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1. Introduction

In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University
of Wisconsin in which he discussed a number of important unsolved problems. Among
those was the question concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with the metric d(·,·). Given ε > 0,
does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy),
h(x)h(y)) < δ for all x, y ∈G1, then there exists a homomorphismH :G1→G2 with d(h(x),
H(x)) < ε for all x ∈G1?

The case of approximately additive functions was solved by Hyers [2] under the as-
sumption that G1 and G2 are Banach spaces. Indeed, he proved that each solution of the
inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε, for all x and y, can be approximated by an exact
solution, say an additive function. In this case, the Cauchy additive functional equation,
f (x+ y)= f (x) + f (y), is said to have the Hyers-Ulam stability.

Rassias [3] attempted to weaken the condition for the bound of the norm of the
Cauchy difference as follows:

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε

(‖x‖p +‖y‖p) (1.1)
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and proved the Hyers theorem. That is, Rassias proved the Hyers-Ulam-Rassias stability
of the Cauchy additive functional equation. Since then, the stability of several functional
equations has been extensively investigated [4–10].

The terminologies Hyers-Ulam-Rassias stability and Hyers-Ulam stability can also be
applied to the case of other functional equations, differential equations, and of various
integral equations.

For a given continuous function f and a fixed real number c, the integral equation

y(x)=
∫ x

c
f
(

τ, y(τ)
)

dτ (1.2)

is called a Volterra integral equation of the second kind. If for each function y(x) satisfy-
ing

∣
∣
∣
∣y(x)−

∫ x

c
f
(

τ, y(τ)
)

dτ
∣
∣
∣
∣≤ ψ(x), (1.3)

where ψ(x) ≥ 0 for all x, there exists a solution y0(x) of the Volterra integral equation
(1.2) and a constant C > 0 with

∣
∣y(x)− y0(x)

∣
∣≤ Cψ(x) (1.4)

for all x, where C is independent of y(x) and y0(x), then we say that the integral equation
(1.2) has the Hyers-Ulam-Rassias stability. If ψ(x) is a constant function in the above
inequalities, we say that the integral equation (1.2) has the Hyers-Ulam stability.

For a nonempty set X , we introduce the definition of the generalized metric on X . A
function d : X ×X → [0,∞] is called a generalized metric on X if and only if d satisfies
the following:
(M1) d(x, y)= 0 if and only if x = y;
(M2) d(x, y)= d(y,x) for all x, y ∈ X ;
(M3) d(x,z)≤ d(x, y) +d(y,z) for all x, y,z ∈ X .

We remark that the only one difference of the generalized metric from the usual metric is
that the range of the former is permitted to include the infinity.

We now introduce one of the fundamental results of fixed point theory. For the proof,
we refer to [11]. This theorem will play an important role in proving our main theorems.

Theorem 1.1. Let (X ,d) be a generalized complete metric space. Assume that Λ : X → X is
a strictly contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative
integer k such that d(Λk+1x,Λkx) <∞ for some x ∈ X , then the followings are true:

(a) the sequence {Λnx} converges to a fixed point x∗ of Λ;
(b) x∗ is the unique fixed point of Λ in

X∗ = {y ∈ X | d(Λkx, y
)

<∞}; (1.5)

(c) If y ∈ X∗, then

d
(

y,x∗
)≤ 1

1−L
d(Λy, y). (1.6)
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In this paper, we will adopt the idea of Cădariu and Radu [12] and prove the Hyers-
Ulam-Rassias stability and the Hyers-Ulam stability of the Volterra integral equation
(1.2).

2. Hyers-Ulam-Rassias stability

Recently, Cădariu and Radu [12] applied the fixed point method to the investigation of
the Cauchy additive functional equation. Using such a clever idea, they could present
another proof for the Hyers-Ulam stability of that equation [13–15].

In this section, by using the idea of Cădariu and Radu, we will prove the Hyers-Ulam-
Rassias stability of the Volterra integral equation (1.2).

