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Abstract
We introduce a Tseng extragradient method for solving monotone inclusion problem
in Banach space. A strong convergence result of an Halpern inertial extrapolation
method for solving the resolvent of sum of two monotone operators without the
knowledge of the Lipschitz constant was established. Lastly, we illustrate some
numerical behavior of our iterative scheme to showcase the performance of the
proposed method compared to other related results in the literature.
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1 Introduction
Let X be a real Banach space equipped with its dual space X ∗. The monotone inclusion
problem (MIP for short) is to find a point u∗ ∈X such that

0 ∈ (� + �)u∗, (1.1)

where � : X →X ∗ is a monotone operator and � : X → 2X ∗ represent a maximal mono-
tone operator. The solution set of the MIP is denoted by (� + �)–1(0∗). The MIP allows
an elegant formulation for a wide range of problems, which involves finding an optimal
solution for optimization related problems, such as mathematical programming, optimal
control, variational inequalities, and many more (see [32]). The MIP have applications in
various areas of real-life problems, such as image processing, statistical regression, and
signal recovery (see [13, 14, 16, 22]).

Due to the variety of applications of MIP in fixed-point theory, over the years researchers
working in this direction have proposed different iterative methods for solving (1.1) (see
[2, 6, 11, 30]). One of these methods is the forward-backward splitting method introduced
by Lions and Mercier [18] in the settings of real Hilbert space H, this method is known
to be efficient for solving MIP. The forward-backward splitting method is implemented as
follows:

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13663-023-00753-y
https://crossmark.crossref.org/dialog/?doi=10.1186/s13663-023-00753-y&domain=pdf
mailto:hammed.abass@smu.ac.za
mailto:hammedabass548@gmail.com
http://creativecommons.org/licenses/by/4.0/


Abass et al. Fixed Point Theory Algorithms Sci Eng         (2023) 2023:17 Page 2 of 19

Given an arbitrary starting point q0 ∈ H, the sequence {qk} subsequently generates the
next iterates as follows:

qk+1 = R�
λk

(qk – λk�qk), k ≥ 1,

where R�
λk

:= (I + λk�)–1 denotes the resolvent of maximal operator � , I is the identity
operator and {λk} is a positive real sequence. They established a weak convergence result
for solving MIP (1.1) by assuming that � is α-inverse strongly monotone (α-ism). It is
well-known that the inverse strong monotonicity of � is a strict condition, so it is very
important to dispense with the condition in solving MIP (1.1).

To dispense with the inverse strongly monotone assumption, Tseng [25] introduced the
following splitting method, known as Tseng’s splitting method, which is computed using
the following procedure:

⎧
⎪⎪⎨

⎪⎪⎩

q1 ∈H
yk = R�

λk
(qk – λk�qk),

qk+1 = yk – λk(�yk – �qk), ∀k ≥ 1,

where � : H → H is monotone and L-Lipschitz operator, � : H → 2H is a multi-valued
operator, and {λk} is a sequence in (0, 1

L ), where L is a Lipschitz constant.

Remark 1.1 Though, Tseng [25] could dispense with the inverse strong monotonicity as-
sumption on �. The limitation of the Tseng’s method proposed above requires the prior
knowledge of the Lipschitz constant of the underlying operator. However, from practical
point of view, the Lipschitz constant in this case is very difficult to compute.

In 2019, Shehu [24] extended the Tseng’s [25] iterative method to the setting of 2-
uniformly convex Banach space which is also uniformly smooth. He established a weak
convergence result with the prior knowledge of the Lipschitz constant.

