Hindawi Publishing Corporation

Fixed Point Theory and Applications
Volume 2008, Article ID 471532, 7 pages
doi:10.1155/2008 /471532

Research Article

Approximation Methods for Common Fixed Points
of Mean Nonexpansive Mapping in Banach Spaces

Zhaohui Gu® and Yongjin Li?

! Department of Foundation, Guangdong Finance and Economics College, Guangzhou 510420, China
2 Institute of Logic and Cognition, Department of Mathematics, Sun Yat-Sen University,
Guangzhou 510275, China

Correspondence should be addressed to Yongjin Li, stslyj@mail.sysu.edu.cn
Received 17 October 2007; Accepted 2 January 2008
Recommended by Tomonari Suzuki

Let X be a uniformly convex Banach space, and let S, T be a pair of mean nonexpansive mappings.
In this paper, it is proved that the sequence of Ishikawa iterations associated with S and T converges
to the common fixed point of S and T.
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1. Introduction and preliminaries

Let X be a Banach space and let S, T be mappings from X to X. The pair of mean nonexpansive
mappings was introduced by Bose in [1]:

|Sx - Tyll < allx - yll + b{llx - Sxl| + lly = Tyll} + c{llx - Tyl +lly - Sxll}),  (1.1)

forallx,y € X, a,b,ce[0,1],a+2b+2c < 1.
The Ishikawa iteration sequence {x,} of S and T was defined by

Yn=(1-PB,)xn+p,Sxy,

1.2)
Xn+l = (1 - “n)xn + lanyn, (

where xy € X, a,, f, € [0,1]. The recursion formulas (1.2) were first introduced in 1994
by Rashwan and Saddeek [2] in the framework of Hilbert spaces.

In recent years, several authors (see [2-6]) have studied the convergence of iterations to
a common fixed point for a pair of mappings. Rashwan has studied the convergence of Mann
iterations to a common fixed point (see [5]) and proved that the Ishikawa iterations converge
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to a unique common fixed point in Hilbert spaces (see [2]). Recently, Ciri¢ has proved that if the
sequence of Ishikawa iterations sequence {x,} associated with S and T converges to p, then p
is the common fixed point of S and T (see [7]). In [4, 6], the authors studied the same problem.
In [1], Bose defined the pair of mean nonexpansive mappings, and proved the existence of the
tixed point in Banach spaces. In particular, he proved the following theorem.

Theorem 1.1 (see [1]). Let X be a uniformly convex Banach space and K a nonempty closed convex
subset of X, S : K=K and T : K—K are a pair of mean nonexpansive mappings, and ¢ #0. Then,

(i) S and T have a common fixed point u;
(ii) further, if b#0, then
(@) u is the unique common fixed point and unique as a fixed point of each S and T,

(b) the sequence {x,} defined by x1 = Sxp, xo = Tx1, x3 = Sx2..., for any xy € K, converges
strongly to u.

It is our purpose in this paper to consider an iterative scheme, which converges to a
common fixed point of the pair of mean nonexpansive mappings. Theorem 2.1 extends and
improves the corresponding results in [1].

2. Main results
Now we prove the following theorem which is the main result of this paper.

Theorem 2.1. Let X be a uniformly convex Banach space, S : X—X and T : X—X are a pair of mean
nonexpansive with a nonempty common fixed points set; ifb >0, 0 <a <a, <1/2,0<p, <p <1,
then the Ishikawa sequence {x,} converges to the common fixed point of S and T.

Proof. First, we show that the sequence {x,} is bounded. For a common fixed point p of S and
T, we have

ITx = pll = [ITx - Spl
< allx = pll + b{llx = Tx|| + llp = Spll} + c{llx = Spll + llp - Tx|l} (2.1)
< allx = pll +b{llx = pll + llp = Tx|l} + c{llx = Spll + lIlp — Tl }.
LetL=(a+b+c)/(1-b-c),bya+2b+2c<1,itiseasy toseethata+b+c<1-b-c, thus
0<L<land|[Tx-pl <Llx-pl < llx-pl.
Similarly, we have ||Sx — p|| < L||x - p|| < ||x = pl|,
[lw1 =PIl = [ (1 = an) xn + au Ty = p|
= | (1 - an) (xu = p) + an(Tyn = p) |
< (1=an)|2n = p|| + anl| Ty = pl|
< (1=an)||xn = p|| + anL|lya - pl|
< (V= a2 =pll + @al| (1= B,) %0 + B,S2x0 — p| (22)
= (1= an) [lxn = pl| + aul| (1= B,)) (xn = P) + B, (Sxu = p) |
< (1= an) [[xn = pll + @ (1= B,) |20 = pl| + @B, || Sxn — |
< (U=an)|lxn=pll + @n(1 = B,) |0 = pl| + @, [|xn - p
= ((1-an) +an(1-p,) +anp,)[|xn = p|| = || — |-
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So

l2¢ne1 =Pl < |ln =PIl < |01 =p| < -+ < [x0 = pl|- (2.3)

Hence, {x,} is bounded.
Second, we show that

lim ||x, - Tya.|| = 0. (2.4)

We recall that Banach space X is called uniformly convex if 6(¢) > O for every € > 0, where the
modulus 6(¢) of convexity of X is defined by

X+
2

o(¢e) = inf{l -

Y H Al <1yl <1, =yl > e}, (2.5)

for every € with 0 < € < 2. It is easy to see that Banach space X is uniformly convex if and only
if for any x,,, y, € Bx = {x | ||x|| £ 1}, ||xn + yn|| — 2 implies ||x, — y|| — 0.

