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1. Introduction

Let H be a Hilbert space and let {Ci}mi=1 be a family of closed convex subsets of H such
that F =⋂m

i=1Ci is nonempty. Then the problem of image recovery is to find an element
of F using the metric projection Pi from H onto Ci (i= 1,2, . . . ,m), where

Pi(x)= argmin
y∈Ci

‖y− x‖ (1.1)

for all x ∈ H . This problem is connected with the convex feasibility problem. In fact,
if {gi}mi=1 is a family of continuous convex functions from H into R, then the convex
feasibility problem is to find an element of the feasible set

m⋂

i=1

{
x ∈H : gi(x)≤ 0

}
. (1.2)

We know that each Pi is a nonexpansive retraction from H onto Ci, that is,
∥
∥Pix−Piy

∥
∥≤ ‖x− y‖ (1.3)
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for all x, y ∈ H and P2
i = Pi. Further, it holds that F =

⋂m
i=1F(Pi), where F(Pi) denotes

the set of all fixed points of Pi (i= 1,2, . . . ,m). Thus the problem of image recovery in the
setting of Hilbert spaces is a common fixed point problem for a family of nonexpansive
mappings.

A well-known method for finding a solution to the problem of image recovery is the
block-iterative projection algorithm which was proposed by Aharoni and Censor [1] in
finite-dimensional spaces; see also [2–5] and the references therein. This is an iterative
procedure, which generates a sequence {xn} by the rule x1 = x ∈H and

xn+1 =
m∑

i=1
ωn(i)

(
αixn +

(
1−αi

)
Pixn

)
(n= 1,2, . . .), (1.4)

where {ωn(i)}mi=1 ⊂ [0,1] (n ∈ N) with
∑m

i=1ωn(i) = 1 (n ∈ N) and {αi}mi=1 ⊂ (−1,1). In
particular, Butnariu and Censor [3] studied the strong convergence of {xn} to an element
of F.

Recently, Kikkawa and Takahashi [6] applied this method to the problem of finding a
common fixed point of a finite family of nonexpansive mappings in Banach spaces. Let C
be a nonempty closed convex subset of a Banach space E and let {Ti}mi=1 be a finite family
of nonexpansive mappings from C into itself. Then the iterative scheme they dealt with is
stated as follows: x1 = x ∈ C and

xn+1 =
m∑

i=1
ωn(i)

(
αn,ixn +

(
1−αn,i

)
Tixn

)
(n= 1,2, . . .), (1.5)

where {ωn(i)}mi=1 ⊂ [0,1] with
∑m

i=1ωn(i) = 1 (n ∈ N) and {αi}mi=1 ⊂ [0,1]. They proved
that the generated sequence {xn} converges weakly to a common fixed point of {Ti}mi=1
under some conditions on E, {αn,i}, and {ωn(i)}. Then they applied their result to the
problem of finding a common point of a family of nonexpansive retracts of E; see also
[7–10] for the previous results on this subject.

Our purpose in the present paper is to obtain an analogous result for a finite family
of relatively nonexpansive mappings in Banach spaces. This notion was originally intro-
duced by Butnariu et al. [11]. Recently, Matsushita and Takahashi [12–14] reformulated
the definition of the notion and obtained weak and strong convergence theorems to ap-
proximate a fixed point of a single relatively nonexpansive mapping. It is known that if
C is a nonempty closed convex subset of a smooth, reflexive, and strictly convex Banach
space E, then the generalized projection ΠC (see, Alber [15] or Kamimura and Takahashi
[16]) from E onto C is relatively nonexpansive, whereas the metric projection PC from E
onto C is not generally nonexpansive.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let J be the duality mapping from E into E∗, and let {Ti}mi=1 be a finite
family of relatively nonexpansive mappings from C into itself such that the set of all com-
mon fixed points of {Ti}mi=1 is nonempty. Motivated by the convex combination based
on Bregman distances [17] due to Censor and Reich [18], the iterative methods intro-
duced by Matsushita and Takahashi [12–14], and the proximal-type algorithm due to the
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authors [19], we define an operator Un (n∈N) by

Unx =ΠCJ
−1
( m∑

i=1
ωn(i)

(
αn,iJx+

(
1−αn,i

)
JTix

)
)

(1.6)

for all x ∈ C, where {ωn(i)} ⊂ [0,1] and {αn,i} ⊂ [0,1] with
∑m

i=1ωn(i)= 1 (n∈N). Such
a mapping Un is called a block mapping defined by T1,T2, . . . ,Tm, {αn,i} and {ωn(i)}. In
Section 4, we show that the set of all fixed points ofUn is identical to the set of all common
fixed points of {Ti}mi=1 (Theorem 4.2). In Section 5, under some additional assumptions,
we show that the sequence {xn} generated by x1 = x ∈ C and

xn+1 =Unxn (n= 1,2, . . .) (1.7)

converges weakly to a common fixed point of {Ti}mi=1 (Theorem 5.3). This result gener-
alizes the result of Matsushita and Takahashi [12]. If E is a Hilbert space and each Ti is a
nonexpansive mapping from C into itself, then J is the identity operator on E, and hence
(1.5) and (1.7) are coincident with each other. In Section 6, we deduce some results from
Theorems 4.2 and 5.3.