Very recently, Sunthrayuth et al. [23] extended the result of Shehu [24] to the setting of a
reflexive Banach space. They [23] proposed two different iterative methods that do not re-
quire prior knowledge of the Lipschitz constants for solving MIP and fixed-point problem
for a Bregman relatively nonexpansive mapping. One of their iterative methods uses the
linesearch procedure, which would necessitate numerous additional computations and
further lower the computational cost of their algorithm, while the other one uses a self-
adaptive procedure, which looks more efficient. The method that uses the self-adaptive
step-size is defined below:

Algorithm 1.2 Mann splitting algorithm for solving MIP.
Initialization: Choose λ1 > 0, μ, θ ∈ (0,σ ), where σ is a constant defined in (2.3). Let q1 ∈ E
be arbitrary starting points.
Iterative step:

Step 1: Compute

wk = R�

λk ∇g∗(∇g
(
qk) – λk�

(
qk)).
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Step 2: Compute

zk = ∇g∗(∇g
(
wk) – λk(�

(
wk) – �

(
qk)),

where λk+1 is updated as follows:

λk+1 =

⎧
⎨

⎩

min{ μ‖qk –wk‖
‖�qk –�wk,j‖ ,λk} if �qk 	= �wk ,

λk otherwise.
(1.2)

Step 3: Compute

qk+1 = ∇g∗((1 – αk)∇g
(
zk) + αk∇g

(
Tzk))

Stopping criterion If qk+1 = zk for some positive k, then stop. Otherwise set k := k + 1 and
return to Iterative step .

A weak convergence result was obtained using their iterative algorithm without any
prior knowledge of the Lipschitz constant of the underlying operator.

Inspired by the heavy-ball methods of a two-order time dynamical system, Polyak [21]
and Nestrov [20] proposed the following inertial method:

⎧
⎨

⎩

uk = qk + θ k(qk – qk–1),

qk+1 = uk – λk∇f (uk), ∀k ≥ 1,
(1.3)

where θ k ∈ [0, 1) is simply the inertial and λk is a positive sequence (see [2–4, 19, 28, 31]).
Very recently, Abass et al. [1] proposed the following modified inertial method for ap-

proximating solution of systems of MIP and fixed-point problem for a finite family of
multi-valued Bregman relatively nonexpansive as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk = ∇h∗(∇h(qk) + θk(∇h(qk–1) – ∇h(qk)))

wk = ∇h∗(RN
φ ◦ RN–1

φ ◦ · · · ◦ R1
φ(uk))

yk = ∇h∗(δk,0∇h(wk) +
∑N

r=1 δk,r∇h(zk,r)), zk,r ∈ Srwk

xk+1 = ∇h∗(αk∇h(u) + βk∇h(xk) + γk∇h(yk)),

where {θk} ⊂ [0, 1
2 ], {αk}, {βk}, {φk} and {δk,r} are sequences in (0,1) such that αk +βk +δk = 1.

They established a strong convergence result of their method for solving the aforemen-
tioned problems.

Motivated by the results in [23–25] and results from related literature in this direction,
we develop a new self-adaptive method equipped with an inertial Halpern method for
solving MIP in real Banach space. We establish a strong convergence result for solving
MIP without the knowledge of the Lipschitz constant of the underlying operator. Lastly,
we illustrate few numerical experiments in comparison with other related ones in the lit-
erature. Our result is a further contribution to related results in the literature.

We highlight some of the contributions in this study:
(i) Results from [24, 25] were extended to a more general Banach spaces.
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(ii) Introduction of a self-adaptive procedure, which increase from iteration to iteration
and is independent of the Lipschitz constant of underlying operator, is studied. This
differs from the methods of Shehu [24] and Tseng [25], where the knowledge of
Lipschitz constant is required.

(iii) A strong convergence result desirable to weak convergence result was established
(see [23]).

(iv) The result discussed in [1] is a special of MIP (1.1) if � ≡ 0.
(v) We employ the inertial method as introduced by Polyak [21], which is quite

different from the ones in [1, 29] (i.e. θk(qk–1 – qk)) was changed to θk(qk – qk–1).

2 Preliminaries
In this section, we denote strong and weak convergence by “→” and “⇀”, respectively.

Let K be a nonempty closed and convex subset of a real Banach space X . Let h : X →
(–∞, +∞] be a proper, lower semicontinuous and convex function, then the Fenchel con-
jugate of h, denoted by h∗ : X ∗ → (–∞, +∞] is defined by

h∗(u∗) = sup
{〈

u∗, u
〉
– h(u) : u ∈X

}
, u∗ ∈X ∗.

