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Let C be a closed convex subset of a complete metrizable topological vector space (X, d)
and T : C — C a mapping that satisfies d(Tx,Ty) < ad(x,y) + bd(x,Tx) +cd(y,Ty) +
ed(y,Tx) + fd(x,Ty) for all x,y € C, where 0<a<1,b20,c=0,e>0, f 20, and
a+b+c+e+ f=1. Then T has a unique fixed point. The above theorem, which is a
generalization and an extension of the results of several authors, is proved in this paper.
In addition, we use the Mann iteration to approximate the fixed point of T.
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tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Gregus [1] proved the following theorem.

TaEOREM 1.1. Let C be a closed convex subset of a Banach space X and T : C — C a mapping
that satisfies || Tx — Ty|l < allx — yll + bllx — Tx|[ +clly — Tyll for all x,y € C, where 0 <
a<1,b=0,c=0,anda+b+c=1. Then T has a unique fixed point.

Several papers have been written on the Gregus fixed point theorem. For example, see
[2, 3]. The theorem has been generalized to the condition when X is a complete metriz-
able toplogical vector space [4].

When a=1,b=0, c =0, T becomes a nonexpansive map. In the past four decades,
several papers have been written on the existence of a fixed point (which may not be
unique) for a nonexpansive map defined on a closed bounded and convex subset C of a
Banach space X. For example, see [5-7]. Recently, the existence of fixed points of T'when
the domain of T is unbounded was discussed in [6]. When a = 0, we have the Kannan
maps. Similarly, several papers have been written on the existence of a fixed point for a
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Kannan map defined on a Banach space, for example, see [8, 9]. The fixed point theorem
of Gregus is interesting because it tells what happens if 0 <a < 1.

Chatterjea [10] considered the existence of fixed point for T when T is defined on a
metric space (X,d), such that for 0 < a < 1/2,

d(Tx,Ty) <af{d(x, f(y)) +d(y, f(x))}. (1.1)

It is natural to combine this condition with that of Gregus to get the following condition:
d(Tx,Ty) <ad(x,y) +bd(x,Tx)+cd(y,Ty) +ed(y, Tx)+ fd(x,Ty) (1.2)

forallx,y € C,where0<a<1,b>20,c>20,e>0, f=0,anda+b+c+e+ f=1.
Observe that if T satisfies (1.2), then it also satisfies

d(Tx,Ty) < ad(x,y) + pd(x, Tx) + pd(y,Ty) + pd(y, Tx) + pd(x,Ty) (1.3)

forallx,y € C,where0<a<1,p=0,a+4p=1,(p=(1/4)b+(1/4)c+ (1/4)e+ (1/4) f).
Thus b, ¢, e, and f will be used interchangeably as p in the proof of our main theorem.

As observed by Chidume [5, page 119], since the four points {x,y,Tx, Ty} of (1.2)
determine six distances in X, the inequality amounts to say that the image distance d(Tx,
Ty) never exceeds a fixed convex combination of the remaining five distances. Geomet-
rically, this type of condition is quite natural.

In this paper, we extend Gregus result to the condition when T satisfies condition (1.2)
and also generalize it to the condition when X is a complete metrizable topological vector
space, thus answering the question posed in [4]. Complete metrizable topological vector
spaces include uniformly convex Banach spaces, Banach spaces and complete metrizable
locally convex spaces (see [11, 12]).

The following result will be needed for our result.

THEOREM 1.2 [13, 14]. A topological vector space X is metrizable if and only if it has a
countable base of neighbourhoods of zero. The topology of a metrizable topological vector

space can always be defined by a real-valued function || - || : X — R, called F-norm such that
forallx,y € X,

(D) lxll =0,

2) llxll=0=x=0,

(3) llx+yll < llxll + 1y,

(4) lIAxIl < x|l for all A € K with |A| <1,

(5) if Ay = 0, and A, € K, then [[A,x|| — 0.

