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In the work of Babu and Vara Prasad (2006), the claim is made that Mann iteration converges
faster than Ishikawa iteration when applied to Zamfirescu operators. We provide an example to
demonstrate that this claim is false.
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We begin with some definitions.

Definition 1. Suppose that {an} and {bn} are two real convergent sequences with limits a and
b, respectively. Then {an} is said to converge faster than {bn} if

lim
∣
∣
∣
∣

an − a

bn − b

∣
∣
∣
∣
= 0. (1)

Definition 2. Let (X, d) be a complete metric space, and T : X→X a map for which there exist
real numbers, a, b, and c satisfying 0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y ∈ X, at
least one of the following is true:

(1) d(Tx, Ty) ≤ ad(x, y);

(2) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];

(3) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Definition 3. Let E denote an arbitrary Banach space, T , a self-map of E. The sequence {xn}
defined by

x0 ∈ E, xn+1 =
(

1 − αn

)

xn + αnTxn, n = 0, 1, 2, . . . , (2)

where 0 ≤ an < 1 for n = 1, 2, . . . , is called Mann iteration, and will be denoted byM(x0, αn, T).
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The sequence {yn} defined by

y0 ∈ E, yn+1 =
(

1 − αn

)

yn + αnTzn,

zn =
(

1 − βn
)

yn + βnTyn, n = 0, 1, 2, . . . ,
(3)

where 0 ≤ αn, βn ≤ 1 for n = 1, 2, . . . , is commonly called Ishikawa iteration, andwill be denoted
by I(y0, αn, βn, T).

The following appears in [1, Theorem 2.1].

Theorem 4. Let E be an arbitrary Banach space,K a closed convex subset of E, T a Zamfirescu operator,
0 ≤ αn, βn ≤ 1, and

∑
αn = ∞. Then Mann iteration M(x0, αn, T) converges faster than Ishikawa

iteration I(y0, αn, βn, T) to the fixed point x∗ of T , provided that x0 = y0 ∈ K.

Let T be a nondecreasing continuous self-map of [0, 1] with p a fixed point of T . It was
shown in [2, Theorem 7], that |yn+1−p| ≤ |xn+1−p| for each n = 1, 2, . . .. Therefore, the condition

lim
∣
∣
∣
∣

xn+1 − p

yn+1 − p

∣
∣
∣
∣
= 0 (4)

is impossible for any Zamfirescu operator on [0, 1]. The error is caused by the inconsistent in
[1, Definiton 1.3] (see also [3]).

In fact, we will give an example satisfying the condition of [1, Theorem 2.1] such that the
Ishikawa iteration converges faster than the Mann iteration.

Example 5. Suppose

T : [0, 1] −→ [0, 1] :=
1
2
x,

αn = βn = 0, n = 1, 2, 3, . . . , 15; αn = βn =
4√
n
, n ≥ 16.

(5)

It is clear that T is a Zamfirescu operator with a unique fixed point x∗ = 0. And it is
easy to see that T , αn, βn satisfy all the conditions of Theorem 4. But we show that the Ishikawa
iteration I(x0, αn, βn, T) converges faster than the Mann iteration M(x0, αn, T).

Since αn = βn = 0, n = 1, 2, 3, . . . , 15, so

xn = yn = x0, n = 1, 2, 3, . . . , 16. (6)

Suppose x0 /= 0. The Mann iteration M(x0, αn, T) is

xn+1 =
(

1 − αn

)

xn + αnTxn =
(

1 − 4√
n

)

xn +
4√
n
·1
2
xn

=
(

1 − 2√
n

)

xn = · · · =
n∏

i=16

(

1 − 2√
i

)

x16 =
n∏

i=16

(

1 − 2√
i

)

x0.

(7)
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The Ishikawa iteration I(x0, αn, βn, T) is

yn+1 =
(

1 − αn

)

yn + αnT
((

1 − βn
)

yn + βnTyn

)

=
(

1 − 4√
n

)

yn +
4√
n
·1
2

((

1 − 4√
n

)

yn +
4√
n
·1
2
yn

)

=
(

1 − 2√
n
− 4
n

)

yn = · · · =
n∏

i=16

(

1 − 2√
i
− 4

i

)

y16 =
n∏

i=16

(

1 − 2√
i
− 4

i

)

x0.

(8)

So,

∣
∣
∣
∣

yn+1 − 0
xn+1 − 0

∣
∣
∣
∣
=
∏n

i=16(1 − 2/
√
i − 4/i)x0

∏n
i=16(1 − 2/

√
i)x0

=
n∏

i=16

(

1 − 4/i

1 − 2/
√
i

)

=
n∏

i=16

(

1 − 4

i − 2
√
i

)

. (9)

But

0 ≤ lim
n→∞

n∏

i=16

(

1 − 4

i − 2
√
i

)

≤ lim
n→∞

n∏

i=16

(

1 − 4
i

)

≤ lim
n→∞

n∏

i=16

(

1 − 1
i

)

= lim
n→∞

(
15
16

·16
17

·17
18

· · · · ·n − 1
n

)

= lim
n→∞

15
n

= 0.

(10)

Hence,

lim
n→∞

∣
∣
∣
∣

yn+1 − 0
xn+1 − 0

∣
∣
∣
∣
= lim

n→∞

n∏

i=16

(

1 − 4

i − 2
√
i

)

= 0. (11)

That is the Ishikawa iteration converges faster than the Mann iteration to the fixed point
x∗ = 0 of T . So Theorem 4 is inconsistent.
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