The domain of h be denoted as dom(h) = {u ∈ X : h(u) < +∞}, thus for any u ∈ intdom(h)
and v ∈X , the right-hand derivative of h at x in the direction of v is defined by

h0(u, v) = lim
t→0+

h(u + tv) – h(u)
t

.

The function h is said to be
(i) Gâteaux differentiable at u if limt→0+ h(u+tv)–h(u)

t exists for any v. In this case, h0(u, v)
coincides with ∇h(u);

(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any u ∈ intdom(h);
(iii) Fréchet differentiable at u, if its limit is attained uniformly in ‖v‖ = 1;
(iv) Uniformly Fréchet differentiable on a subset K of X , if the above limit is attained

uniformly for u ∈ K and ‖v‖ = 1.
Let h : X → (–∞, +∞] be a mapping, then h is said to be:

(i) essentially smooth, if the subdifferential of h denoted as ∂h is both locally bounded
and single-valued on its domain, where
∂h(u) = {w ∈X : h(u) – h(v) ≥ 〈w, v – u〉, v ∈X };

(ii) essentially strictly convex, if (∂h)–1 is locally bounded on its domain and h is strictly
convex on every convex subset of dom ∂h;

(iii) Legendre, if it is both essentially smooth and essentially strictly convex. See [8, 9]
for more details on Legendre functions.

Alternatively, a function h is said to be Legendre if it satisfies the following conditions:
(i) The intdom h is nonempty, h is Gâteaux differentiable on intdom h and

dom∇h = intdom h;
(ii) The intdom h∗ is nonempty, h∗ is Gâteaux differentiable on intdom h∗ and

dom∇h∗ = int dom h.
If Bs := {z ∈ E : ‖z‖ ≤ s} for all s > 0. Then, a function h : X →R is called uniformly convex
on bounded subsets of X , [see pp. 203 and 221] [33] if ρst > 0 for all s, t > 0, where ρs :
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[0, +∞) → [0,∞] is defined by

ρs(t) = inf
x,y∈Bs ,‖x–y‖=t,α∈(0,1)

αh(x) + (1 – α)h(y) – h(α(x) + (1 – α)y)
α(1 – α)

,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of h. The function h is also
said to be uniformly smooth on bounded subsets of X , [33, see p. 221], if limt↓0

σs
t for all

s > 0, where σs : [0, +∞) → [0,∞] is defined by

σs(t) = sup
x∈B,y∈SX ,α∈(0,1)

αh(x) + (1 – α)ty) + (1 – α)h(x – αty) – h(x)
α(1 – α)

,

for all t ≥ 0. The function h is said to be uniformly convex if the function δh : [0, +∞) →
[0, +∞) defined by

δh(t) := sup

{
1
2

h(x) +
1
2

h(y) – h
(

x + y
2

)

: ‖y – x‖ = t
}

,

satisfies limt↓0
δh(t)

t = 0.

Definition 2.1 [10] Let h : X → (–∞, +∞] be a convex and Gâteaux differentiable func-
tion. Then, the function Gh : X ×X → [0, +∞) defined by

Gh(u, v) := h(u) – h(v) –
〈
h∇(v), u – v

〉
(2.1)

is called the Bregman distance with respect to h, where u, v ∈X .

However, the Bregman distance satisfies the following three point identity: for any u ∈
dom(h) and v, z ∈ int dom(h),

Gh(u, v) + Gh(v, z) – Gh(u, z) =
〈∇h(z) – ∇h(v), u – v

〉
. (2.2)

Also the relationship between Gh and ‖.‖ with strong convexity constant σ > 0, i.e.,

Gh(x, y) ≥ σ

2
‖x – y‖2, ∀x ∈ dom(h), y ∈ int

(
dom(h)

)
. (2.3)

Let U : K → int(dom h) be a nonlinear operator. An element p ∈ K is said to be a fixed
point of U if Up = p. We denote by F(U ) fixed point sets of the operator U . In addition, a
point p ∈ K is said to be an asymptotic fixed point of U if K contains a sequence {xk} such
that {xk} ⇀ p and limk→∞ ‖Uxk – xk‖ = 0. We denote by F̂(U ) the asymptotic fixed-point
sets of U .