Assume that lim . ||x, — Ty,|| #0, then there exist a subsequence {x,,} of {x,} and a
real number gy > 0, such that

|xn, = Tym || >0, k=1,2,3,.... (2.6)
On the other hand, for a common fixed point p of T and S, we have

%0, = Tym || < lxn, =Pl + | Tym - Pl
< lxew =2l + Lllym = 2l
= |l =PIl + LI = B,,) X + P S = p|
= [|xn. =Pl + L[ (1 = ) (Xne =) + B, (Sxu, = ) | 2.7)
< lxew, = pll + (1= B, ) Lll2w, = Pl + B, LI Sxn, = P
<1+ 1=, )L+B, L) |lxn - pll
< (1 + L)l = pll < 2| ~pl-

Thus,

1 €
”xnk _P” > E”x"k - Tynk” > EO =ée1>0. (2.8)

Because
ITya = pll < lyn—pll < [|(1 = B,) %+ B,Sxn - p

=[|(1=B,) (xn=p) + B, (Sxu=p)|| < (A= B)Ixn =Pl + B, |ISxn —pl| (29
<A -B)xn—pll +Bullxn—pll < [|2n—p

we know {x,} is bounded, then there exists M > 0, such that ||x, — p|| < M. Thus, [Ty, - p|| <
llxn = pll < M.

7
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Furthermore, we have

xnk - p _ Ty”k - p " — ”xnk - Tynk ” S_l > 0' (2‘10)
lxm =PIl [l2n =Pl [xn, =pll — M
From
m TP _ 1, Tyn —p <L<1, (2.11)
[|xn, = Pl [|xn, =l

and the fact that X is uniformly convex Banach space, there exists 6 > 0, such that

Y =P Ty =P o (2.12)
2w =l llxn =Pl
Thus,
”x”k+1 - P” = ” (1 - “nk)xnk +an TYn, — P”
< (1 - zank) ||x"k - P” + ”“"k (x"k - P) + Any (Ty"k P) ”
P, Tyn-
< (1-2ay,) ||2n — pl| + anc||2n — P H (2.13)
‘ ‘ || P|| |2 =Pl

< (1= 200l + 2= ), [~ pl] < (1 6 [~
= ”x"k —P” - 6lxnk”xnk —P” S ”xnk —P” — Oae.
Using (2.3), we obtain that
s =l < 1, = pll - 601 < [[53,-1 — pl| - B0t
< | xne—2 —p|| - 6aer < -+ <||xn 1 —p|| - baer (2.14)
< [l —pll - 26061
So
it =l < ot = pll = G < [0 = pll ~ 26061 < -+ < |15 = pll - (k= Déaer. (215)

Let k—oo, then we have ||x,, —p|| < 0. Itis a contradiction. Hence, lim ,,_,o. ||x, — Ty, = 0.
Third, we show that

lim ||x, — Sx,|| = 0. (2.16)
n—oo

Since
([0 = Sxul| < [|2tn = Tyul| + || Ty = Saca|

< lxn = Tyl + allxn = yull + b{ {20 = Sxul| + lyn = Tya||}
+ c{ [|lxn = Tynl| + [[yn — Sxa|}

= (1+0)[|xn = Tyn| + al|xn = ya| + | 2w = S|
+bl|yn =Tyl + cllyn - Sxu|

= (1+0)||xn = Tya|| + al| (1 = B,)xn + B, Sxn — xu]| (2.17)
+b||xn = Sxu|| + || (1= B,) % + ,Sxn = Tyu|
+c|[ (1= pB,)xn + P, Sxn = Sxu|

< +0)[|xn = Tyn|| + ap,||xn = Sxu|
+ bl|ocn = Sxu|| + b, || 200 = Saxul| + bl|oxn = Tyl +c (1= B,) [|xn = Sxa|

=1+b+0)||xn—Tya| + (af, +b+bp, +c(1-p,))||xn — Sxul|,
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we have

(1-ap,-b-bp,—c(1-P,))||xn—Sxx|| < A +b+0)||xn—Tya| (2.18)
Let My =1-ap,-b-bp, —c(1-p,), then

Miy=1-ap, -b-bp,—c+cp,=1-b-c—-(a+b-c)p,
>a+b+c—(a+b-c)p,=(a+b)(1-p,)+c(1+p,) (2.19)
>(a+b)(1-p)+c>0.

