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Abstract
In this paper, we initiate the fixed point theorems for an orthogonal hybrid
interpolative Riech Istrastescus type contractions map on orthogonal b-metric spaces
to modify this class proficiently. Also, we provide some examples supporting our main
results. Finally, we provide an application to solve the existence and uniqueness of an
integral equation with numeric results, which is powerful in a greater way.
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1 Introduction
Today, one of the most famous research tools for fixed point (f.p.) results extends and in-
terests mathematics in various fields, and integral equations have powerful applications
in this context. Banach [1] initiated the concept of the famous Banach contraction prin-
ciple in 1922, which is used on complete metric spaces. There are many researchers who
have developed the Banach contraction principle in generalized metric f.p. theory. It is
suggested that relavent results improved the extensions and established results by refer-
ring the reader to to see [2, 3, 32, 37–39]. In addition, during the past few years, f.p. results
have played an important role in solving many issues and optimizations [4, 5].

In 1993, Czerwik [6] and Bakhtin [7] introduced the notion of metric spaces, labeled
b-metric space (bMS) by changing the triangular inequality of the metric spaces. In this
space, some researchers are interested in improving new contraction maps and solving
the existence of f.p. results [8, 9, 19–29]. A notion of hybrid interpolative Riech Istrastes-
cus (RI)-type contraction maps in b-metric spaces was recently proposed by Aloqaily et
al. [10]. These outcomes extend many existing f.p. theories (see [11, 12, 30, 31]). In 2017,
Eshaghi Gordji et al. [13] established the concept of orthogonality and offered a frame-
work to enlarge the results. In the same year, Eshaghi Gordji and Habibi [14] extended this
work and proved some f.p. theorems in generalized orthogonal metric spaces. Afterwards,
Arul Joseph et al. [15, 16] demonstrated some of the f.p. results with integral equations on
orthogonal metric spaces, which have great applications in this field. Recently, many re-
seachers have improved results related to orthogonal concepts (see [17, 18, 33–36]).
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In this paper, we are interested in initiating the concepts in the surrounding area of
bMS by using an existence and corresponding uniqueness solution on orthogonal bMS,
and solving an orthogonal hybrid interpolative (RI)-type contractions map. Our newly
obtained results unify, generalize, and extend many well-known results from the existing
literature. An example is provided to demonstrate the utility of our newly proved results.
Finally, we show the applicability of our main result to discuss the existence of a solution
to the integral equation with the algebraic results.

2 Preliminaries
Now, let us remember some more concepts that will be used for our results.

Definition 2.1 [6] Let Q∗ �= � and μ ≥ 1 be any real number. The function d� : Q∗ ×Q∗ →
R

+ fulfill the following axioms on Q∗ is said to be a b-metric on Q∗:
(i) d�(ξ ,η) = 0 ⇐⇒ ξ = η;

(ii) d�(ξ ,η) = d�(η, ξ );
(iii) d�(ξ ,η) ≤ μ[d�(ξ ,κ) + d�(κ ,η)];

for all ξ ,η,κ ∈Q∗. The pair (Q∗,d�) is called a bMS.

Definition 2.2 [11] A map D : Q∗ → Q∗ and a function π : Q∗ ×Q∗ → [0,∞) in a bMS
is said to be π-orbital admissible if for ξ ∈Q∗ it holds

π (ξ ,Dξ ) ≥ 1 implies π
(
Dξ ,D2ξ

) ≥ 1.

Definition 2.3 [11] Let (Q∗,d�) be a bMS and π : Q∗ ×Q∗ → [0,∞) be a function. A map
D : Q∗ → Q∗ is said to be a hybrid interpolative RI-type contraction if ∃φ ∈ [0, 1) such
that (s.t.)

π (ξ ,η)d�

(
D2ξ ,D2η

) ≤ φM(ξ ,η),

here,

M(ξ ,η) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[θ1d�(ξ ,η)� + θ2d�(ξ ,Dξ )� + θ3d�(η,Dη)�
∑5

i=1 θi + λ ≤ 1,

+θ4d�(Dξ ,Dη)� + θ5d�(Dξ ,D2η)� + λd�(Dη,D2η)�]
1
� if � > 0,

d�(ξ ,η)θ1 .d�(ξ ,Dξ )θ2 .d�(η,Dη)θ3
∑5

i=1 θi + λ = 1,

d�(Dξ ,Dη)θ4 .d�(Dξ ,D2η)θ5 .d�(Dη,D2η)λ if � = 0,

with {θi : i = 1, 2, . . . , 5 ≥ 0},� ∈R and λ > 0.

Proposition 2.1 [11] Let φ ∈ [0, 1) and {ξγ } ⊂ R
+ be any sequence s.t.

ξγ +2 ≤ φ max{ξγ , ξγ +1}, for all γ ∈N∪ 0,

then,

ξ2γ ≤ φγQ′, ξ2γ +1 ≤ φγQ′, for all γ ≥ 1,Q′ > 0,

where Q′ = max{ξ0, ξ1}.
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Lemma 2.2 [11] Let {rγ } be a sequence in bMS and ∃φ ∈ [0, 1) s.t.

d�(rγ +2, rγ +3) ≤ φ max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}
, ∀γ ∈N,

then {rγ } is a Cauchy sequence in (Q∗,d�).

Corollary 1 Consider {rγ } as a sequence on bMS and that φ ∈ [0, 1) exists s.t.

d�(rγ +2, rγ +3) ≤ φ
[
d�(rγ , rγ +1)ρ1 .d�(rγ +1, rγ +2)ρ2

]
, ∀γ ∈N,

then {rγ } is a Cauchy sequence in (Q∗,d�), where ρ1,ρ2 ∈ [0, 1] fulfill ρ1 + ρ2 = 1.

The following definition of orthogonality was used as the foundation for the rest of our
work.

