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We provide sufficient conditions for the iterates of an asymptotic contraction on a com-
plete metric space X to converge to its unique fixed point, uniformly on each bounded
subset of X .
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1. Introduction

Let (X ,d) be a complete metric space. The following theorem is the main result of Chen
[1]. It improves upon Kirk’s original theorem [2]. In this connection, see also [3, 4].

Theorem 1.1. Let T : X → X be such that

d
(
Tnx,Tny

)≤ φn
(
d(x, y)

)
(1.1)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞)→ [0,∞) and limn→∞φn = φ,
uniformly on any bounded interval [0,b]. Suppose that φ is upper semicontinuous and that
φ(t) < t for all t > 0. Furthermore, suppose that there exists a positive integer n∗ such that
φn∗ is upper semicontinuous and φn∗(0)= 0. If there exists x0 ∈ X which has a bounded orbit
O(x0)= {x0,Tx0,T2x0, . . .}, then T has a unique fixed point x∗ ∈ X and limn→∞Tnx = x∗
for all x ∈ X .

Note that Theorem 1.1 does not provide us with uniform convergence of the iterates
of T on bounded subsets of X , although this does hold for many classes of mappings of
contractive type (e.g., [5, 6]). This property is important because it yields stability of the
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convergence of iterates even in the presence of computational errors [7]. In the present
paper we show that this conclusion can be derived in the setting of Theorem 1.1. To this
end, we first prove a somewhatmore general result (Theorem 1.2) which, when combined
with Theorem 1.1, yields our strengthening of Chen’s result (Theorem 1.3).

Theorem 1.2. Let x∗ ∈ X be a fixed point of T : X → X . Assume that

d
(
Tnx,x∗

)≤ φn
(
d
(
x,x∗

)) ∀x ∈ X and all natural numbers n, (1.2)

where φn : [0,∞)→ [0,∞) and limn→∞φn = φ, uniformly on any bounded interval [0,b].
Suppose that φ is upper semicontinuous and that φ(t) < t for all t > 0. Then Tnx→ x∗ as
n→∞, uniformly on each bounded subset of X .

Theorem 1.3. Let T : X → X be such that

d
(
Tnx,Tny

)≤ φn
(
d(x, y)

)
(1.3)

for all x, y ∈ X and all natural numbers n, where φn : [0,∞)→ [0,∞) and limn→∞φn = φ,
uniformly on any bounded interval [0,b]. Suppose that φ is upper semicontinuous and that
φ(t) < t for all t > 0. Furthermore, suppose that there exists a positive integer n∗ such that
φn∗ is upper semicontinuous and φn∗(0)= 0. If there exists x0 ∈ X which has a bounded orbit
O(x0)= {x0,Tx0,T2x0, . . .}, then T has a unique fixed point x∗ ∈ X and limn→∞Tnx = x∗,
uniformly on each bounded subset of X .

2. Proof of Theorem 1.2

We may assume without loss of generality that φ(0) = 0 and φn(0) = 0 for all integers
n≥ 1.

For each x ∈ X and each r > 0, set

B(x,r)= {y ∈ X : d(x, y)≤ r
}
. (2.1)

We first prove three lemmas.

Lemma 2.1. Let K > 0. Then there exists a natural number q such that for all integers s≥ q,

Ts
(
B
(
x∗,K

))⊂ B
(
x∗,K +1

)
. (2.2)

Proof. There exists a natural number q such that for all integers s≥ q,

∣
∣φs(t)−φ(t)

∣
∣ < 1 ∀t ∈ [0,K]. (2.3)
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Let s≥ q be an integer. Then for all x ∈ B(x∗,K),

d
(
Tsx,x∗

)≤ φs
(
d
(
x,x∗

))
< φ
(
d
(
x,x∗

))
+1 < d

(
x,x∗

)
+1 < K +1. (2.4)

Lemma 2.1 is proved. �

Lemma 2.2. Let 0 < ε1 < ε0. Then there exists a natural number q such that for each integer
j ≥ q,

T j
(
B
(
x∗,ε1

))⊂ B
(
x∗,ε0

)
. (2.5)

Proof. There exists an integer q ≥ 1 such that for each integer j ≥ q,

∣
∣φj(t)−φ(t)

∣
∣ <

(
ε0− ε1

)/
2 ∀t ∈ [0,ε0

]
. (2.6)

Assume that

j ∈ {q,q+1, . . .}, x ∈ B
(
x∗,ε1

)
. (2.7)

By (1.2) and (2.6),

d
(
T jx,x∗

)≤ φj
(
d
(
x,x∗

))
< φ
(
d
(
x,x∗

))
+

(
ε0− ε1

)

2

≤ ε1 +
(
ε0− ε1

)

2
=
(
ε0 + ε1

)

2
.