An operator M : K →X is said to be monotone if
(i) 〈x – y, Mx – My〉 ≥ 0,∀x, y ∈ K .

(ii) L-Lipschitz continuous if there exists a constant L > 0 such that
‖Mx – My‖ ≤ L‖x – y‖,∀x, y ∈ K .

(iii) Bregman quasi-nonexpansive, if F(M) 	= ∅, and

Gh(p, Mx) ≤ Gh(p, x), ∀p ∈ F(M), x ∈ K .
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For a set-valued operator M: X → X ∗, the domain, range and graph are defined as fol-
lows: dom(M) : {u ∈ X : Mx 	= 0}, Ran M :=

⋃{Mu : u ∈ dom(M)} and Gra(M) := {(u, u∗) ∈
X × X∗ : u∗ ∈ Mu}, respectively. An operator M is said to be monotone if for each
(u, u∗), (v, v∗) ∈ Gra(M), we get 〈u – v, u∗ – v∗〉 ≥ 0. A monotone operator M is said to be
maximal, if its graph is not contained in the graph of any other monotone operator on X .
It is known that if h : X → R is Gâteaux differentiable, strictly convex and co-finite, then
M is maximal monotone if and only if Ran(∇h + λM) = X ∗.

Let h : X → (–∞,∞] be Fréchet differentiable function, which is bounded on bounded
subsets of X , and M be a maximal monotone operator, then the resolvent of M for λ > 0
defined by

RM
λ (u) := (∇h + ∇M)–1∇h(u), ∀u ∈X

is a single-valued Bregman quasi-nonexpansive mapping from X onto dom(M) with
F(JM

λ ) = M–1(0).

Definition 2.2 A function h : X →R is called strongly coercive if

lim
‖qk‖→∞

h(qk)
‖qk‖ = ∞.

Lemma 2.3 [12] Let h : X →R be a strongly coercive Bregman function and V be a func-
tion defined by

V
(
u, u∗) = h(u) –

〈
u, u∗〉 + h∗(u∗), x ∈X , u∗ ∈X ∗.

Then the following holds:

Gh
(
u,∇h∗(u∗)) = V

(
u, u∗), for all u ∈X and u∗ ∈X ∗.

V
(
u, u∗) +

〈∇h∗(u∗) – u, v∗〉 ≤ V
(
u, u∗ + v∗) for all u ∈X and u∗, v∗ ∈X ∗.

Lemma 2.4 [12] Let h : X →R a Gâteaux differentiable function which is uniformly con-
vex on bounded subsets of X . Suppose {wk}k∈N and {vk}k∈N are bounded sequences in X .
Then,

lim
k→∞

Gh
(
wk , vk) = 0 ⇒ lim

k→∞
∥
∥vk – wk∥∥ = 0.

Lemma 2.5 [17] Suppose h : X → R is a Gâteaux differentiable function which is uni-
formly convex on bounded subsets of E. If u0 ∈ E and the sequence {Gh(uk , u0)} is bounded,
then the sequence {uk} is also bounded.

Definition 2.6 Let K be a nonempty closed and convex subset of X . A Bregman projec-
tion of x ∈ int(dom h) onto K ⊂ int(dom h) is the unique vector Projh

K (x) ∈ K satisfying

Gh
(
Projh

K (u), u
)

= inf
{

Gh(v, u) : v ∈ K
}

.
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The Bregman projection is characterized by the following identities given in the follow-
ing Lemma:

Lemma 2.7 [26] Let K be a nonempty closed and convex subset of a reflexive Banach space
X and x ∈X . Let h : X →R be a Gâteaux differentiable and totally convex function. Then,

(i) q = Projh
K (u) if and only if 〈∇g(u) – ∇g(q), v – q〉 ≤ 0,∀v ∈ K .