Theorem 2.1. Let K and L be positive constants with 0 < KL < 1 and let I = [a,b] be given
for fixed real numbers a,b with a < b. Assume that f : I ×C→ C is a continuous function
which satisfies a Lipschitz condition

∣
∣ f (x, y)− f (x,z)

∣
∣≤ L|y− z| (2.1)

for any x ∈ I and all y,z ∈ C. If a continuous function y : I → C satisfies

∣
∣
∣
∣y(x)−

∫ x

c
f
(

τ, y(τ)
)

dτ
∣
∣
∣
∣≤ ϕ(x) (2.2)

for all x ∈ I and for some c ∈ I , where ϕ : I → (0,∞) is a continuous function with

∣
∣
∣
∣

∫ x

c
ϕ(τ)dτ

∣
∣
∣
∣≤ Kϕ(x) (2.3)

for each x ∈ I , then there exists a unique continuous function y0 : I → C such that

y0(x)=
∫ x

c
f
(

τ, y0(τ)
)

dτ, (2.4)

∣
∣y(x)− y0(x)

∣
∣≤ 1

1−KL
ϕ(x) (2.5)

for all x ∈ I .

Proof. First, we define a set

X = {h : I −→ C | h is continuous} (2.6)

and introduce a generalized metric on X as follows:

d(g,h)= inf
{

C ∈ [0,∞] | ∣∣g(x)−h(x)
∣
∣≤ Cϕ(x)∀x ∈ I

}

. (2.7)

(Here, we give a proof for the triangle inequality. Assume that d(g,h) > d(g,k) + d(k,h)
would hold for some g,h,k ∈ X . Then, there should exist an x0 ∈ I with

∣
∣g
(

x0
)−h

(

x0
)∣
∣ >

{

d(g,k) +d(k,h)
}

ϕ
(

x0
)= d(g,k)ϕ

(

x0
)

+d(k,h)ϕ
(

x0
)

. (2.8)
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In view of (2.7), this inequality would yield

∣
∣g
(

x0
)−h

(

x0
)∣
∣ >

∣
∣g
(

x0
)− k

(

x0
)∣
∣+

∣
∣k
(

x0
)−h

(

x0
)∣
∣, (2.9)

a contradiction.)
Our task is to show that (X ,d) is complete. Let {hn} be a Cauchy sequence in (X ,d).

Then, for any ε > 0 there exists an integer Nε > 0 such that d(hm,hn)≤ ε for allm,n≥Nε.
In view of (2.7), we have

∀ε > 0 ∃Nε ∈N∀m,n≥Nε ∀x ∈ I :
∣
∣hm(x)−hn(x)

∣
∣≤ εϕ(x). (2.10)

If x is fixed, (2.10) implies that {hn(x)} is a Cauchy sequence in C. Since C is complete,
{hn(x)} converges for each x ∈ I . Thus, we can define a function h : I → C by

h(x)= lim
n→∞hn(x). (2.11)

Since ϕ is continuous on the compact interval I , ϕ is bounded. Thus, (2.10) implies that
{hn} converges uniformly to h in the usual topology of C. Hence, h is continuous, that is,
h∈ X . (It has not been proved yet that {hn} converges to h in (X ,d).)

If we letm increase to infinity, it follows from (2.10) that

∀ε > 0 ∃Nε ∈N∀n≥Nε ∀x ∈ I :
∣
∣h(x)−hn(x)

∣
∣≤ εϕ(x). (2.12)

By considering (2.7), we get

∀ε > 0∃Nε ∈N ∀n≥Nε : d
(

h,hn
)≤ ε. (2.13)

This means that the Cauchy sequence {hn} converges to h in (X ,d). Hence, (X ,d) is com-
plete.