So
6 = S| < 222k, — Tl (2.20)
Using (2.4), we get that
lim |, = Sacy || = 0. (2.21)

Forth, we show that if the Ishikawa sequence {x,} converges to some point p € X, then
p is the common fixed point of S and T. By

Yn= (1 _ﬁn)x" +ﬂnsxnl

2.22)
Xn+l = (1 - “n)xn + Ianyn, (

we have x, - Ty, = (1/ay,) (xp+1 —x,). Since {x,} is a convergent sequence, we get lim ;o || x,, —
Ty, = 0. It is easy to see that ||x, — yu|l = B, llx, — Sxu|| and [|Sx,, — yull = (1 = B,)||xn — Sxall.
On the other hand,

|yn = Tynll = [|(1=B,)%n + B,Sxn = Tyal| < (1= B,) |10 = Tyn|| + B, |[Sxn ~ Tyal|.  (223)

By (1.1), we obtain

Ty = Sxull < all 2 = yull + b |20 = Sxull + v = Tyall} +e{llxn = Tynll + lyn = Sxull}
< ap,[|xn = Sxul| + bl| x5 = Sxa| + b(1 = B,) | X = T
+0f, [|Sxn = Tyn|| + cllxn = Tyal| + (1= B,) |20 = S|
= (ap, +b+c(1=p,)|xn = Sxull
+ ((1=B,) +0)||xn = Tynl| + bf, || Sxn = Tya]|

(2.24)
Since
260 = Sxal| < [|S%n = Tyl + | - T, (2.25)
we get
[Ty~ Sxall < (1= ,) + e+ ap, +b-+.c(1-,))[xa - Tyl 026

+ (bﬂn + aﬂn +b+C(1 _lﬁn))”S'x" _Ty"”
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So

(I-b-c—(a+b-0)p,)||Tyn - Sxul| < (b(1-B,) +c+ap, +b+c(1-p,))|xn—Tyul.
(2.27)

Let M=1-b-c-(a+b-c)p,, Since0 < p, < p <1, wehave
My,>a+b+c-(a+b-c)p,>(a+b)(1-p,)+c(1+p,) 2 (a+b)(1-p)+c>0. (2.28)
It is easy to see that
b(1-p,)+c+ap,+b+c(1-p,) >0. (2.29)
Note that lim .o ||xn — Tyx|| = 0, then we get
lim [[Sx, - Tyl =0, lim [ly, ~ Ty ]| = 0. (2:30)

So im ;0 ||Xn = Yl = im0 B, | Sx — x| = 0.
Let p = lim ,.,Xp,, then lim .oy, = p, lim . Sx, = p, lim ., Ty, = p. By (1.1), we
have

15, = Tpll < alla = pll + b{ s = Sx, || + Ip = Tpl} + el = Tl + - Sxall}. @3
Let n—oo, then we get
llp =Tpll < (b +c)llp - Tpl|. (2.32)
Since b + ¢ < 1, it follows that
lp-Tpll =0, thatisTp =p. (2.33)

Similarly, we can prove that Sp = p. So p is the common fixed point of S and T.
Finally, we show that {Sx,} is a Cauchy sequence. For any m,n € N,

5% = Sl < 1550 = Tyneml] + [ S50em - Tynn
< allo = Ynenll+ b0~ Sl + [y ~ Ty}
el = Ty [y~ Sl ) + S5 ~ Ty
< (%0 - S, + 152 - Sl + [S510m - ol
+ b{{|xn = Sxu| + [[ynem = Tymem ||}
+cf |[2n = Sxxul| + || Sxn — Sxpim |
+1S%nem = TYnom|| + |Ynem = Sxnem||
+ || Sxpsm = Sxul|} + || S%nam — TYmaml|-

(2.34)

Since b > 0, thus we get 1 — a — 2c¢ > 0. Simplify, then we have

1820 = Sxpaml| < Allxtn = Sxu| + Bl|ynmsm = TYmem| (2.35)

+ C”yn+m - an+m|| + D||an+m - Tyn+m

7

where A=(a+b+c¢)/(1-a-2¢)>0, B=b/(1-a-2¢c)>0,C=(a+c)/(1-a-2c)>0,and
D=(1+c)/(1-a-2c)>0.By (2.16) and (2.30), we know that

”xn - an” — 0, ”yn+m - Tyn+m ” — 0, ||an+m - T]/n+m” — 0. (236)
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So it is easy to see that ||yu+m — SXpem|[—0. Thus, ||Sx, — Sxy4m|—0, that is {Sx,} is a Cauchy
sequence. Hence, there exists p, such that p = lim ,,_..,Sx,,. We know that p = lim ,,_,,,x, and p
is the common fixed point of S and T. This completes the proof of the theorem. O
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