(ii) Gh(v, Projh
K (u)) + Gh(Projh

K (u), u) ≤ Gh(v, u),∀v ∈ K .

Lemma 2.8 [7] Let X be a real Banach space and � : X → X ∗ be a monotone, hemicon-
tinuous and bounded operator. Suppose � : X → X ∗ is a maximal monotone operator.
Then � + � is maximal monotone.

Lemma 2.9 [5] Let {un}, {βn}, and {αn} be sequences in [0,∞) such that

un+1 ≤ un + αn(un – un–1) + βn

for all n ≥ 1,
∑∞

n=1 βn < ∞ and there exists a real number α with 0 ≤ αn ≤ α < 1, for all
n ∈N. Then, the following hold:

(i)
∑

n≥1[un – un–1]+ where t+ = max{0, t};
(ii) there exists u∗ ∈ [0,∞) such that limn→∞ un = u∗.

Lemma 2.10 [27] Let {un} be a sequence of nonnegative real numbers, {αn} be a sequence
of real numbers in (0, 1) such that

∑∞
n=1 αn = ∞, and {vn} be a sequence of real numbers.

Assume that

un+1 ≤ (1 – αn)un + αnvn ∀n ≥ 1.

If lim supk→∞ vnk ≤ 0 for every subsequence {unk } of {un} satisfying the condition

lim inf
k→∞

(unk +1 – unk ) ≥ 0,

then limn→∞ un = 0.

3 Main result
Now, we present a new self-adaptive method for solving resolvent of sum of two monotone
operators. Below are some important assumptions:

Assumption 3.1
(R1) Let X be a real Banach space equipped with its dual space X ∗. Let � : X →X ∗ be

a monotone and L-Lipschitz continuous mapping and � : X → 2X ∗ be a maximal
monotone mapping.

(R2) h : X →R∪ {+∞} is a function which is Legendre, uniformly Fréchet
differentiable, strongly coercive, uniformly convex, ϕ-strongly convex, and
bounded on bounded subsets of X .

(R3) The solution set � := (� + �)–1(0) is nonempty.
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Algorithm 3.2 MIP and its convergence analysis.
Initialization: Given κ1 > 0,σ > 0,ρ > 0, and ω ∈ (0, 1). Let v, q0, q1 ∈ X and ψk be a

sequence in (0,1) such that limk→∞ ψk = 0 and
∑∞

k=1 ψk = ∞ for all k ∈N.
Step 1: Given qk–1, qk , choose σk such that σk ∈ [0, σ̄k], where

σ̄k =

⎧
⎨

⎩

min{σ , πk
φr(‖∇h(qk )–∇h(qk–1)‖) , πk

Gh(qk ,qk–1) }, if qk 	= qk–1,

σ , otherwise.
(3.1)

and {πk} is a sequence of nonnegative numbers such that πk = ◦(ψk), that is
limk→∞ πk

ψk
= 0.

Compute

⎧
⎨

⎩

rk = ∇h∗(∇h(qk) + σk(∇h(qk) – ∇h(qk–1)))

sk = R�
κk

∇h∗(∇h(rk) – κk�(rk))
(3.2)

Step 2: Compute

tk = ∇h∗(∇h(sk) – κk
(
�(sk) – �(rk)

))
, (3.3)

and κk+1 is defined as

κk+1 =

⎧
⎨

⎩

min{κk , {μ((ρGh(sk ,rk )+ 1
ρ Gh(sk ,tk )))

〈sk –tk ,�(sk )–�(rk )〉 }, if 〈sk – tk ,�(sk) – �(rk)〉} 	= 0.

κk , otherwise.
(3.4)

Step 3: Compute

qk+1 = ∇h∗(ψk∇h(v) + (1 – ψk)∇h(tk)
)

(3.5)

Stopping criterion If qk+1 = rk for k ≥ 1, then stop. Otherwise set k := k + 1 and return to
step 1.