Definition 2.4 [13] Let Q∗ be a non-void and ⊥⊆ Q∗ × Q∗ be an binary relation. If ⊥
fulfills the following condition:

∃r0 : (∀η,η ⊥ r0) or (∀η, r0 ⊥ η),

then (Q∗,⊥) is called an orthogonal set (Oset).

Definition 2.5 [13] Let (Q∗,⊥) be an Oset. A sequence {ξσ } is called an orthogonal se-
quence (briefly, O-sequence) if

(∀σ ∈N, ξσ ⊥ ξσ+1) or (∀σ ∈N, ξσ+1 ⊥ ξσ ).

Definition 2.6 [13] Let (Q∗,⊥,d�) be an O-bMS if (Q∗,⊥) is an Oset and (Q∗,d�) is a bMS.

Definition 2.7 [13] Let (Q∗,⊥,d�) be an O-bMS.
(1) A map D : Q∗ →Q∗ is called an O-continuous in ξ ∈Q∗ if for every O-sequence

{ξσ }σ∈N in Q∗ with ξσ → ξ , we obtain D(ξσ ) →D(ξ ). Also, D is called an
O-continuous on Q∗ if D is an O-continuous in each ξ ∈Q∗.

(2) A set Q∗ is said to be an orthogonal complete if every Cauchy orthogonal sequence
is convergent.

(3) A function D : Q∗ →Q∗ is called an orthogonal contraction with Lipschitz constant
φ if, 0 < φ < 1 for all ξ ,η ∈Q∗ with ξ ⊥ η,

d�(Dξ ,Dη) ≤ φD(ξ ,η).

(4) A function D : Q∗ →Q∗ is said to be an O-preserving if D(ξ ) ⊥D(η) whenever
ξ ⊥ η.

3 Main results
In this segment, we improve some f.p results for orthogonal hybrid interpolative RI-type
contractions in O-complete bMS. Moreover, we provide an illustrative example and ap-
plication to illustrate our newly obtained results.
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Definition 3.1 Let (Q∗,⊥,d�) be an O-complete bMS with parameter μ ≥ 1 and π :
Q∗ ×Q∗ → [0,∞) be a function. A map D : Q∗ → Q∗ is said to be an orthogonal hybrid
interpolative RI-type contraction if ∃φ ∈ [0, 1) s.t. for any ξ ,η ∈Q∗ with ξ ⊥ η

π (ξ ,η)d�

(
D2ξ ,D2η

) ≤ φM(ξ ,η), (1)

here,

M(ξ ,η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[θ1d�(ξ ,η)� + θ2d�(ξ ,Dξ )� + θ3d�(η,Dη)�
∑5

i=1 θi + λ ≤ 1,

+ θ4d�(Dξ ,Dη)� + θ5d�(Dξ ,D2η)� + λd�(Dη,D2η)�]
1
�

if � > 0,

d�(ξ ,η)θ1 .d�(ξ ,Dξ )θ2 .d�(η,Dη)θ3

∑5
i=1 θi + λ = 1,

d�(Dξ ,Dη)θ4 .d�(Dξ ,D2η)θ5 .d�(Dη,D2η)λ

if � = 0,

(2)

with {θi : i = 1, 2, . . . , 5 ≥ 0},� ∈R and λ > 0.

Proposition 3.1 Let φ ∈ [0, 1) and {ξγ } ⊂R
+ be any O-sequence s.t.

ξγ +2 ≤ φ max{ξγ , ξγ +1}, for all γ ∈N∪ 0, (3)

then

ξ2γ ≤ φγQ′, ξ2γ +1 ≤ φγQ′, for all γ ≥ 1, (4)

where Q′ = max{ξ0, ξ1}.

Proof Letting γ = 0 in (3), we have

ξ2 ≤ φ max{ξ0, ξ1} = φQ′,

for γ = 1, we obtain

ξ3 ≤ φ max{ξ1, ξ2}
≤ φ max

{
ξ1,φ max{ξ0, ξ1}

}

≤ φ max
{
ξ1,φQ′}

≤ φQ′.

Suppose that (4) satisfies for some γ ∈N, then

ξ2γ +2 ≤ φ max{ξ2γ , ξ2γ +1}
≤ φ max

{
φγQ′,φγQ′}
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≤ φγ +1Q′,

similarly, we obtain ξ2γ +3 ≤ φγ +1Q′.
By using induction method, we complete the proof. �

Lemma 3.2 Let {rγ } be an O-sequence on O-complete bMS, and ∃φ ∈ [0, 1) s.t.

d�(rγ +2, rγ +3) ≤ φ max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}
, ∀γ ∈N,

then {rγ } is an O-Cauchy sequence in (Q∗,⊥,d�).

Proof Let {ξγ } be an O-sequence in Q∗ defined as

ξγ = d�(rγ , rγ +1), ∀γ ∈N.

This is an O-sequence that assures the condition (4). We obtain

d�(r2γ , r2γ +1) = ξ2γ ≤ φγQ′, ∀γ ≥ N, (5)

also,

d�(r2γ +1, r2γ +2) = ξ2γ +1 ≤ φγQ′. (6)

Adding (5) and (6), we get

d�(r2γ , r2γ +1) + d�(r2γ +1, r2γ +2) ≤ 2φγQ′.

Note that φ = 0 or Q′ = 0. Hence, an O-sequence is an O-Cauchy sequence. Consider
φ > 0,Q′ > 0, and ε > 0, thus ε

2Q′μη∗ > 0 and η∗ > γ0 ≥ 1 s.t.