2. Preliminaries

Let E be a (real) Banach space with norm ‖ · ‖ and let E∗ denote the topological dual of E.
We denote the strong convergence and the weak convergence of a sequence {xn} to x in E
by xn → x and xn⇀ x, respectively. We also denote the weak∗ convergence of a sequence

{x∗n } to x∗ in E∗ by x∗n
∗

x∗. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x
by 〈x,x∗〉. We also denote byR andN the set of all real numbers and the set of all positive
integers, respectively. The duality mapping J from E into 2E

∗
is defined by

J(x)= {x∗ ∈ E∗ :
〈
x,x∗

〉= ‖x‖2 = ∥∥x∗∥∥2} (2.1)

for all x ∈ E.
A Banach space E is said to be strictly convex if ‖x‖ = ‖y‖ = 1 and x 
= y imply

‖(x + y)/2‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0,2], there exists
δ > 0 such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε (2.2)

imply ‖(x+ y)/2‖ ≤ 1− δ. The space E is also said to be smooth if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.3)

exists for all x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1}. It is also said to be uniformly smooth if the
limit (2.3) exists uniformly in x, y ∈ S(E). It is well known that �p and Lp (1 < p <∞) are
uniformly convex and uniformly smooth; see Cioranescu [20] or Diestel [21]. We know
that if E is smooth, strictly convex, and reflexive, then the duality mapping J is single-
valued, one-to-one, and onto. The duality mapping from a smooth Banach space E into
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E∗ is said to be weakly sequentially continuous if Jxn
∗

Jx whenever {xn} is a sequence
in E converging weakly to x in E; see, for instance, [20, 22].

Let E be a smooth, strictly convex, and reflexive Banach space, let J be the duality
mapping from E into E∗, and let C be a nonempty closed convex subset of E. Throughout
the present paper, we denote by φ the mapping defined by

φ(y,x)= ‖y‖2− 2〈y, Jx〉+‖x‖2 (2.4)

for all y,x ∈ E. Following Alber [15], the generalized projection from E onto C is defined
by

ΠC(x)= argmin
y∈C

φ(y,x) (2.5)

for all x ∈ E; see also Kamimura and Takahashi [16]. If E is a Hilbert space, then φ(y,x)=
‖y− x‖2 for all y,x ∈ E, and hence ΠC is reduced to the metric projection PC. It should
be noted that the mapping φ is known to be the Bregman distance [17] corresponding
to the Bregman function ‖ · ‖2, and hence the projection ΠC is the Bregman projection
corresponding to φ. We know the following lemmas concerning generalized projections.

Lemma 2.1 (see [15]; see also [16]). Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E. Then

φ
(
x,ΠC y

)
+φ
(
ΠC y, y

)≤ φ(x, y) (2.6)

for all x ∈ C and y ∈ E.

Lemma 2.2 (see [15]; see also [16]). Let C be a nonempty closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let x ∈ E, and let z ∈ C. Then z = ΠCx is
equivalent to

〈y− z, Jx− Jz〉 ≤ 0 (2.7)

for all y ∈ C.

Let C be a nonempty closed convex subset of a smooth, strictly convex, and reflexive
Banach space E, let T be a mapping from C into itself, and let F(T) be the set of all fixed
points of T . Then a point z ∈ C is said to be an asymptotic fixed point of T (see Reich
[23]) if there exists a sequence {zn} in C converging weakly to z and limn‖zn−Tzn‖ = 0.
We denote the set of all asymptotic fixed points of T by F̂(T). Following Matsushita and
Takahashi [12–14], we say that T is a relatively nonexpansive mapping if the following
conditions are satisfied:

(R1) F(T) is nonempty;
(R2) φ(u,Tx)≤ φ(u,x) for all u∈ F(T) and x ∈ C;
(R3) F̂(T)= F(T).
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Some examples of relatively nonexpansive mappings are listed below; see Reich [23] and
Matsushita and Takahashi [12] for more details.

(a) If C is a nonempty closed convex subset of a Hilbert space E and T is a non-
expansive mapping from C into itself such that F(T) is nonempty, then T is a
relatively nonexpansive mapping from C into itself.

(b) If E is a uniformly smooth and strictly convex Banach space and A ⊂ E× E∗ is
a maximal monotone operator such that A−10 is nonempty, then the resolvent
Jr = (J + rA)−1J (r > 0) is a relatively nonexpansive mapping from E onto D(A)
(the domain of A) and F(Jr)=A−10.

(c) If ΠC is the generalized projection from a smooth, strictly convex, and reflex-
ive Banach space E onto a nonempty closed convex subset C of E, then ΠC is a
relatively nonexpansive mapping from E onto C and F(ΠC)= C.

(d) If {Ci}mi=1 is a finite family of closed convex subset of a uniformly convex and
uniformly smooth Banach space E such that

⋂m
i=1Ci is nonempty and T =

Π1Π2 ···Πm is the composition of the generalized projections Πi from E onto
Ci (i= 1,2, . . . ,m), then T is a relatively nonexpansive mapping from E into itself
and F(T)=⋂m

i=1Ci.
The following lemma is due to Matsushita and Takahashi [14].