For the same result see Kothe [15, Section 15.11]. Henceforth, unless otherwise in-
dicated, F will denote an F-norm if it is characterizing a metrizable topological vector
space. Observe that an F-norm will be a norm if it is defining a normed space.

We now prove our main theorem. We use the technique in [4] which is due to Gre-

gus [1].
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TraEOREM 1.3. Let C be a closed convex subset of a complete metrizable space X and T : C —
C a mapping that satisfies F(Tx — Ty) < aF(x — y) + bF(x — Tx) + cF(y — Ty) + eF(y —
Tx)+ fF(x—Ty) forallx,y € C, where0<a<1,b=0,c=0,e=0, f=0,anda+b+
c+e+ f =1 Then T has a unique fixed point.

Proof. Take any point x € C and consider the sequence {T;,(x)} -,
F(T"x—T" 'x) <aF(T" 'x — T" %x) + bF(T" 'x — T"x)
+cF(T" 2x — T" 'x) + eF (T" *x — T"x)
+ fF(T" 'x— T 'x)

(1.4)
atc+e nel.  pne2
< 1—b—eF(T x—T" *x)
a+2p n-1, _ n-2 _
<175, —ZpF(T x—T"?x) < F(Tx - x).
Thus
F(T"x—T" 'x) < F(Tx - x). (1.5)

In effect, it means that the distance between two consecutive elements of {T"x} is less
or equal to the distance between the first and the second element. Now let us consider
the distance between two consecutive elements with odd (resp., even) power of T. It is
sufficient to consider only the distance between Tx and T°x,

F(T?x — Tx) < aF(T?x — x) + bF(T*x — T?x) + cF(Tx — x)
+eF(x—T°x) + fF(T?*x — Tx)
<aF(T?x — Tx) +aF(Tx — x) + bF(T*x — T°x)

(1.6)
+cF(Tx — x) +eF(x — Tx) +eF(Tx — T?x)
+eF(T?x — T°x) + fF(T?x — Tx)
<Qa+b+c+3e+ f)F(Tx—x)=(a+2p+1)F(Tx —x).
Hence
F(T°x—Tx) < (a+2p+1)F(Tx—x) VxeC. (1.7)

Since C is convex, therefore z = (1/2)T?x + (1/2)T3x is in C, and from the properties of
the F-norm, we have

1

F(Tz—z) < -F(Tz—-T%*x) + %F(Tz— T3x)

DO |

< %{aF(z— Tx)+bF(Tz - z) +cF(Tx — T*x)
+eF(Tx—Tz)+ fF(z— T%x)}

{aF(z— T?x) + bF(Tz — z) + cF(T?x — T%x)

N | —

+

+eF(T*x—Tz) + fF(z-T%x)},
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F(z—Tx) < %F(sz— Tx) + %F(T3x— Tx)
< %F(Tx—x)+%(a+2p+l)F(Tx—x) = <1+p+ %a)F(Tx—x),
F(z—T%*) < %F(T3x— T%x) < %F(Tx—x).
(1.8)
Similarly,
F(z—T%x) < %F(Tx—x),
F(Tx—-Tz) < %F(Tx— T?x) + %F(Tx— T*x)
< %(a+2p+1)F(Tx—x)+%{F(Tx—sz)+F(T2x—T4x)}
< %(a+2p+l)F(Tx—x)+%{F(Tx—x)+(a+2p+l)F(Tx—x)}
< <a+2p+§>F(Tx—x),
F(T?x—Tz) < %F(sz— T3x) +%F(T2x— T*x) < (%a+p+ I)F(Tx—x).
(1.9)
Thus

(1-b)E(Tz—2) < %{a(l it %a)F(Tx—x)+cF(Tx—x)

+e(a+2p+ %)F(Tx—x)+ %fF(Tx—x)}

+ %{%aF(Tx—x)+cF(Tx—x)+ %e(a+2p+ 1)F(Tx —x)

1 ol (Cas 242 §2> _
+2fF(Tx x)}—( atja +aptoptop F(Tx —x).