We now define an operator Λ : X → X by

(Λh)(x)=
∫ x

c
f
(

τ,h(τ)
)

dτ (2.14)

for all h ∈ X and x ∈ I . Then, according to the fundamental theorem of Calculus, Λh is
continuously differentiable on I , since f is a continuous function. Hence, we conclude
that Λh∈ X .

We assert that Λ is strictly contractive on X . Given any g,h∈ X , let Cgh ∈ [0,∞] be an
arbitrary constant with d(g,h)≤ Cgh, that is,

∣
∣g(x)−h(x)

∣
∣≤ Cghϕ(x) (2.15)
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for any x ∈ I . Then, it follows from (2.1), (2.3), (2.14), and (2.15) that

∣
∣(Λg)(x)− (Λh)(x)

∣
∣=

∣
∣
∣
∣

∫ x

c

{

f
(

τ,g(τ)
)− f

(

τ,h(τ)
)}

dτ
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x

c

∣
∣ f
(

τ,g(τ)
)− f

(

τ,h(τ)
)∣
∣dτ

∣
∣
∣
∣

≤ L
∣
∣
∣
∣

∫ x

c

∣
∣g(τ)−h(τ)

∣
∣dτ

∣
∣
∣
∣

≤ LCgh

∣
∣
∣
∣

∫ x

c
ϕ(τ)dτ

∣
∣
∣
∣≤ KLCghϕ(x)

(2.16)

for all x ∈ I , that is, d(Λg,Λh) ≤ KLCgh. Hence, we may conclude that d(Λg,Λh) ≤
KLd(g,h) for any g,h∈ X and we note that 0 < KL < 1.

Let h0 ∈ X be given. By (2.6) and (2.14), there exists a constant 0 < C <∞ such that

∣
∣
(

Λh0
)

(x)−h0(x)
∣
∣=

∣
∣
∣
∣

∫ x

c
f
(

τ,h0(τ)
)

dτ −h0(x)
∣
∣
∣
∣≤ Cϕ(x) (2.17)

for every x ∈ I , since f ,h0 are bounded on I and minx∈I ϕ(x) > 0. Thus, (2.7) implies that

d
(

Λh0,h0
)

<∞. (2.18)

Therefore, it follows from Theorem 1.1(a) that there exists a continuous function y0 :
I → C such that Λnh0 → y0 in (X ,d) and Λy0 = y0, or equivalently, y0 satisfies (2.4) for
every x ∈ I .

We show that {g ∈ X | d(h0,g) <∞} = X , where h0 was chosen with the property
(2.18). Given any g ∈ X , since g, h0 are bounded on I and minx∈I ϕ(x) > 0, there exists a
constant 0 < Cg <∞ such that

∣
∣h0(x)− g(x)

∣
∣≤ Cgϕ(x) (2.19)

for any x ∈ I . Hence, we have d(h0,g) <∞ for all g ∈ X , that is, {g ∈ X | d(h0,g) <∞}=
X . Now, Theorem 1.1(b) implies that y0 is the unique continuous function with the prop-
erty (2.4).

Finally, Theorem 1.1(c) implies that

d
(

y, y0
)≤ 1

1−KL
d(Λy, y)≤ 1

1−KL
, (2.20)

since inequality (2.2) means that d(y,Λy)≤ 1. In view of (2.7), we can conclude that the
inequality (2.5) holds for all x ∈ I . �

In the previous theorem, we have investigated the Hyers-Ulam-Rassias stability of the
Volterra integral equation (1.2) defined on compact domains. We will now prove the last
theorem for the case of unbounded domains. More precisely, Theorem 2.1 is also true if
I is replaced by an unbounded interval (−∞,a], R, or [a,∞), as we see in the following
theorem.
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Theorem 2.2. Let K and L be positive constants with 0 < KL < 1 and let I denote either
(−∞,a] or R or [a,∞) for a given real number a. Assume that f : I ×C→ C is a contin-
uous function which satisfies a Lipschitz condition (2.1) for all x ∈ I and all y,z ∈ C. If
a continuous function y : I → C satisfies inequality (2.2) for all x ∈ I and for some c ∈ I ,
where ϕ : I → (0,∞) is a continuous function satisfying (2.3) for any x ∈ I , then there exists
a unique continuous function y0 : I → C which satisfies (2.4) and (2.5) for all x ∈ I .