Lemma 2.3 (see [14]). LetC be a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space E and let T be a relatively nonexpansive mapping from C into
itself. Then F(T) is closed and convex.

We also know the following lemmas.

Lemma 2.4 (see [16]). Let E be a smooth and uniformly convex Banach space and let {xn}
and {yn} be sequences in E such that either {xn} or {yn} is bounded. If limn φ(xn, yn)= 0,
then limn‖xn− yn‖ = 0.

Lemma 2.5 (see [16]). Let E be a smooth and uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous, and convex function g : [0,2r]→ R such
that g(0)= 0 and

g
(‖x− y‖)≤ φ(x, y) (2.8)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.6 (see [24]; see also [25, 26]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous, and convex function g : [0,2r]→R
such that g(0)= 0 and

∥
∥tx+ (1− t)y

∥
∥2 ≤ t‖x‖2 + (1− t)‖y‖2− t(1− t)g

(‖x− y‖) (2.9)

for all x, y ∈ Br and t ∈ [0,1].
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3. Lemmas

The following lemma is well known. For the sake of completeness, we give the proof.

Lemma 3.1. Let E be a strictly convex Banach space and let {ti}mi=1 ⊂ (0,1) with
∑m

i=1 ti = 1.
If {xi}mi=1 is a finite sequence in E such that

∥
∥
∥
∥
∥

m∑

i=1
tixi

∥
∥
∥
∥
∥

2

=
m∑

i=1
ti
∥
∥xi
∥
∥2, (3.1)

then x1 = x2 = ··· = xm.

Proof. If xk 
= xl for some k, l ∈ {1,2, . . . ,m}, then the strict convexity of E implies that

∥
∥
∥
∥
∥

tk
tk + tl

xk +
tl

tk + tl
xl

∥
∥
∥
∥
∥

2

<
tk

tk + tl

∥
∥xk
∥
∥2 +

tl
tk + tl

∥
∥xl
∥
∥2. (3.2)

Using this inequality, we have

∥
∥
∥
∥
∥

m∑

i=1
tixi

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

(
tk + tl

)
(

tk
tk + tl

xk +
tl

tk + tl
xl

)

+
∑

i 
=k,l
tixi

∥
∥
∥
∥
∥

2

≤ (tk + tl
)
∥
∥
∥
∥
∥

tk
tk + tl

xk +
tl

tk + tl
xl

∥
∥
∥
∥
∥

2

+
∑

i 
=k,l
ti
∥
∥xi
∥
∥2

<
(
tk + tl

)
(

tk
tk + tl

‖x‖2 + tl
tk + tl

‖y‖2
)

+
∑

i 
=k,l
ti
∥
∥xi
∥
∥2

=
m∑

i=1
ti
∥
∥xi
∥
∥2.

(3.3)

This is a contradiction. �

We also need the following lemmas.

Lemma 3.2. Let E be a smooth, strictly convex and reflexive Banach space, let z ∈ E and let
{ti} ⊂ (0,1) with

∑m
i=1 ti = 1. If {xi}mi=1 is a finite sequence in E such that

φ

(

z, J−1
( m∑

j=1
t j Jxj

))

= φ
(
z,xi

)
(3.4)

for all i∈ {1,2, . . . ,m}, then x1 = x2 = ··· = xm.

Proof. By assumption, we have

φ

(

z, J−1
( m∑

j=1
t j Jxj

))

=
m∑

i=1
tiφ
(
z,xi

)
. (3.5)
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This is equivalent to

‖z‖2− 2

〈

z,
m∑

i=1
tiJxi

〉

+

∥
∥
∥
∥
∥

m∑

i=1
tiJxi

∥
∥
∥
∥
∥

2

=
m∑

i=1
ti
(‖z‖2− 2

〈
z, Jxi

〉
+
∥
∥xi
∥
∥2
)
, (3.6)

which is also equivalent to

∥
∥
∥
∥
∥

m∑

i=1
tiJxi

∥
∥
∥
∥
∥

2

=
m∑

i=1
ti
∥
∥Jxi

∥
∥2. (3.7)

Since E is smooth and reflexive, E∗ is strictly convex. Thus, Lemma 3.1 implies that Jx1 =
Jx2 = ··· = Jxm. By the strict convexity of E, J is one-to-one. Hence we have the desired
result. �

Lemma 3.3. Let E be a smooth, strictly convex, and reflexive Banach space, let {xi}mi=1 be a
finite sequence in E and let {ti}mi=1 ⊂ [0,1] with

∑m
i=1 ti = 1. Then

φ

(

z, J−1
( m∑

i=1
tiJxi

))

≤
m∑

i=1
tiφ
(
z,xi

)
(3.8)

for all z ∈ E.