(2.8)

Lemma 2.2 is proved. �

Lemma 2.3. Let K ,ε > 0. Then there exists a natural number q such that for each x ∈
B(x∗,K),

min
{
d
(
T jx,x∗

)
: j = 1, . . . ,q

}≤ ε. (2.9)

Proof. By Lemma 2.1, there is a natural number q such that

Tn
(
B
(
x∗,K

))⊂ B
(
x∗,K +1

)
for all natural numbers n≥ q. (2.10)

We may assume without loss of generality that ε < K/8. Since the function t− φ(t), t ∈
(0,∞), is lower semicontinuous and positive, there is

δ ∈
(
0,
ε
8

)
(2.11)

such that

t−φ(t)≥ 2δ ∀t ∈
[
ε
2
,K +1

]
. (2.12)
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There is a natural number s≥ q such that

∣
∣φ(t)−φs(t)

∣
∣≤ δ ∀t ∈ [0,K +1]. (2.13)

By (2.12) and (2.13), we have, for all t ∈ [ε/2,K +1],

φs(t)≤ φ(t) + δ ≤ t− 2δ + δ = t− δ. (2.14)

In view of (2.13) and (2.11), we have, for all t ∈ [0,ε/2],

φs(t)≤ φ(t) + δ ≤ t+ δ ≤ ε
2
+ δ <

3
4
ε. (2.15)

Choose a natural number p such that

p > 4+ δ−1(K +1). (2.16)

Let

x ∈ B
(
x∗,K

)
. (2.17)

We will show that

min
{
d
(
T jx,x∗

)
: j = 1,2, . . . , ps

}≤ ε. (2.18)

Let us assume the contrary. Then

d
(
T jx,x∗

)
> ε ∀ j = s, . . . , ps. (2.19)

By (2.17) and (2.10),

T jx ∈ B
(
x∗,K +1

)
, j = s, . . . , ps. (2.20)

Let a natural number i satisfy i≤ p− 1. By (2.19) and (2.20),

d
(
Tisx,x∗

)
> ε, d

(
Tisx,x∗

)≤ K +1. (2.21)

It follows from (1.2), (2.21), and (2.14) that

d
(
Ts
(
Tisx

)
,x∗
)≤ φs

(
d
(
Tisx,x∗

))≤ d
(
Tisx,x∗

)− δ. (2.22)
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Thus for each natural number i≤ p− 1,

d
(
T(i+1)sx,x∗

)≤ d
(
Tisx,x∗

)− δ. (2.23)

This inequality implies that

d
(
Tpsx,x∗

)≤ d
(
T(p−1)sx,x∗

)− δ ≤ ··· ≤ d
(
Tsx,x∗

)− (p− 1)δ. (2.24)

When combined with (2.20) and (2.16), this implies, in turn, that

d
(
Tpsx,x∗

)≤ K +1− (p− 1)δ < 0. (2.25)

The contradiction we have reached proves (2.18) and completes the proof of Lemma 2.3.
�

Completion of the proof of Theorem 1.2. Let K ,ε > 0. Choose ε1 ∈ (0,ε). By Lemma 2.2,
there exists a natural number q1 such that

T j
(
B
(
x∗,ε1

))⊂ B
(
x∗,ε

)
for all integers j ≥ q1. (2.26)

By Lemma 2.3, there exists a natural number q2 such that

min
{
d
(
T jx,x∗

)
: j = 1, . . . ,q2

}≤ ε1 ∀x ∈ B
(
x∗,K

)
. (2.27)

Assume that

x ∈ B
(
x∗,K

)
. (2.28)

By (2.27), there is a natural number j1 ≤ q2 such that

d
(
T j1x,x∗

)≤ ε1. (2.29)

In view of (2.29) and (2.26),

T j
(
T j1x

)∈ B
(
x∗,ε

)
for all integers j ≥ q1. (2.30)

Inclusion (2.30) and the inequality j1 ≤ q2 now imply that

Tix ∈ B
(
x∗,ε

)
for all integers i≥ q1 + q2. (2.31)

Theorem 1.2 is proved.
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