Proof. We will prove our theorem for the case I =R. We can similarly prove our theorem
for I = (−∞,a] or I = [a,∞).

For any n ∈N, we define In = [c− n,c + n]. According to Theorem 2.1, there exists a
unique continuous function y0,n : In→ C such that

y0,n(x)=
∫ x

c
f
(

τ, y0,n(τ)
)

dτ, (2.21)

∣
∣y(x)− y0,n(x)

∣
∣≤ 1

1−KL
ϕ(x) (2.22)

for all x ∈ In. The uniqueness of y0,n implies that if x ∈ In, then

y0,n(x)= y0,n+1(x)= y0,n+2(x)= ··· . (2.23)

For any x ∈R, let us define n(x)∈N as

n(x)=min
{

n∈N | x ∈ In
}

. (2.24)

Moreover, we define a function y0 :R→ C by

y0(x)= y0,n(x)(x), (2.25)

and we assert that y0 is continuous. For an arbitrary x1 ∈R, we choose the integer n1 =
n(x1). Then, x1 belongs to the interior of In1+1 and there exists an ε > 0 such that y0(x)=
y0,n1+1(x) for all x with x1− ε < x < x1 + ε. Since y0,n1+1 is continuous at x1, so is y0. That
is, y0 is continuous at x1 for any x1 ∈R.

We will now show that y0 satisfies (2.4) and (2.5) for all x ∈R. For an arbitrary x ∈R,
we choose the integer n(x). Then, it holds that x ∈ In(x) and it follows from (2.21) that

y0(x)= y0,n(x)(x)=
∫ x

c
f
(

τ, y0,n(x)(τ)
)

dτ =
∫ x

c
f
(

τ, y0(τ)
)

dτ, (2.26)

where the last equality holds true because n(τ)≤ n(x) for any τ ∈ In(x) and it follows from
(2.23) that

y0(τ)= y0,n(τ)(τ)= y0,n(x)(τ). (2.27)

Since y0(x)= y0,n(x)(x) and x ∈ In(x) for all x ∈R, (2.22) implies that

∣
∣y(x)− y0(x)

∣
∣= ∣∣y(x)− y0,n(x)(x)

∣
∣≤ 1

1−KL
ϕ(x). (2.28)
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Finally, we assert that y0 is unique. Assume that y1 : R→ C is another continuous
function which satisfies (2.4) and (2.5), with y1 in place of y0, for all x ∈ R. Suppose x
is an arbitrary real number. Since the restrictions y0|In(x) (= y0,n(x)) and y1|In(x) both satisfy
(2.4) and (2.5) for all x ∈ In(x), the uniqueness of y0,n(x) = y0|In(x) implies that

y0(x)= y0
∣
∣
In(x)

(x)= y1
∣
∣
In(x)

(x)= y1(x) (2.29)

as required. �

Example 2.3. We introduce some examples for I and ϕ which satisfy the condition (2.3).
Let α and ρ be constants with ρ > 0 and α > L.

(a) If I = [0,∞), then the continuous function ϕ(x) = ρeαx satisfies the condition
(2.3) with c = 0, for all x ∈ I .

(b) If I = (−∞,0], then the continuous function ϕ(x)= ρe−αx satisfies the condition
(2.3) with c = 0, for any x ∈ I .

(c) If we let I =R and define

ϕ(x)=
⎧

⎨

⎩

ρeαx (for x ≥ 0),

ρe−αx (for x < 0)
(2.30)

for all x ∈ R, then the continuous function ϕ satisfies the condition (2.3) with
c = 0, for all x ∈R.

3. Hyers-Ulam stability

In the following theorem, we prove the Hyers-Ulam stability of the Volterra integral equa-
tion (1.2) defined on any compact interval.

Theorem 3.1. Given a ∈ R and r > 0, let I(a;r) denote a closed interval {x ∈ R | a− r ≤
x ≤ a+ r} and let f : I(a;r)×C→ C be a continuous function which satisfies a Lipschitz
condition (2.1) for all x ∈ I(a;r) and y,z ∈ C, where L is a constant with 0 < Lr < 1. If a
continuous function y : I(a;r)→ C satisfies

∣
∣
∣
∣y(x)− b−

∫ x

a
f
(

τ, y(τ)
)

dτ
∣
∣
∣
∣≤ θ (3.1)

for all x ∈ I(a;r) and for some θ ≥ 0, where b is a complex number, then there exists a unique
continuous function y0 : I(a;r)→ C such that

y0(x)= b+
∫ x

a
f
(

τ, y0(τ)
)

dτ, (3.2)

∣
∣y(x)− y0(x)

∣
∣≤ θ

1−Lr
(3.3)

for all x ∈ I(a;r).

Proof. Let us define a set

X = {h : I(a;r)→ C | h is continuous } (3.4)
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and introduce a generalized metric on X as follows:

d(g,h)= inf
{

C ∈ [0,∞] | ∣∣g(x)−h(x)
∣
∣≤ C ∀x ∈ I(a;r)

}

. (3.5)

Then, analogously to the proof of Theorem 2.1, we can show that (X ,d) is complete.
If we define an operator Λ : X → X by

(Λh)(x)= b+
∫ x

a
f
(

τ,h(τ)
)

dτ (3.6)

for all x ∈ I(a;r), then the fundamental theorem of Calculus implies that Λh ∈ X for
every h∈ X because Λh is continuously differentiable on I(a;r).

We assert that Λ is strictly contractive on X . Given g,h ∈ X , let Cgh ∈ [0,∞] be an
arbitrary constant with d(g,h)≤ Cgh, that is,

∣
∣g(x)−h(x)

∣
∣≤ Cgh (3.7)

for any x ∈ I(a;r). It then follows from (2.1) that

∣
∣(Λg)(x)− (Λh)(x)

∣
∣≤

∣
∣
∣
∣

∫ x

a

∣
∣ f
(

τ,g(τ)
)− f

(

τ,h(τ)
)∣
∣dτ

∣
∣
∣
∣≤

∣
∣
∣
∣

∫ x

a
L
∣
∣g(τ)−h(τ)

∣
∣dτ

∣
∣
∣
∣

≤ LCgh|x− a| ≤ LCghr
(3.8)

for all x ∈ I(a;r), that is, d(Λg,Λh) ≤ LrCgh. Hence, we conclude that d(Λg,Λh) ≤
Lrd(g,h) for any g,h∈ X and we note that 0 < Lr < 1.

Similarly as in the proof of Theorem 2.1, we can choose an h0 ∈ X with d(Λh0,h0) <
∞. Hence, it follows from Theorem 1.1(a) that there exists a continuous function y0 :
I(a;r)→ C such that Λnh0→ y0 in (X ,d) as n→∞, and such that y0 satisfies the Volterra
integral equation (3.2) for any x ∈ I(a;r).

By applying a similar argument of the proof of Theorem 2.1 to this case, we can show
that {g ∈ X | d(h0,g) <∞} = X . Therefore, Theorem 1.1(b) implies that y0 is a unique
continuous function with the property (3.2). Furthermore, Theorem 1.1(c) implies that

∣
∣y(x)− y0(x)

∣
∣≤ θ

1−Lr
(3.9)

for all x ∈ I(a;r). �

Unfortunately, we could not prove the Hyers-Ulam stability of the integral equation
defined on an infinite interval. So, it is an open problem whether the Volterra integral
equation (1.2) has the Hyers-Ulam stability for the case of infinite intervals.
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