+∞∑

γ =γ0

φγ <
ε

2Q′μη∗ ,

in particular

2Q′μη∗
γ∑

γ =γ0

φγ < 2Q′μη∗
+∞∑

γ =γ0

φγ < ε, ∀η ∈N,

s.t. η ≥ γ .
Let η∗,γ ,� ∈ N s.t. η∗ > � > γ ≥ 2γ0, η ≥ γ0 + 1, and 2η ≥ �; thus, we obtain

d�(rγ , r�) ≤ μ
[
d�(rγ , rγ +1) + d�(rγ +1, rr� )

]

= μd�(rγ , rγ +1) + μd�(rγ +1, r�)

≤ μd�(rγ , rγ +1) + μ2[
d�(rγ +1, rγ +2) + d�(rγ +2, r�)

]

≤ μd�(rγ , rγ +1) + μ2
d�(rγ +1, rγ +2) + μ3

d�(rγ +2, rγ +3) + · · ·
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+ μ�–γ
d�(r�–1, r�)

=
�–1∑

κ=γ

μκ–γ +1
d�(rκ , rκ+1)

≤
�–1∑

κ=γ

μη∗
d�(rκ , rκ+1)

≤
2η–1∑

κ=2γ0

μη∗
d�(rκ , rκ+1)

≤
2η–1∑

γ =γ0

μη∗{
d�(r2γ , r2γ +1) + d�(r2γ +1, r2γ +2)

}

≤
γ –1∑

γ =γ0

μη∗
2φγQ′ ≤

γ∑

γ =γ0

μη∗
2φγQ′

≤
+∞∑

γ =γ0

μη∗
2φγQ′

< ε,

shows that {rγ } is an O-Cauchy sequence in an orthogonal bMS. �

Corollary 2 Let {rγ } be an O-sequence in orthogonal bMS, and φ ∈ [0, 1) exists s.t.

d�(rγ +2, rγ +3) ≤ φ
[
d�(rγ , rγ +1)ρ1 .d�(rγ +1, rγ +2)ρ2

]
, ∀γ ∈N,

then {rγ } is an O-Cauchy sequence in (Q∗,⊥,d�), where ρ1,ρ2 ∈ [0, 1] fulfill ρ1 + ρ2 = 1.

Proof Consider ξγ = d�(rγ , rγ +1) and a Proposition 3.1, hence, we get

d�(rγ +2, rγ +3) ≤ φ
[
d�(rγ , rγ +1)ρ1 .d�(rγ +1, rγ +2)ρ2

]

≤ φ
[
(ξγ )ρ1 .(ξγ +1)ρ2

]
.

≤ φ
[
max

{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}ρ1

. max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}ρ2]

≤ φ
[
max

{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}]ρ1+ρ2

≤ φ
[
max

{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}]
,

then, by using Lemma 3.2, we conclude the results. �

Theorem 3.3 Let (Q∗,⊥,d�) be an O-complete bMS with an orthogonal element r0 and
constant μ ≥ 1, and let D : Q∗ → Q∗ be an orthogonal hybrid interpolative RI-type con-
traction map satisfying:

(i) D is an O-preserving;
(ii) D is an O-π orbital-admissible mapping;



Dhanraj et al. Fixed Point Theory Algorithms Sci Eng          (2024) 2024:3 Page 7 of 20

(iii) r0 ∈Q∗ exists s.t. π (r0,Dr0) ≥ 1;
(iv) D is an O-continuous;

Then D has a unique f.p.

Proof By the definition of orthogonality, we see that (Q∗,⊥) is an Oset, then there exists

r0 ∈Q∗ : ∀r ∈Q∗, r ⊥ r0 (or) ∀r ∈Q∗, r0 ⊥ r.

It follows that r0 ⊥Dr0 or Dr0 ⊥ r0. Let

r1 = Dr0, r2 = Dr1 = D2
r0 · · · rγ = Drγ –1 = Dγ

r0, ∀γ ∈ N.

For any r0 ∈Q∗, set rγ = Drγ –1. Now, we consider the following cases:
(i) If there exists γ ∈N∪ {0} s.t. rγ = rγ +1, then we get Drγ = rγ . It is easy to see that rγ

is a f.p. of D. Hence, the proof is finished.
(ii) If rγ �= rγ +1, for every γ ∈N∪ {0}, then we obtain d�(rγ +1, rγ ) > 0, for any γ ∈N.

Since D is an O-preserving, we have

rγ ⊥ rγ +1 (or) rγ +1 ⊥ rγ .

Therefore, {rγ } is an O-sequence. Since D is an O-π orbital-admissible, we get

π
(
Dr0,D2

r0
) ≥ 1.

Now consider,

d�(rγ +2, rγ +3) ≤ π (rγ +2, rγ +3)d�(rγ +2, rγ +3)

≤ π (rγ +2, rγ +3)d�

(
D2

rγ ,D2
rγ +1

)

≤ φM(rγ , rγ +1).

(7)

We will next discuss the two possibilities for the way � could be chosen.
Case I: If � > 0,

M(rγ , rγ +1) =
[
θ1d�(rγ , rγ +1)� + θ2d�(rγ ,Drγ )� + θ3d�(rγ +1,Drγ +1)�

+ θ4d�(Drγ ,Drγ +1)� + θ5d�

(
Drγ ,D2

rγ
)� + λd�

(
Drγ +1,D2

rγ +1
)�] 1

�

=
[
θ1d�(rγ , rγ +1)� + θ2d�(rγ , rγ +1)� + θ3d�(rγ +1, rγ +2)�

+ θ4d�(rγ +1, rγ +2)� + θ5d�(rγ +1, rγ +2)� + λd�(rγ +2, rγ +3)�
] 1
�

=
[
(θ1 + θ2)d�(rγ , rγ +1)� + (θ3 + θ4 + θ5)d�(rγ +1, rγ +2)�

+ λd�(rγ +2, rγ +3)�
] 1
�

≤ [
(θ1 + θ2 + θ3 + θ4 + θ5) max

{
d�(rγ , rγ +1)�,d�(rγ +1, rγ +2)�

}

+ λd�(rγ +2, rγ +3)�
] 1
� ,
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letting power of � on Equation (7), we get

d�(rγ +2, rγ +3)� ≤ φ�(θ1 + θ2 + θ3 + θ4 + θ5) max
{
d�(rγ , rγ +1)�,d�(rγ +1, rγ +2)�

}

+ φ�λd�(rγ +2, rγ +3)�.

Therefore,

(
1 – φ�λ

)
d�(rγ +2, rγ +3)�

≤ φ�(θ1 + θ2 + θ3 + θ4 + θ5) max
{
d�(rγ , rγ +1)�,d�(rγ +1, rγ +2)�

}

≤ φ�(1 – λ) max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}�,

d�(rγ +2, rγ +3)� ≤
(

φ�(1 – λ)
1 – φ�λ

)
max

{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}�, ∀γ ∈N,

or equally

d�(rγ +2, rγ +3) =
(

φ�(1 – λ)
1 – φ�λ

) 1
�

max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}

= φ max
{
d�(rγ , rγ +1),d�(rγ +1, rγ +2)

}
,

where

φ =
(

φ�(1 – λ)
1 – φ�λ

) 1
�

, φ ∈ (0, 1).

Hence, Lemma 3.2 satisfies that {rγ } is an O-Cauchy sequence.
Case II: If � = 0,

M(rγ , rγ +1) = d�(rγ , rγ +1)θ1 .d�(rγ ,Drγ )θ2 .d�(rγ +1,Drγ +1)θ3

.d�(Drγ ,Drγ +1)θ4 .d�

(
Drγ ,D2

rγ
)θ5 .d�

(
Drγ +1,D2

rγ +1
)λ

= d�(rγ , rγ +1)θ1 .d�(rγ , rγ +1)θ2 .d�(rγ +1, rγ +2)θ3

.d�(rγ +1, rγ +2)θ4 .d�(rγ +1, rγ +2)θ5 .d�(rγ +2, rγ +3)λ

= d�(rγ , rγ +1)θ1+θ2 .d�(rγ +1, rγ +2)θ3+θ4+θ5

.d�(rγ +2, rγ +3)λ,

from (7), it implies that

d�(rγ +2, rγ +3) ≤ φd�(rγ , rγ +1)θ1+θ2 .d�(rγ +1, rγ +2)θ3+θ4+θ5

.d�(rγ +2, rγ +3)λ.
(8)

Our assumption

5∑

i=1

θi + λ = 1,



Dhanraj et al. Fixed Point Theory Algorithms Sci Eng          (2024) 2024:3 Page 9 of 20

taking λ = 1, then the Equation (8) is contradiction. Let λ < 1, so

5∑

i=1

θi = 1 – λ > 0.

Now consider,

ρ1 =
θ1 + θ2

1 – λ
, ρ2 =

θ3 + θ4 + θ5

1 – λ
,

by adding ρ1 and ρ2, we get

ρ1 + ρ2 =
θ1 + θ2 + θ3 + θ4 + θ5

1 – λ

=
1 – λ

1 – λ
= 1.

Therefore, satisfying ρ1 + ρ2 = 1. Now, setting these in (8), we obtain

d�(rγ +2, rγ +3)1–λ ≤ φd�(rγ , rγ +1)θ1+θ2 .d�(rγ +1, rγ +2)θ3+θ4+θ5 .

�⇒ d�(rγ +2, rγ +3) ≤ φ
1

1–λ d�(rγ , rγ +1)ρ1 .d�(rγ +1, rγ +2)ρ2 , as φ ∈ (0, 1).

Therefore,

0 < 1 – λ ≤ 1 �⇒ 1 ≤ 1
1 – λ

�⇒ φ
1

1–λ ≤ φ < 1.

Hence, Corollary 2 concludes that {rγ } is an O-Cauchy sequence. As Q∗ is an O-complete,
∃r∗ ∈Q∗ s.t.

d�

(
r
∗,Dr

∗) = lim
γ→∞d�

(
rγ +1,Dr

∗) = lim
γ→∞d�

(
Drγ ,Dr

∗) = 0.

So Dr∗ = r∗, that is r∗ is the f.p. of D.
Now, we show that τ ∈Q∗ is unique.
Suppose that τ and v are two different f.p. of D. Assume that Dγ τ = τ �= v = Dγ v for all

τ ,v ∈N. By choice of r∗, we obtain

(
r
∗ ⊥ τ , r∗ ⊥ v

)
or

(
τ ⊥ r

∗,v⊥ r
∗).

Since D is ⊥-preserving, we have

(
Dγ

r
∗ ⊥Dγ τ ,Dγ

r
∗ ⊥Dγ

v
)

or
(
Dγ τ ⊥Dγ

r
∗,Dγ

v ⊥Dγ
r
∗),

for all τ ,v ∈N. Therefore, by Definition 2.1 of triangle inequality, we get

d�(τ ,v) = d�

(
Dγ τ ,Dγ

v
)

= μ
[
d�

(
Dγ τ ,Dγ

r
∗) + d�

(
Dγ

r
∗,Dγ

v
)]

≤ μργ
d�

(
τ , r∗

)
+ μργ

d�

(
r
∗,v

)
.
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Letting limit as γ → ∞ in the above inequality, we have

d�(τ ,v) = 0 �⇒ τ = v.

Therefore, our assumption has a contradiction. Then, τ = v. Hence, D has a unique f.p. in
Q∗. �

Corollary 3 Let (Q∗,⊥,d�) be an O-complete bMS and d� be an O-continuous; also, D :
Q∗ → Q∗ is an O-continuous map. Assume that θ1, θ2 ∈ (0, 1) exists satisfying θ1 + θ2 < 1
s.t. for any ξ ,η ∈Q∗ with ξ ⊥ η

d�

(
D2ξ ,D2η

) ≤ θ1d�(ξ ,η) + θ2d�(Dξ ,Dη),

then D has a unique f.p.

Theorem 3.4 Let (Q∗,⊥,d�) be an O-complete bMS, with an orthogonal element r0 and
constant μ ≥ 1, and let D : Q∗ → Q∗ be an orthogonal hybrid interpolative RI-type con-
traction map. Suppose that

(a) D2 is an O-continuous;
(b) D is an O-π orbital-admissible map;
(c) ξ0 ∈Q∗ exists s.t. π (ξ0,Dξ0) ≥ 1;
(d) π (ξ ,Dξ ) ≥ 1 for all ξ ∈ FixD2 (Q∗);

then D has a unique f.p.

Proof Let (Q∗,⊥) is an orthogonal set, there exists

r0 ∈Q∗ : ∀r ∈Q∗, r ⊥ r0 (or) ∀r ∈Q∗, r0 ⊥ r.

It follows that r0 ⊥Dr0 or Dr0 ⊥ r0. Let

r1 = Dr0, r2 = Dr1 = D2
r0 · · · rγ = Drγ –1 = Dγ

r0, ∀γ ∈ N.

For any r0 ∈Q∗, set rγ = Drγ –1. Now, we consider the following two cases:
(i) If ∃γ ∈N∪ {0} s.t rγ = rγ +1, then we have Drγ = rγ . Obviously, rγ is a f.p. of D.

Hence, the proof is finished.
(ii) If rγ �= rγ +1, for any γ ∈ N∪ {0}, then we obtain d�(rγ +1, rγ ) > 0, for every γ ∈N.

Since D is an O-preserving, we have

rγ ⊥ rγ +1 (or) rγ +1 ⊥ rγ .

Therefore {rγ } is an O-sequence.
Let {rγ } be an O-sequence of D based on ξ0 defined by ξγ = Dγ ξ0. By orthogonal com-

pleteness of D, it follows that

d�

(
ξ ∗,D2ξ ∗) = lim

γ→∞d�

(
ξγ +1,D2ξ ∗) = lim

γ→∞d�

(
D2ξγ ,D2ξ ∗) = 0,

that is ξ ∗ = D2ξ ∗. Therefore ξ ∗ is a f.p. of D2.
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Since D is an O-π orbital-admissible, we get

0 ≤ d�

(
ξ ∗,Dξ ∗) ≤ π

(
ξ ∗,Dξ ∗)

d�

(
ξ ∗,Dξ ∗)

≤ π
(
ξ ∗,Dξ ∗)

d�

(
Dξ ∗,D2ξ ∗)

≤ φM
(
ξ ∗,Dξ ∗).

(9)

Now, we choose � to discuss the possible cases.
Case-I: If � > 0

M
(
ξ ∗,Dξ ∗) =

[
θ1d�

(
ξ ∗,Dξ ∗)� + θ2d�

(
ξ ∗,Dξ ∗)� + θ3d�

(
Dξ ∗,D2ξ ∗)�

+ θ4d�

(
Dξ ∗,D2ξ ∗)� + θ5d�

(
Dξ ∗,D2ξ ∗)� + λd�

(
D2ξ ∗,D3ξ ∗)�] 1

�

=
[
θ1d�

(
ξ ∗,Dξ ∗)� + θ2d�

(
ξ ∗,Dξ ∗)� + θ3d�

(
Dξ ∗, ξ ∗)�

+ θ4d�

(
Dξ ∗, ξ ∗)� + θ5d�

(
Dξ ∗, ξ ∗)� + λd�

(
ξ ∗,Dξ ∗)�] 1

�

=
[
(θ1 + θ2 + θ3 + θ4 + θ5 + λ)d�

(
Dξ ∗, ξ ∗)�] 1

�

≤ [
d�

(
ξ ∗,Dξ ∗)�] 1

�

= d�

(
ξ ∗,Dξ ∗).

This implies contradiction in (9).
Case-II: If � = 0

M
(
ξ ∗,Dξ ∗) = d�

(
ξ ∗,Dξ ∗)θ1 .d�

(
ξ ∗,Dξ ∗)θ2 .d�

(
Dξ ∗,D2ξ ∗)θ3

.d�

(
Dξ ∗,D2ξ ∗)θ4 .d�

(
Dξ ∗,D2ξ ∗)θ5 .d�

(
D2ξ ∗,D3ξ ∗)λ

= d�

(
ξ ∗,Dξ ∗)θ1 .d�

(
ξ ∗,Dξ ∗)θ2 .d�

(
Dξ ∗, ξ ∗)θ3

.d�

(
Dξ ∗, ξ ∗)θ4 .d�

(
Dξ ∗, ξ ∗)θ5 .d�

(
ξ ∗,Dξ ∗)λ

= d�

(
ξ ∗,Dξ ∗)θ1+θ2+θ3+θ4+θ5+λ

= d�

(
ξ ∗,Dξ ∗),

which is again a contradiction to (9). Hence, Corollary 2 concludes that {rγ } is an O-
Cauchy sequence. As Q∗ is an O-complete, ∃r∗ ∈Q∗ s.t.

d�

(
r
∗,Dr

∗) = lim
γ→∞d�

(
rγ +1,Dr

∗) = lim
γ→∞d�

(
Drγ ,Dr

∗) = 0,

thus Dr∗ = r∗ and Dr∗ = r∗. Hence, the point r∗ is a f.p. of D.
Next, we show that τ is a unique f.p. of D.
Suppose that τ and v are two different f.p. of D. Consider Dγ τ = τ �= Dγ v = v for all

τ ,v ∈N. By choosing r∗, we obtain

(
r
∗ ⊥ τ , r∗ ⊥ v

)
or

(
τ ⊥ r

∗,v⊥ r
∗).
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Since D is an ⊥-preserving, we have

(
Dγ

r
∗ ⊥Dγ τ ,Dγ

r
∗ ⊥Dγ

v
)

or
(
Dγ τ ⊥Dγ

r
∗,Dγ

v ⊥Dγ
r
∗),

for all τ ,v ∈N. Therefore, by using the triangle inequality, we obtain

d�(τ ,v) = d�

(
Dγ τ ,Dγ

v
)

= μ
[
d�

(
Dγ τ ,Dγ

r
∗) + d�

(
Dγ

r
∗,Dγ

v
)]

≤ μργ
d�

(
τ , r∗

)
+ μργ

d�

(
r
∗,v

)
.

(10)

Setting limit as γ → ∞ in (10), we have

d�(τ ,v) = 0 �⇒ τ = v.

Therefore, our assumption has a contradiction. Then, τ = v. Hence, D has a unique f.p. in
Q∗. �

Example 3.5 Consider the space Q∗ = [–1, 1] provided with an orthogonal b-metric d� on
R

+. Let the binary relation ⊥ on Q∗ by ξ ⊥ η if ξ ,η ≥ 0, for every ξ ,η ∈Q∗.
Let d� : Q∗ ×Q∗ → (0,∞) be defined as

d�(ξ ,η) = |ξ – η|2.

Clearly, (Q∗,⊥,d�) be an O-complete bMS.
Let D : Q∗ →Q∗ be defined as

Dξ =

⎧
⎨

⎩

√
1 – ξ 2 if – 1 ≤ ξ ≤ 0,

ξ2

2 if 0 ≤ ξ ≤ 1,

then

D2ξ =

⎧
⎨

⎩

1–ξ2

2 if – 1 ≤ ξ ≤ 0,
ξ4

8 if 0 ≤ ξ ≤ 1.

Next, define π : Q∗ ×Q∗ → [0,∞), by

π (ξ ,η) =

⎧
⎪⎪⎨

⎪⎪⎩

3
2 if 0 ≤ ξ ≤ 1,

1 if η = 1, ξ = –1,

0 if otherwise.

Clearly, Q∗ is an O-preserving.
Now, we verify that orthogonal hybrid interpolative RI-type contractions, for 0 ≤ ξ ≤ 1.

π (ξ ,η)d�

(
D2ξ ,D2η

)
=

3
(2)(8)

∣
∣ξ 4 – η4∣∣
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=
3

(2)(8)
∣∣(ξ 2 – η2)(ξ 2 + η2)∣∣

≤ 3
8
∣
∣ξ 2 – η2∣∣

=
3
8

√∣∣ξ 2 – η2
∣∣
√∣∣ξ 2 – η2

∣∣

=
3
8
√|ξ – η|.|ξ + η|

√
2|ξ 2 – η2|

2

≤ 3
4
d�(ξ ,η)

1
4 d�(Dξ ,Dη)

1
4 .

For ξ = –1,η = 1, we obtain

π (ξ ,η)d�

(
D2ξ ,D2η

)
=

1
8

<
3
4

=
3
4
d�(ξ ,η)

1
4 d�(Dξ ,Dη)

1
4 .

It is easy to see that D is an O-continuous with δ = 0. Therefore, all the hypothesis of
Theorem 3.3 are fulfilled. Hence, D has a unique f.p.

Example 3.6 Consider the space Q∗ = [–1, 1] provided with an orthogonal b-metric d� on
R

+. Let the binary relation ⊥ on Q∗ by ξ ⊥ η if ξ ,η ≥ 0, for every ξ ,η ∈Q∗.
Let d� : Q∗ ×Q∗ → (0,∞) be defined as

d�(ξ ,η) = |ξ – η|2.

Clearly, (Q∗,⊥,d�) be an O-complete bMS.
Let D : Q∗ →Q∗ be defined as

Dξ =

⎧
⎨

⎩
3 if – 1 ≤ ξ ≤ 0,

2 if 0 ≤ ξ ≤ 1,

then

D2ξ =

⎧
⎨

⎩
1 if – 1 ≤ ξ ≤ 0,

4 if 0 ≤ ξ ≤ 1.

Next, define π : Q∗ ×Q∗ → [0,∞), by

π (ξ ,η) =

⎧
⎪⎪⎨

⎪⎪⎩

1.5 if 0 ≤ ξ ≤ 1,

1 if η = 1, ξ = –1,

0 if otherwise.

Clearly, Q∗ is an O-preserving.
Now, we verify that orthogonal hybrid interpolative RI-type contractions, for 0 ≤ ξ ≤ 1,

we obtain

0 = 1.5d�(1, 1) = π (ξ ,η)d�

(
D2ξ ,D2η

) ≤ φM(ξ ,η).
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For ξ = –1,η = 1, we obtain

9 = (1)d�(1, 4) = π (ξ ,η)d�

(
D2ξ ,D2η

) ≤ φM(ξ ,η). (11)

Now, we chose � to discuss the possible cases.
Case I: if � > 0, we get

M(ξ ,η) =
[
θ1d�(ξ ,η)� + θ2d�(ξ ,Dξ )� + θ3d�(η,Dη)�

+ θ4d�(Dξ ,Dη)� + θ5d�

(
Dξ ,D2η

)� + λd�

(
Dη,D2η

)�] 1
� .

Taking θ1 = θ2 = 0.5, θ3 = θ4 = θ5 = 0.4,λ = 0.1,φ = 0.8 and � = 2 in (11), we obtain

9 ≤ 0.8
[
0.5d�(–1, 1)2 + 0.5d�(–1, 3)2 + 0.4d�(1, 2)2 + 0.4d�(3, 2)2

+ 0.4d�(3, 4)2 + 0.1d�(2, 4)2] 1
2

≤ 0.8
[
(0.5)| – 1 – 1|4 + (0.5)| – 1 – 3|4 + (0.4)|1 – 2|4 + (0.4)|3 – 2|4

+ (0.4)|3 – 4|4 + (0.1)|2 – 4|4] 1
2

≤ 0.8
[
0.5(16) + 0.5(256) + 0.4(1) + 0.4(1) + 0.4(1) + 0.1(16)

]0.5

≤ 0.8[8 + 128 + 0.4 + 0.4 + 0.4 + 1.6]0.5 = 0.8(138.8)0.5

9 ≤ 9.42.

Case II: if � = 0, we get

M(ξ ,η) = d�(ξ ,η)θ1 .d�(ξ ,Dξ )θ2 .d�(η,Dη)θ3 .d�(Dξ ,Dη)θ4

.d�

(
Dξ ,D2η

)θ5 .d�

(
Dη,D2η

)λ.

Taking θ1 = θ2 = 0.6, θ3 = θ4 = θ5 = 0.3,φ = 0.8 and λ = 0.1 in (11), we obtain

9 ≤ 0.8
[
d�(–1, 1)0.6.d�(–1, 3)0.6.d�(1, 2)0.3.d�(3, 2)0.3.d�(3, 4)0.3.d�(2, 4)0.1]

≤ 0.8
[(

40.6).
(
160.6).

(
10.3).

(
10.3).

(
10.3).

(
40.1)]

≤ 0.8
[
(2.2974).(5.2780).(1).(1).(1).(1.1487)

]
= 0.8(13.9287)

9 ≤ 11.14.

Otherwise, we obtain π (ξ ,η) = 0.
Clearly, D is an O-continuous. Therefore, all the hypothesis of Theorem 3.3 are fulfilled.

Hence, D has a unique f.p.

4 Application
In this segment, we find an existence and unique solution for a Fredhlom integral equation.

Consider a Fredholm integral equation

�(ℵ) = f(ℵ) +
∫ 1

0
γ�

(ℵ, r∗,�
(
r
∗))dr∗,ℵ ∈ [0, 1]. (12)
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4.1 The theorem that follows supports orthogonality
Theorem 4.1 Let B∞ = [0, 1] and Q∗ = C(B∞,R2) be the family of all O-continuous func-
tions defined from B∞ to R

2, and the given axioms hold:
(1) Let γ� : B∞ ×B∞ ×R

2 →R
2 and f : B∞ →R

2 be an O-continuous;
(2) �0 ∈Q∗ exists s.t. �γ = D�γ –1;
(3) A O-continuous function f : B∞ ×B∞ → B∞ exists s.t.

∣
∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗ ≤ ∣

∣f
(
�
(
ξ ∗),ω

(
ξ ∗))∣∣∣∣�

(
ξ ∗) – ω

(
ξ ∗)∣∣λ∗

,

for each ξ , ξ ∗ ∈ B∞ and |f(�(ξ ∗),ω(ξ ∗))| ≤ 1
ν

, where ν > 0.
Then, (12) has a unique solution.

Proof Define the orthogonal relation ⊥ on Q∗ by

� ⊥ ω ⇐⇒ �(ℵ)ω(ℵ) ≥ �(ℵ) or �(ℵ)ω(ℵ) ≥ ω(ℵ), ∀ℵ ∈ [0, 1].

Define a function d� : Q∗ ×Q∗ → [0,∞) by

d�(�,ω) = ‖� – ω‖∞ = sup
ξ∈B∞

{∣∣�(ξ ) – ω(ξ )
∣
∣λ∗}

, λ∗ > 1,

for all �,ω ∈Q∗ with � ⊥ ω. Clearly, (Q∗,⊥,d�) is an O-complete bMS.
Define a map D : Q∗ →Q∗, as

D
(
�(ℵ)

)
= f(ℵ) +

∫ 1

0
γ�

(ℵ, r∗,�
(
r
∗))dr∗.

Now, we prove that D is an O-preserving. For every �,ω ∈ ρ with � ⊥ ω and ξ ∈Q∗, we
get

D
(
�(ℵ)

)
= f(ℵ) +

∫ 1

0
γ�

(ℵ, r∗,�
(
r
∗)) ≥ 1.

It follows that [(D�)(ξ )][(Dω)(ξ )] ≥ (Dω)(ξ ) and so (D�)(ξ ) ⊥ (Dω)(ξ ). Then, D is an ⊥-
preserving.

Since (Q∗,⊥,d�) be an O-complete bMS and π (�,ω) = 1. Consider �∗ > 1 s.t. 1
�∗ + 1

λ∗ = 1,
then there exists �∗ ∈D(�) and we obtain

d�

(
D�∗(ξ ),Dω∗(ξ )

)
= sup

ξ∈B∞

∣∣D�∗(ξ ),Dω∗(ξ )
∣∣λ∗

= sup
ξ∈B∞

∣
∣∣∣

∫ 1

0
γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))

∣
∣∣∣

λ∗

dξ ∗

≤ sup
ξ∈B∞

[(∫ 1

0
|1|�∗

dξ ∗
) 1

�∗

×
∫ 1

0

(∣∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗) 1

λ∗
]λ∗

dξ ∗

= sup
ξ∈B∞

∫ 1

0

∣∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗

dξ ∗
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≤ sup
ξ∈B∞

∫ 1

0

∣∣f
(
�
(
ξ ∗),ω

(
ξ ∗))∣∣∣∣�

(
ξ ∗) – ω

(
ξ ∗)∣∣λ∗

dξ ∗

≤ 1
ν

∥
∥�

(
ξ ∗) – ω

(
ξ ∗)∥∥∞

≤ 1
ν
d�

(
�
(
ξ ∗),ω

(
ξ ∗)).

Similarly, one can easily obtain

d�

(
D2�∗(ξ ),D2ω∗(ξ )

)
= sup

ξ∈B∞

∣
∣D2�∗(ξ ),D2ω∗(ξ )

∣
∣λ∗

≤
(

1
ν

)2

d�

(
�
(
ξ ∗),ω

(
ξ ∗))

=
(

1
ν

)2

Md�

(
�
(
ξ ∗),ω

(
ξ ∗)).

Each and every hypothesis of the Theorem 3.3 are fulfiled by choosing that φ( 1
ν

)2 ∈ (0, 1)
and

θ1 = 1, θ2 = θ3 = θ4 = θ5 = δ = 0.