Proof. Let V : E×E∗ →R be the function defined by

V
(
x,x∗

)= ‖x‖2− 2
〈
x,x∗

〉
+
∥
∥x∗

∥
∥2 (3.9)

for all x ∈ E and x∗ ∈ E∗. In other words,

V
(
x,x∗

)= φ
(
x, J−1x∗

)
(3.10)

for all x ∈ E and x∗ ∈ E∗. We also have φ(x, y)= V(x, J y) for all x, y ∈ E. Then we have
from the convexity of V in its second variable that

φ

(

z, J−1
( m∑

i=1
tiJxi

))

=V

(

z,
m∑

i=1
tiJxi

)

≤
m∑

i=1
tiV
(
z, Jxi

)=
m∑

i=1
tiφ
(
z,xi

)
. (3.11)

This completes the proof. �

4. Block mappings by relatively nonexpansive mappings

Let E be a smooth, strictly convex, and reflexive Banach space and let J be the duality
mapping from E into E∗. Let C be a nonempty closed convex subset of E and let {Ti}mi=1
be a finite family of relatively nonexpansive mappings from C into itself. In this section,
we study some properties of the mapping U defined by

Ux =ΠCJ
−1
( m∑

i=1
ωi
(
αiJx+

(
1−αi

)
JTix

)
)

(4.1)
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for all x ∈ C, where {αi}mi=1 ⊂ [0,1] and {ωi}mi=1 ⊂ [0,1] with
∑m

i=1ωi = 1. Recall that such
a mapping U is called a block mapping defined by T1,T2, . . . ,Tm, {αn,i} and {ωn(i)}.
Lemma 4.1. Let E be a smooth, strictly convex, and reflexive Banach space and let C be a
nonempty closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively nonexpansive
mappings from C into itself such that

⋂m
i=1F(Ti) is nonempty and letU be the block mapping

defined by (4.1), where {αi} ⊂ [0,1] and {ωi} ⊂ [0,1] with
∑m

i=1ωi = 1. Then

φ(u,Ux)≤ φ(u,x) (4.2)

for all u∈⋂m
i=1F(Ti) and x ∈ C.

Proof. Let u∈⋂m
i=1F(Ti) and x ∈ C. Then it holds from Lemmas 2.1 and 3.3 that

φ(u,Ux)= φ

(

u,ΠCJ
−1
( m∑

i=1
ωi
(
αiJx+

(
1−αi

)
JTix

)
))

≤ φ

(

u, J−1
( m∑

i=1
ωi
(
αiJx+

(
1−αi

)
JTix

)
))

≤
m∑

i=1
ωi
(
αiφ(u,x) +

(
1−αi

)
φ
(
u,Tix

))≤ φ(u,x).

(4.3)

This completes the proof. �

Theorem 4.2. Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively nonexpansive
mappings from C into itself such that

⋂m
i=1F(Ti) is nonempty and letU be the block mapping

defined by (4.1), where {αi} ⊂ [0,1) and {ωi} ⊂ (0,1] with
∑m

i=1ωi = 1. Then

F(U)=
m⋂

i=1
F
(
Ti
)
. (4.4)

Proof. Since the inclusion F(U) ⊃⋂m
i=1F(Ti) is obvious, it suffices to show the inverse

inclusion F(U) ⊂⋂m
i=1F(Ti). Let z ∈ F(U) be given and fix u ∈⋂m

i=1F(Ti). Let V : E×
E∗ →R be the function defined by (3.9). Then, as in the proof of Lemma 4.1, we have

φ(u,z)= φ(u,Uz)≤ φ

(

u, J−1
( m∑

i=1
ωi
(
αiJz+

(
1−αi

)
JTiz

)
))

≤
m∑

i=1
ωi
(
αiφ(u,z) +

(
1−αi

)
φ
(
u,Tiz

))≤ φ(u,z).

(4.5)

If k ∈ {1,2, . . . ,m}, then we have

φ(u,z)=
m∑

i=1
ωi
(
αiφ(u,z) +

(
1−αi

)
φ
(
u,Tiz

))

≤
∑

i 
=k
ωiφ(u,z) +ωk

(
αkφ(u,z) +

(
1−αk

)
φ
(
u,Tkz

))
.

(4.6)
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Using (4.6), we have

ωkφ(u,z)=
(

1−
∑

i 
=k
ωi

)

φ(u,z)≤ ωk
(
αkφ(u,z) +

(
1−αk

)
φ
(
u,Tkz

))
. (4.7)

Hence we have

ωk
(
1−αk

)
φ(u,z)≤ ωk

(
1−αk

)
φ
(
u,Tkz

)
. (4.8)

Since ωk > 0, αk < 1, and u∈ F(Tk), we have

φ(u,z)≤ φ
(
u,Tkz

)≤ φ(u,z). (4.9)

Thus

φ

(

u, J−1
( m∑

i=1
ωi
(
αiJz+

(
1−αi

)
JTiz

)
))

= φ
(
u,Tjz

)= φ(u,z) (4.10)

for all j ∈ {1,2, . . . ,m}.
Ifm= 1, then ω1 = 1. In this case,

Ux =ΠCJ
−1(α1Jx+

(
1−α1

)
JT1x

)
(4.11)

for all x ∈ C. If α1 = 0, then U = T1, and hence the conclusion obviously holds. If α1 > 0,
then we have from (4.10) that

φ
(
u, J−1

(
α1Jz+

(
1−α1

)
JT1z

))= φ
(
u,T1z

)= φ(u,z). (4.12)

Then, using Lemma 3.2, we have z = T1z.
We next consider the case where m ≥ 2. In this case, it holds that 0 < ωi < 1 for all

i∈ {1,2, . . . ,m}. Let I = {i∈ {1,2, . . . ,m} : αi 
= 0}. If I is empty, then we have from (4.10)
that

φ

(

u, J−1
( m∑

i=1
ωiJTiz

))

= φ
(
u,Tiz

)
(4.13)

for all i∈ {1,2, . . . ,m}. Using Lemma 3.2, we have T1z = T2z = ··· = Tmz. Hence we have

z =Uz =ΠCJ
−1
( m∑

i=1
ωiJTiz

)

=ΠCJ
−1
( m∑

i=1
ωiJTjz

)

=ΠCTjz = Tjz (4.14)

for all j ∈ {1,2, . . . ,m}. Thus z ∈⋂m
i=1F(Ti).

On the other hand, if I is nonempty, then we have from (4.10) that

φ

(

u, J−1
(
∑

i∈I
ωiαiJz+

m∑

i=1
ωi
(
1−αi

)
JTiz

))

= φ
(
u,Tiz

)= φ(u,z) (4.15)

for all i∈ {1,2, . . . ,m}. Then, from Lemma 3.2, we have z = T1z = T2z = ··· = Tmz. Thus
z ∈⋂m

i=1F(Ti). This completes the proof. �
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5. Weak and strong convergence theorems

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a nonempty
closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively nonexpansive map-
pings from C into itself such that

⋂m
i=1F(Ti) is nonempty and let Un be a block mapping

from C into itself defined by

Unx =ΠCJ
−1
( m∑

i=1
ωn(i)

(
αn,iJx+

(
1−αn,i

)
JTix

)
)

(5.1)

for all x ∈ C, where {ωn(i)} ⊂ [0,1] and {αn,i} ⊂ [0,1] with
∑m

i=1ωn(i)= 1 for all n∈N.
In this section, we study the asymptotic behavior of {xn} generated by x1 = x ∈ C and

xn+1 =Unxn (n= 1,2, . . .). (5.2)

Lemma 5.1. Let E be a smooth and uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively nonexpansive mappings
from C into itself such that F =⋂m

i=1F(Ti) is nonempty and let {αn,i : n, i ∈N,1 ≤ i ≤m}
and {ωn(i) : n, i ∈N,1 ≤ i ≤m} be sequences in [0,1] such that

∑m
i=1ωn(i) = 1 for all n ∈

N. Let {Un} be a sequence of block mappings defined by (5.1) and let {xn} be a sequence
generated by (5.2). Then {ΠFxn} converges strongly to the unique element z of F such that

lim
n→∞φ

(
z,xn

)=min
{

lim
n→∞φ

(
y,xn

)
: y ∈ F

}

. (5.3)

Proof. If u∈ F, then we have from Lemma 4.1 that

φ
(
u,xn+1

)≤ φ
(
u,xn

)
(5.4)

for all n∈N. Thus the limit of φ(u,xn) exists. Since φ(u,xn)≥ (‖u‖−‖xn‖)2 for all u∈ F
and n∈N, the sequence {xn} is bounded. By Lemma 2.1, we have φ(u,ΠFxn)≤ φ(u,xn).
So, the sequence {ΠFxn} is also bounded. By the definition of ΠF and (5.4), we have

φ
(
ΠFxn+1,xn+1

)≤ φ
(
ΠFxn,xn+1

)≤ φ
(
ΠFxn,xn

)
. (5.5)

Thus limn φ(ΠFxn,xn) exists. We next show that {ΠFxn} is a Cauchy sequence. Take r > 0
such that {ΠFxn} ⊂ Br . Then, by Lemma 2.5 , we have a strictly increasing, continuous
and convex function g : [0,2r]→R such that g(0)= 0 and

g
(∥
∥ΠFxm−ΠFxn

∥
∥
)≤ φ

(
ΠFxm,ΠFxn

)
(5.6)
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for allm,n∈N. Ifm> n, then it follows from Lemma 2.1 that

φ
(
ΠFxn,ΠFxm

)≤ φ
(
ΠFxn,xm

)−φ
(
ΠFxm,xm

)≤ φ
(
ΠFxn,xn

)−φ
(
ΠFxm,xm

)
. (5.7)

Thus, for all ε > 0, there exists N ∈N such thatm> n≥N implies that

g
(∥
∥ΠFxm−ΠFxn

∥
∥
)≤ φ

(
ΠFxn,xn

)−φ
(
ΠFxm,xm

)≤ ε. (5.8)

Therefore, {ΠFxn} is a Cauchy sequence in F, and hence it converges strongly to an ele-
ment z of F.