4"y
(1.10)
Thus
4(1 - p)F(z—Tz) < (3a+a*+5ap+10p+6p*)F(Tx — x)

< (2p* —5p+4)F(Tx —x). (1.11)

Hence

90—

Fle= T = Sy T (112)

F(Tz—-2z) <AF(Tx—x),

where A = (26 — 22a — a?)/8(a+3). It is clear that 0 < A < 1.
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Now let i = inf {F(Tx — x) : x € C}. Then there exists a point x € C such that F(Tx —
x) <i+¢€ fore >0.
Suppose i > 0. Then for 0 < € < (1 —A)i/A and F(Tx — x) < i+ €, we have

F(Tz—2z) <AF(Tx—x) <A(i+€)<i, (1.13)

that is, F(Tz — z) < i, which is a contradiction with the definition of i. Hence inf {F(Tx —
x):x€ C}=0.
To prove that the infimum is attained is the easy part of the proof. Take the following

system of sets: K, = {x: F(x — Tx) < 1/2n(q +1)}; T(K,) and T(K,), where n € N, g =
(a+ p)/(1—a),and T(K,) is the closure of T'(K,). Then for any x, y € K,,,

F(Tx—Ty)<qF(Tx—x)+qF(Ty—y) < %,
(1.14)
Flx—y) < (q+ 1F(Tx—x) + (q+ DF(Ty— y) < %

that is, diam(K,) < 1/n, diam(T(K,)) < 1/n and therefore, since diam(T(K,)) =
diam(T(K},)), we have diam(T(K,)) < 1/n. Itis clear that {K,,} and {T(K,)} form mono-
tone sequences of sets and from (1.5) we have T'(K,,) C K,,. Suppose y € T(K,,), then there
exists y' € K, such that F(y — Ty") < € for € >0 and

F(y—Ty)<F(y—Ty )+F(Ty —Ty)
<F(y—Ty' )+aF(y—y)+bF(y'—Ty") (1.15)
+cF(Ty—y)+eF(y—Ty" )+ fF(y' —Ty).

Hence
(1-¢))F(y—Ty)<(1+a+e+ f)e+(a+b)F(Ty —y"). (1.16)
Since F(y' = Ty") < 1/2n(gq + 1), then

1+a+e+f€ a+b 1
l1-¢ 1—c2n(g+1)

F(y-Ty) < (1.17)

Since € > 0 is arbitrary and a+ b +c¢ < 1, then F(y — Ty) < 1/2n(q + 1) and we have y €

K,.Hence T'(K,) C K,,, too.
{T(K,)} is a decreasing sequence of closed nonempty sets with diam(7'(K,)) — 0 as
n — co. Hence they have a nonempty intersection {x*} and T has a unique fixed point

Txx = x%. |

CoroLLaRY 1.4. Let C be a closed convex subset of a Banach space X and T:C — C a
mapping that satisfies |Tx — Tyl < allx — yll + blITx — x| +cl| Ty — yll +ell Tx — yll +
STy —xl|l forallx,y € Cwhere0<a<1,b=20,c=20,e=0, f=0,anda+b+c+e+
f =1. Then T has a unique fixed point.

CororLARy 1.5 [1]. Let C be a closed convex subset of a Banach space X and T : C — C
a mapping that satisfies || Tx — Tyll < allx — yll +blITx — x|l +cl[Ty — yll forall x,y € C,
where0<a<1,b=0,c=0,and a+b+c= 1. Then T has a unique fixed point.
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CoROLLARY 1.6. Let C be a closed convex subset of a complete metrizable topological vector
space X and T : C — C a mapping that satisfies || Tx — Tyl < allx — yll + bl Tx — yll +
cliITy — x|l forall x,y € C, where0<a<1,b=0,c=0,anda+b+c=1. Then T has a
unique fixed point.

We now proceed to use the Mann iteration scheme [16] to approximate the fixed point
of our mapping under consideration.

THEOREM 1.7. Let C be a nonempty closed convex subset of a complete metrizable topological
vector space X and let T : C — C be a mapping that satisfies F(Tx — Ty) < aF(x — y) +
bF(Tx —x)+cF(Ty — y)+eF(Tx — y)+ fF(Ty — x) for all x,y € C, where 0 <a <1,
b=0,c20,e=0, f=0,and a+b+c+e+ f = 1. Suppose {x,} is a Mann iteration
sequence defined by x,11 = (1 — 0y)x, + 0y Txy, x0 € C, n > 0, where {a, } satisfy 0 < o, < 1
forall n, 3.’ o, = 0. Assume 2¢ < c+ b, then {x,} converges to the unique fixed point of T.

Proof. The fact that T has a unique fixed point is already shown in Theorem 1.3.

If F(Tx—Ty) <aF(x—y)+bF(Tx —x)+cF(Ty —y)+eF(Tx — y) + fF(Ty — x),
then

F(Tx—Ty) <aF(x—y)+bF(Tx—x)+c{F(Ty — Tx)+F(Tx —x)+F(x— y)}

+e{F(Tx—x)+F(x—y)}+ f{F(Ty — Tx)+F(Tx — x)}.
(1.18)

After computation, we have F(Tx — Ty) < ((a+c+e)/(1—(c+ f)))F(x—y)+((b+c+
e+ f)/(1=(c+ f))F(Tx—x).1f§ = (a+c+e)/(1—(c+f)), then

b+ct+e+f
1—(c+f)

Since by assumption 2¢ < b +¢, it is clear that § < 1.
Suppose p is a fixed point of T, then if x = p and y = x,, from (1.19), we obtain

F(Tx—Ty) <8F(x—y)+ F(Tx-x)}. (1.19)

F(Txy = p) < 6F (xn = p),

F(xye1— p) = F((1 —atn)xpn + y Txy — (1 — 0ty + ) p)

=F((1 = atn) (xn = p) + &n (T = p)) (1.20)
(1= ay)F(xy — p) + anF(Tx, — p)

< (1= ay(1-8))F(x, — p).

Since 1 — a,(1 — ) < 1 by the choice of «, in the theorem, then {x,} converges to
p- O

Remarks 1.8. (1) Gregus [1] gave an example in which a = 1, C is closed convex and
bounded but yet T' does not have a fixed point. If a = 1, some form of boundedness must
be assumed on C for T to have a fixed point, for example, see [7, 6]. The same is true if
a=0 (see[8,9]).

(2) If (X, d) is a complete metric space and a+b+c+e+ f < 1, it was shown in [17]
that T as defined in (1.2) has a unique fixed point. However, ifa+b +c+e+ f = 1, Hardy
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and Rogers [17] assumed that T is continuous and X is compact in order to prove the
existence of fixed point for T as defined in (1.2). Goebel et al. [18] obtained the existence
of fixed point for T as defined by (1.2) when a+b+c+e+ f = 1. In which case, it was
assumed that X is a uniformly convex Banach space, T is continuous and C is bounded,
closed, and convex. In our result, T is not assumed to be continuous, X is assumed to be
neither a compact nor a uniformly convex Banach space, and there is no boundedness
assumption on C.

(3) Berinde [14] showed that the Ishikawa iteration sequence [16] of a class of quasi-
contractive operators, called Zamfirescu operators, defined on a closed convex subset C of
a Banach space X converges to the fixed point of T. The first author [19] showed that if X
is a complete metrizable locally convex space, and C is closed and convex, then the Mann
iteration sequence of the Zamfirescu operator T defined on C converges to the fixed point
of T. In both cases, the sum of the constants is less than 1 while in Theorem 1.7, the sum
is 1. In addition, X is generalized to a complete metrizable topological vector spaces. Can
Theorem 1.7 still be proved without the assumption that 2¢ < a + b?
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