Therefore the Fredholm integral Equation (12) has a unique solution. �

4.2 The theorem that follows does not support orthogonality
Theorem 4.2 Let B∞ = [0, 1] and Q∗ = C(B∞,R2) are the family of all continuous func-
tions defined from B∞ to R

2, and the given axioms are hold:
(1) Let γ� : B∞ ×B∞ ×R

2 →R
2 and f : B∞ →R

2 be a continuous;
(2) �0 ∈Q∗ exists s.t. �γ = D�γ –1;
(3) A continuous function f : B∞ ×B∞ → B∞ exists s.t.

∣∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗ ≤ ∣∣f

(
�
(
ξ ∗),ω

(
ξ ∗))∣∣∣∣�

(
ξ ∗) – ω

(
ξ ∗)∣∣λ∗

,

for each ξ , ξ ∗ ∈ B∞ and |f(�(ξ ∗),ω(ξ ∗))| ≤ 1
ν

, where ν > 0.
Then, (12) has a unique solution.

Proof Define a function d� : Q∗ ×Q∗ → [0,∞) by

d�(�,ω) = ‖� – ω‖∞ = sup
ξ∈B∞

{∣∣�(ξ ) – ω(ξ )
∣
∣λ∗}

,λ∗ > 1, ∀�,ω ∈Q∗.

Consider the sequence {rγ } in Q∗ that converges at a point r if

lim
γ→∞

(
d�(rγ , r)

)
= 0.

And a sequence {rγ }, {r�} in Q∗ is a Cauchy sequence if

lim
γ ,�→∞

(
d�(rγ , r�)

)
< ∞.

Clearly, (Q∗,d�) be a complete bMS.
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Define a map D : Q∗ →Q∗, as

D
(
�(ℵ)

)
= f(ℵ) +

∫ 1

0
γ�

(ℵ, r∗,�
(
r
∗))dr∗.

Since (Q∗,d�) is a complete bMS and π (�,ω) = 1. Consider �∗ > 1 s.t.
1
�∗ + 1

λ∗ = 1, then there exists �∗ ∈D(�) and we obtain

d�

(
D�∗(ξ ),Dω∗(ξ )

)
= sup

ξ∈B∞

∣∣D�∗(ξ ),Dω∗(ξ )
∣∣λ∗

= sup
ξ∈B∞

∣∣
∣∣

∫ 1

0
γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))

∣∣
∣∣

λ∗

dξ ∗

≤ sup
ξ∈B∞

[(∫ 1

0
|1|�∗

dξ ∗
) 1

�∗

×
∫ 1

0

(∣∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗) 1

λ∗
]λ∗

dξ ∗

= sup
ξ∈B∞

∫ 1

0

∣∣γ�

(
ξ , ξ ∗,�

(
ξ ∗)) – γω

(
ξ , ξ ∗,ω

(
ξ ∗))∣∣λ∗

dξ ∗

≤ sup
ξ∈B∞

∫ 1

0

∣∣f
(
�
(
ξ ∗),ω

(
ξ ∗))∣∣∣∣�

(
ξ ∗) – ω

(
ξ ∗)∣∣λ∗

dξ ∗

≤ 1
ν

∥
∥�

(
ξ ∗) – ω

(
ξ ∗)∥∥∞

≤ 1
ν
d�

(
�
(
ξ ∗),ω

(
ξ ∗)).

Similarly, one can easily obtain

d�

(
D2�∗(ξ ),D2ω∗(ξ )

)
= sup

ξ∈B∞

∣
∣D2�∗(ξ ),D2ω∗(ξ )

∣
∣λ∗

≤
(

1
ν

)2

d�

(
�
(
ξ ∗),ω

(
ξ ∗))

=
(

1
ν

)2

Md�

(
�
(
ξ ∗),ω

(
ξ ∗)).

Each and every hypothesis of the Theorem 3.3 are fulfilled by choose that φ( 1
ν

)2 ∈ (0, 1)
and

θ1 = 1, θ2 = θ3 = θ4 = θ5 = δ = 0.

Therefore the Fredholm integral Equation (12) has a unique solution. �

Example 4.3 Consider the Fredholm integral equation as follows:

υ(ℵ) = f(ℵ) +
∫ η

0
K

(ℵ,℘,υ(℘)
)

d℘, ∀0 ≤ η ≤ 1, (13)
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Table 1 A comparison between approximate and exact numeric solutions

Iteration Approximate solution Exact solution Absolute error

0.1 1.2214 –2.1804 3.4018
0.2 1.4918 –1.3111 2.8029
0.3 1.8221 –0.6573 2.4794
0.4 2.2255 –0.0261 2.2516
0.5 2.7183 0.6660 2.0523
0.6 3.3201 1.4812 1.8389
0.7 4.0552 2.4820 1.5732
0.8 4.9530 3.7393 1.2137
0.9 6.0496 5.3393 0.7103
1.0 7.3891 7.3891 0.0000

Figure 1 Shows that the f.p. of ℵ is 1 and which is unique

where,

υ(ℵ) = Inℵ +
∫ η

0
e2ℵ–2℘υ(℘) d℘, ∀0 ≤ η ≤ 1. (14)

Let us assume K(ℵ, ξ ,υ(ξ )) = e2ℵ to be the exact solution of the Equation (14).
Hence, the absolute solution of given equation is Inℵ + ℵe2ℵ for ℵ > 0. In Table 1 numer-

ical results are given.

In the Figure 1, it is clear that K(ℵ, ξ ,υ(ξ )) = e2ℵ is continuous. Therefore, Equation (14)
has a unique solution. From Table 1, we see that the f.p. of ℵ is 1 and it is a unique.

Comparison between approximate solution (A.S) and exact solution (E.S) shown in Fig-
ure 1.

5 Conclusions
In this paper, we extend the f.p results for orthogonal hybrid interpolative RI-type con-
tractions in the surrounding area of an O-complete bMS. The non-trivial examples we
derived were supported by our results. Finally, we demonstrated an application to prove
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analytical results for the integral equation with the algebraic result also proposed. It is an
open problem to extend the solution to orthogonal metric spaces (Branciari metric spaces,
G-metric spaces) by using hybrid interpolative RI-type contractions.
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