We next show that z is the unique element of F such that

lim
n→∞φ

(
z,xn

)=min
{

lim
n→∞φ

(
y,xn

)
: y ∈ F

}

. (5.9)

We define a function h : F →R by

h(y)= lim
n→∞φ

(
y,xn

)
(5.10)

for all y ∈ F. Then we can show that h is a continuous convex function. In fact, if y1, y2 ∈
F and t ∈ (0,1), then

φ
(
ty1 + (1− t)y2,xn

)≤ tφ
(
y1,xn

)
+ (1− t)φ

(
y2,xn

)
(5.11)

for all n∈N. Tending n→∞, we have the convexity of h. We next show the continuity of
h. Let y1, y2 ∈ F and takeM > 0 such that {xn},{y1, y2} ⊂ BM . Then we have

φ
(
y1,xn

)−φ
(
y2,xn

)= ∥∥y1
∥
∥2−∥∥y2

∥
∥2 + 2

〈
y2− y1, Jxn

〉

≤ (∥∥y1
∥
∥+

∥
∥y2
∥
∥
)(∥
∥y1
∥
∥−∥∥y2

∥
∥
)
+2
∥
∥xn
∥
∥
∥
∥y1− y2

∥
∥

≤ 4M
∥
∥y1− y2

∥
∥

(5.12)

for all n ∈N. Tending n→∞, we have h(y1)− h(y2) ≤ 4M‖y1− y2‖. Similarly, we have
h(y2)− h(y1) ≤ 4M‖y1 − y2‖. Thus h is continuous. We can also show that ‖zn‖ → ∞
implies that h(zn)→∞. Since E is reflexive and F is closed and convex by Lemma 2.3,
the set

A=
{

p ∈ F : h(p)= inf
y∈F

h(y)
}

(5.13)

is nonempty; see Takahashi [27, 28] for more details.
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On the other hand, if y ∈ F, then we have

h
(
ΠFxn

)= lim
m→∞φ

(
ΠFxn,xm

)≤ φ
(
ΠFxn,xn

)≤ φ
(
y,xn

)
(5.14)

for all n∈N. Tending n→∞, we have h(z)≤ h(y), and hence z ∈A. We finally show that
A is singleton. Suppose that there exist z1,z2 ∈ A such that z1 
= z2. Take s > 0 such that
{z1,z2} ⊂ Bs. Then, by Lemma 2.6, we have a strictly increasing, continuous, and convex
function ĝ : [0,2s]→R such that ĝ(0)= 0 and

∥
∥
∥
∥
∥
z1 + z2

2

∥
∥
∥
∥
∥

2

≤ 1
2

∥
∥z1
∥
∥2 +

1
2

∥
∥z2
∥
∥2− 1

4
ĝ
(∥
∥z1− z2

∥
∥
)
. (5.15)

Using this inequality, we have

h

(
z1 + z2

2

)

= lim
n→∞

{∥
∥
∥
∥
z1 + z2

2

∥
∥
∥
∥

2

− 2

〈
z1 + z2

2
, Jxn

〉

+
∥
∥xn
∥
∥2
}

≤ lim
n→∞

{
φ
(
z1,xn

)

2
+
φ
(
z2,xn

)

2
− ĝ

(∥
∥z1− z2

∥
∥
)

4

}

= h
(
z1
)

2
+
h
(
z2
)

2
− ĝ

(∥
∥z1− z2

∥
∥
)

4

<
h
(
z1
)

2
+
h
(
z2
)

2
=min

y∈F
h(y).

(5.16)

This is a contradiction. �

Following an idea due to Matsushita and Takahashi [12], we prove the following
lemma.

Lemma 5.2. Let E be a uniformly smooth and uniformly convex Banach space and let C
be a nonempty closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively non-
expansive mappings from C into itself such that F =⋂m

i=1F(Ti) is nonempty and let {αn,i :
n, i∈N,1≤ i≤m} ⊂ [0,1] and {ωn(i) : n, i∈N,1≤ i≤m} ⊂ [0,1] be sequences such that
liminfn αn,i(1− αn,i) > 0 and liminfnωn(i) > 0 for all i ∈ {1,2, . . . ,m} and ∑m

i=1ωn(i) = 1
for all n ∈ N. Let {Un} be a sequence of block mappings defined by (5.1) and let {zn} be
a bounded sequence in C such that limn{φ(u,zn)− φ(u,Unzn)} = 0 for some u ∈ F and
znk ⇀ z. Then z ∈ F.

Proof. Since {zn} is bounded and φ(u,Tizn) ≤ φ(u,zn) for all n ∈ N, {Tizn} is also
bounded. It follows from the uniform smoothness of E that E∗ is uniformly convex; see
Takahashi [27, 28]. Take r > 0 such that {zn},{Tizn} ⊂ Br (i = 1,2, . . . ,m). Then,
Lemma 2.6 ensures the existence of a strictly increasing, continuous and convex function
g : [0,2r]→R such that g(0)= 0 and

∥
∥tJzn + (1− t)JTizn

∥
∥2 ≤ t

∥
∥zn
∥
∥2 + (1− t)

∥
∥Tizn

∥
∥2− t(1− t)g

(∥
∥Jzn− JTizn

∥
∥
)

(5.17)
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for all t ∈ [0,1], n∈N, and i∈ {1,2, . . . ,m}. Since u is an element of F, we can show from
Lemma 2.1 that

φ
(
u,Unzn

)

≤ φ

(

u, J−1
( m∑

i=1
ωn(i)

(
αn,iJzn +

(
1−αn,i

)
JTizn

)
))

=V

(

u,
m∑

i=1
ωn(i)

(
αn,iJzn +

(
1−αn,i

)
JTizn

)
)

≤
m∑

i=1
ωn(i)V

(
u,αn,iJzn +

(
1−αn,i

)
JTizn

)

=
m∑

i=1
ωn(i)

(‖u‖2− 2
〈
u,αn,iJzn +

(
1−αn,i

)
JTizn

〉
+
∥
∥αn,iJzn +

(
1−αn,i

)
JTizn

∥
∥2
)
.

(5.18)

Using (5.17) and φ(u,Tizn)≤ φ(u,zn), we have

φ
(
u,Unzn

)≤
m∑

i=1
ωn(i)

(‖u‖2− 2
〈
u,αn,iJzn +

(
1−αn,i

)
JTizn

〉
+
∥
∥αn,iJzn +

(
1−αn,i

)
JTizn

∥
∥2
)

≤
m∑

i=1
ωn(i)

(‖u‖2− 2
〈
u,αn,iJzn +

(
1−αn,i

)
JTizn

〉
+αn,i

∥
∥zn
∥
∥2 +

(
1−αn,i

)∥
∥Tizn

∥
∥2

−αn,i(1−αn,i)g(‖Jzn− JTizn‖)
)

=
m∑

i=1
ωn(i)

(
αn,iφ

(
u,zn

)
+
(
1−αn,i

)
φ
(
u,Tizn

)−αn,i
(
1−αn,i

)
g
(∥
∥Jzn− JTizn

∥
∥
))

≤ φ
(
u,zn

)−
m∑

i=1
ωn(i)αn,i

(
1−αn,i

)
g
(∥
∥Jzn− JTizn

∥
∥
)
.

(5.19)

Thus we have

m∑

i=1
ωn(i)αn,i

(
1−αn,i

)
g
(∥
∥Jzn− JTizn

∥
∥
)≤ φ

(
u,zn

)−φ
(
u,Unzn

)
(5.20)

for all n∈N. Then it follows from limn{φ(u,zn)−φ(u,Unzn)} = 0 that

lim
n→∞

m∑

i=1
ωn(i)αn,i

(
1−αn,i

)
g
(∥
∥Jzn− JTizn

∥
∥
)= 0. (5.21)

Since liminfnωn(i) > 0 and liminfn αn,i(1−αn,i) > 0 for all i∈ {1,2, . . . ,m}, we have

lim
n→∞g

(∥
∥Jzn− JTizn

∥
∥
)= 0 (5.22)
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for all i∈ {1,2, . . . ,m}. Then, the properties of g yield

lim
n→∞

∥
∥Jzn− JTizn

∥
∥= 0 (5.23)

for all i∈ {1,2, . . . ,m}. Since E is uniformly convex, the duality mapping J−1 from E∗ into
E is uniformly norm-to-norm continuous on every bounded subset of E∗; see Takahashi
[27, 28]. Hence, we have

lim
n→∞

∥
∥zn−Tizn

∥
∥= lim

n→∞
∥
∥J−1

(
Jzn
)− J−1

(
JTizn

)∥
∥= 0 (5.24)

for all i ∈ {1,2, . . . ,m}. Thus z ∈ F̂(Ti) for all i ∈ {1,2, . . . ,m}. Since each Ti is relatively
nonexpansive, we have F̂(Ti)= F(Ti) for all i∈ {1,2, . . . ,m}, and hence z ∈ F. This com-
pletes the proof. �

Using Lemmas 5.1 and 5.2, we study the asymptotic behavior of {xn} generated by
(5.2).

Theorem 5.3. Let E be a uniformly smooth and uniformly convex Banach space and let
C be a nonempty closed convex subset of E. Let {Ti}mi=1 be a finite family of relatively non-
expansive mappings from C into itself such that F =⋂m

i=1F(Ti) is nonempty and let {αn,i :
n, i∈N,1≤ i≤m} ⊂ [0,1] and {ωn(i) : n, i∈N,1≤ i≤m} ⊂ [0,1] be sequences such that
liminfn αn,i(1− αn,i) > 0 and liminfnωn(i) > 0 for all i ∈ {1,2, . . . ,m} and ∑m

i=1ωn(i) = 1
for all n ∈N. Let {Un} be a sequence of block mappings defined by (5.1) and let {xn} be a
sequence generated by (5.2). Then the following hold:

(a) the sequence {xn} is bounded and each weak subsequential limit of {xn} belongs to⋂m
i=1F(Ti);

(b) if the duality mapping J from E into E∗ is weakly sequentially continuous, then {xn}
converges weakly to the strong limit of {ΠFxn}.

Proof. We first prove part (a). Let u∈ F. As in the proof of Lemma 5.1, we can show that
{φ(u,xn)} is nonincreasing and {xn}, {Tixn} are bounded. It also holds that

φ
(
u,xn

)−φ
(
u,Unxn

)= φ
(
u,xn

)−φ
(
u,xn+1

)−→ 0 (5.25)

as n→ 0. Using Lemma 5.2, we know that every weak subsequential limit of {xn} belongs
to F.

We next prove part (b). Suppose that J is weakly sequentially continuous. If xnk ⇀ z,
then z ∈ F by part (a). It follows from Lemma 2.2 that

〈
z−ΠFxn, Jxn− JΠFxn

〉≤ 0 (5.26)

for all n∈N. By Lemma 5.1, ΠFxn→w ∈ F. Tending nk →∞, we have

〈z−w, Jz− Jw〉 ≤ 0. (5.27)

Since J is a monotone operator, we have 〈z−w, Jz− Jw〉 = 0. Then the strict convexity of
E implies that z =w; see Takahashi [27, 28]. This completes the proof. �
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6. Deduced results

As direct consequences of Theorem 4.2, we have the following two corollaries.

Corollary 6.1. Let E be a smooth, strictly convex, and reflexive Banach space and let C be
a nonempty closed convex subset of E. Let T be a relatively nonexpansive mapping from C
into itself and let U be the mapping defined by

Ux =ΠCJ
−1(αJx+

(
1−α

)
JTx

)
(6.1)

for all x ∈ C, where α∈ [0,1). Then

F(U)= F(T). (6.2)

Corollary 6.2. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H . Let {Ti}mi=1 be a finite family of nonexpansive mappings from C into itself such that
⋂m

i=1F(Ti) is nonempty and let U be the mapping defined by

Ux =
m∑

i=1
ωi
(
αix+

(
1−αi

)
Tix
)

(6.3)

for all x ∈ C, where {αi} ⊂ [0,1), {ωi} ⊂ (0,1] and
∑m

i=1ωi = 1. Then

F(U)=
m⋂

i=1
F
(
Ti
)
. (6.4)

As a direct consequence of Theorem 5.3, we obtain the weak convergence theorem
according to Matsushita and Takahashi [12].

Corollary 6.3 (see [12]). Let E be a uniformly smooth and uniformly convex Banach
space and let C be a nonempty closed convex subset of E. Let T be a relatively nonexpansive
mapping from C into itself and let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 =ΠCJ
−1(αnJxn +

(
1−αn

)
JTxn

)
(n= 1,2, . . .), (6.5)

where {αn} ⊂ [0,1] satisfies liminfn αn(1−αn) > 0. Then the following hold:
(a) the sequence {xn} is bounded and each weak subsequential limit of {xn} belongs to

F(T);
(b) if the duality mapping J from E into E∗ is weakly sequentially continuous, then {xn}

converges weakly to the strong limit of {ΠFxn}.
If E is a Hilbert space and each Ti is a nonexpansive mapping from C into itself, then

Theorem 5.3 is reduced to the following.

Corollary 6.4. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H . Let {Ti}mi=1 be a finite family of nonexpansive mappings from C into itself such that
F =⋂m

i=1F(Ti) is nonempty and let {xn} be a sequence generated by x1 = x ∈ C and

xn+1 =
m∑

i=1
ωn(i)

(
αn,ixn +

(
1−αn,i

)
Tixn

)
(n= 1,2, . . .), (6.6)
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where {αn,i : n, i ∈ N,1 ≤ i ≤m} ⊂ [0,1] and {ωn(i) : n, i ∈ N,1 ≤ i ≤m} ⊂ [0,1] satisfy
liminfn αn,i(1− αn,i) > 0 and liminfnωn(i) > 0 for all i ∈ {1,2, . . . ,m} and ∑m

i=1ωn(i) = 1
for all n ∈ N. Then {xn} converges weakly to the strong limit of {PFxn}, where PF is the
metric projection from H onto F.

Using Theorems 4.2 and 5.3, we can deal with the image recovery problem in Banach
spaces as follows.

Corollary 6.5. Let E be a smooth, strictly convex, and reflexive Banach space, let {Ci}mi=1
be a finite family of closed convex subsets of E such that

⋂m
i=1Ci is nonempty, and letΠi be the

generalized projection from E onto Ci for all i∈ {1,2, . . . ,m}. Let U be the mapping defined
by

Ux = J−1
( m∑

i=1
ωi
(
αiJx+

(
1−αi

)
JΠix

)
)

, (6.7)

where {αi} ⊂ [0,1) and {ωi} ⊂ (0,1] with
∑m

i=1ωi = 1. Then

F(U)=
m⋂

i=1
Ci. (6.8)

Corollary 6.6. Let E be a uniformly smooth and uniformly convex Banach space, let
{Ci}mi=1 be a finite family of closed convex subsets of E such that

⋂m
i=1Ci is nonempty, and

let Πi be the generalized projection from E onto Ci for all i ∈ {1,2, . . . ,m}. Let {xn} be a
sequence generated by x1 = x ∈ E and

xn+1 = J−1
( m∑

i=1
ωn(i)

(
αn,iJxn +

(
1−αn,i

)
JΠixn

)
)

(n= 1,2, . . .), (6.9)

where {αn,i : n, i ∈ N,1 ≤ i ≤m} ⊂ [0,1] and {ωn(i) : n, i ∈ N,1 ≤ i ≤m} ⊂ [0,1] satisfy
liminfn αn,i(1− αn,i) > 0 and liminfnωn(i) > 0 for all i ∈ {1,2, . . . ,m} and ∑m

i=1ωn(i) = 1
for all n∈N. Then the following hold:

(a) the sequence {xn} is bounded and each weak subsequential limit of {xn} belongs to⋂m
i=1Ci;

(b) if the duality mapping J from E into E∗ is weakly sequentially continuous, then {xn}
converges weakly to the strong limit of {Π⋂m

i=1Ci
xn}.
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