Lemma 3.3 Let {qk} be a sequence generated by Algorithm 3.2. Then the sequence {κk} is
nonincreasing and

lim
k→∞

κk = κ ≥ min

{

κ1,
ωϕ

L

}

.

Proof It is obvious from self-adaptive stepsize in step 2 of (3.2) that κk+1 ≤ κk for all k ≥ 1.
If 〈sk – tk ,�(sk) – �(rk)〉 = 0, then {κk} is a constant sequence and thus the conclusion
holds. Otherwise, we have

ω(ρGh(sk , rk) + 1
ρ

Gh(sk , tk))
〈sk – tk ,�(sk) – �(rk)〉 ≥

ωϕ

2 (ρ‖sk – rk‖2 + 1
ρ
‖sk – tk‖2)

‖sk – tk‖‖�(sk) – �(rk)‖
≥ ωϕ‖sk – rk‖‖sk – tk‖

L‖sk – tk‖‖sk – rk‖
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=
ωϕ

L .

Clearly

κk+1 ≥ min

{

κk ,
ωϕ

L

}

.

By induction, we deduce that κk ≥ min{κ1, ωϕ

L }. Thus limk→∞ κk = κ ≥ min{κ1, ωϕ

L }. The
proof completes. �

Lemma 3.4 Given that κ > 0, if sk = rk = qk+1 for some k > 0, then rk ∈ �.

Proof Given that κ > 0, if sk = rk , then rk = R�
kk

∇h∗(∇h(rk) – κk�(rk)). Thus, rk = (∇h +
κk�)–1 ◦ ∇h∗(∇h – κk�)rk , that is ∇h(rk) – κk�(rk), which implies that 0 ∈ (� + �)rk .
Hence, rk ∈ (� + �)–1(0). Since sk = rk and ∇h is injective, we obtain from step 2 of Algo-
rithm (3.2) that tk = rk . Therefore, we conclude that rk ∈ � := (� + �)–1(0). �

Lemma 3.5 Let {rk} be a sequence generated iteratively by (3.2). Then

Gh(u, tk) ≤ Gh(u, rk) –
(

1 –
ωρκk

σk+1

)

Gh(sk , rk) –
(

1 –
ωκk

ρσk+1

)

Gh(sk , tk).

Proof Let u ∈ �, thus by applying the definition of Bregman distance, we deduce that

Gh(u, tk) = Gh
(
u,∇h∗(∇h(sk) – κk

(
�(sk) – �(rk)

)))

= h(u) – h(tk) –
〈
u – tk ,∇h(sk) – κk

(
�(sk) – �(rk)

)〉

= h(u) – h(tk) –
〈
u – tk ,∇h(sk)

〉
+ κk

〈
u – tk ,�(sk) – �(rk)

〉

= h(u) – h(sk) –
〈
u – sk ,∇h(sk)

〉
+

〈
u – tk ,∇h(sk)

〉
+ h(sk) – h(tk)

–
〈
u – tk ,∇h(sk)

〉
+ κk

〈
u – tk ,�(sk) – �(rk)

〉

= h(u) – h(sk) –
〈
u – sk ,∇h(sk)

〉
– h(tk) + h(sk) +

〈
tk – sk ,∇h(sk)

〉

+ κk
〈
u – tk ,�(sk) – �(rk)

〉

= Gh(u, sk) – Gh(tk , sk) + κk
〈
u – tk ,�(sk) – �(rk)

〉
. (3.6)

From (2.2), we get

Gh(u, sk) = Gh(u, rk) – Gh(sk , rk) +
〈
u – sk ,∇h(rk) – ∇h(sk)

〉
. (3.7)

By combining (3.6) and (3.7), we obtain

Gh(u, tk) = Gh(u, rk) – Gh(sk , rk) – Gh(tk , sk) +
〈
u – sk ,∇h(rk) – ∇h(sk)

〉

– κk
〈
u – tk ,�(sk) – �(rk)

〉

= Gh(u, rk) – Gh(sk , rk) – Gh(tk , sk) +
〈
u – sk ,∇h(rk) – ