ A. By [24, Lemma 2.1], the mapping H : A→B is Cauchy additive, that is,
H(x + y) = H(x) +H(y), for all x, y ∈ A.

By a similar method to the proof of [11], one can show that the mapping H : A→B is
C-linear.

It follows from (2.4) that

∥
∥H(xy) −H(x)H(y)

∥
∥
B = lim

n→∞
1
4n

∥
∥f

(

4nxy
) − f

(

2nx
)

f
(

2ny
)∥
∥
B

≤ lim
n→∞

1
4n

ϕ
(

2nx, 2ny, 0
) ≤ lim

n→∞
1
2n

ϕ
(

2nx, 2ny, 0
)

= 0

(2.20)
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for all x, y ∈ A. So

H(xy) = H(x)H(y) (2.21)

for all x, y ∈ A.
It follows from (2.5) that

∥
∥H

(

x∗) −H(x)∗
∥
∥
B = lim

n→∞
1
2n

∥
∥f

(

2nx∗) − f
(

2nx
)∗∥
∥
B ≤ lim

n→∞
1
2n

ϕ
(

2nx, 2nx, 2nx
)

= 0 (2.22)

for all x ∈ A. So

H
(

x∗) = H(x)∗ (2.23)

for all x ∈ A.
Thus,H : A→B is a C∗-algebra homomorphism satisfying (2.6), as desired.

Corollary 2.2. Let r < 1 and θ be nonnegative real numbers, and let f : A→B be a mapping such that

∥
∥Cμf(x, y, z)

∥
∥
B ≤ θ

(‖x‖rA + ‖y‖rA + ‖z‖rA
)

,

∥
∥f(xy) − f(x)f(y)

∥
∥
B ≤ θ

(‖x‖rA + ‖y‖rA
)

,

∥
∥f

(

x∗) − f(x)∗
∥
∥
B ≤ 3θ‖x‖rA

(2.24)

for all μ ∈ T
1 and all x, y, z ∈ A. Then, there exists a unique C∗-algebra homomorphism H : A→B

such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 3θ

4 − 2r+1
‖x‖rA (2.25)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y, z) := θ
(‖x‖rA + ‖y‖rA + ‖z‖rA

)

(2.26)

for all x, y, z ∈ A. Then, L = 2r−1 and we get the desired result.

Theorem 2.3. Let f : A→B be a mapping for which there exists a function ϕ : A3→ [0,∞) satisfying
(2.3), (2.4), and (2.5) such that

lim
j→∞

4jϕ
(
x

2j
,
y

2j
,
z

2j

)

= 0 (2.27)

for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, x, x) ≤ (1/2)Lϕ(2x, 2x, 2x) for all x ∈ A,
then there exists a unique C∗-algebra homomorphismH : A→B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ L

4 − 4L
ϕ(x, x, x) (2.28)

for all x ∈ A.
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Proof. We consider the linear mapping J : X→X such that

Jg(x) := 2g
(
x

2

)

(2.29)

for all x ∈ A.
It follows from (2.11) that

∥
∥
∥
∥
f(x) − 2f

(
x

2

)∥
∥
∥
∥
B

≤ 1
2
ϕ

(
x

2
,
x

2
,
x

2

)

≤ L

4
ϕ(x, x, x) (2.30)

for all x ∈ A. Hence d(f, Jf) ≤ L/4.
By Theorem 1.4, there exists a mapping H : A→B such that the following conditions

hold.

(1) H is a fixed point of J , that is,

H(2x) = 2H(x) (2.31)

for all x ∈ A. The mappingH is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f, g) < ∞}

. (2.32)

This implies that H is a unique mapping satisfying (2.31) such that there exists C ∈
(0,∞) satisfying

∥
∥H(x) − f(x)

∥
∥
B ≤ Cϕ(x, x, x) (2.33)

for all x ∈ A.

(2) d(Jnf,H)→ 0 as n→∞. This implies the equality

lim
n→∞

2nf
(

x

2n

)

= H(x) (2.34)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ L

4 − 4L
, (2.35)

which implies that inequality (2.28) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let r > 2, let θ be nonnegative real numbers, and let f : A→B be a mapping satisfying
(2.24). Then, there exists a unique C∗-algebra homomorphismH : A→B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 3θ

2r+1 − 4
‖x‖rA (2.36)

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y, z) := θ
(‖x‖rA + ‖y‖rA + ‖z‖rA

)

(2.37)

for all x, y, z ∈ A. Then, L = 21−r and we get the desired result.
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3. Stability of generalized derivations on C∗-algebras

For a given mapping f : A→A, we define

Cμf(x, y, z) := 2μf
(
x + y

2
+ z

)

− f(μx) − f(μy) − 2f(μz) (3.1)

for all μ ∈ T
1 and all x, y, z ∈ A.

Definition 3.1 (see [25]). A generalized derivation δ : A→A is involutive C-linear and fulfills

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz) (3.2)

for all x, y, z ∈ A.

We prove the Hyers-Ulam-Rassias stability of derivations on C∗-algebras for the
functional equation Cμf(x, y, z) = 0.

Theorem 3.2. Let f : A→A be a mapping for which there exists a function ϕ : A3 → [0,∞) satisfying
(2.2) such that

∥
∥Cμf(x, y, z)

∥
∥
A ≤ ϕ(x, y, z), (3.3)

∥
∥f(xyz) − f(xy)z + xf(y)z − xf(yz)

∥
∥
A ≤ ϕ(x, y, z), (3.4)

∥
∥f

(

x∗) − f(x)∗
∥
∥
A ≤ ϕ(x, x, x) (3.5)

for all μ ∈ T
1 and all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, x, x) ≤ 2Lϕ(x/2, x/2, x/2)

for all x ∈ A, then there exists a unique generalized derivation δ : A→A such that

∥
∥f(x) − δ(x)

∥
∥
A ≤ 1

4 − 4L
ϕ(x, x, x) (3.6)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive C-
linear mapping δ : A→A satisfying (3.6). The mapping δ : A→A is given by

δ(x) = lim
n→∞

f
(

2nx
)

2n
(3.7)

for all x ∈ A.
It follows from (3.4) that

∥
∥δ(xyz) − δ(xy)z + xδ(y)z − xδ(yz)

∥
∥
A

= lim
n→∞

1
8n

∥
∥f

(

8nxyz
) − f

(

4nxy
)·2nz + 2nxf

(

2ny
)·2nz − 2nxf

(

4nyz
)∥
∥
A

≤ lim
n→∞

1
8n

ϕ
(

2nx, 2ny, 2nz
) ≤ lim

n→∞
1
2n

ϕ
(

2nx, 2ny, 2nz
)

= 0

(3.8)

for all x, y, z ∈ A. So

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz) (3.9)

for all x, y, z ∈ A. Thus, δ : A→A is a generalized derivation satisfying (3.6).
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Corollary 3.3. Let r <1, Let θ be nonnegative real numbers, and let f : A→A be a mapping such that

∥
∥Cμf(x, y, z)

∥
∥
A ≤ θ·‖x‖r/3A ·‖y‖r/3A ·‖z‖r/3A ,

∥
∥f(xyz) − f(xy)z + xf(y)z − xf(yz)

∥
∥
A ≤ θ·‖x‖r/3A ·‖y‖r/3A ·‖z‖r/3A ,

∥
∥f

(

x∗) − f(x)∗
∥
∥
A ≤ θ·‖x‖rA

(3.10)

for all μ ∈ T
1 and all x, y, z ∈ A. Then, there exists a unique generalized derivation δ : A→A such

that

∥
∥f(x) − δ(x)

∥
∥
A ≤ θ

4 − 2r+1
‖x‖rA (3.11)

for all x ∈ A.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y, z) := θ·‖x‖r/3A ·‖y‖r/3A ·‖z‖r/3A (3.12)

for all x, y, z ∈ A. Then, L = 2r−1 and we get the desired result.

Theorem 3.4. Let f : A→A be a mapping for which there exists a function ϕ : A3 → [0,∞) satisfying
(3.3), (3.4), and (3.5) such that

lim
j→∞

8jϕ
(
x

2j
,
y

2j
,
z

2j

)

= 0 (3.13)

for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, x, x) ≤ (1/2)Lϕ(2x, 2x, 2x) for all x ∈ A,
then there exists a unique generalized derivation δ : A→A such that

∥
∥f(x) − δ(x)

∥
∥
A ≤ L

4 − 4L
ϕ(x, x, x) (3.14)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.2.

Corollary 3.5. Let r > 3, let θ be nonnegative real numbers, and let f : A→A be a mapping satisfying
(3.10). Then, there exists a unique generalized derivation δ : A→A such that

∥
∥f(x) − δ(x)

∥
∥
A ≤ θ

2r+1 − 4
‖x‖rA (3.15)

for all x ∈ A.

Proof. The proof follows from Theorem 3.4 by taking

ϕ(x, y, z) := θ·‖x‖r/3A ·‖y‖r/3A ·‖z‖r/3A (3.16)

for all x, y, z ∈ A. Then, L= 21−r and we get the desired result.
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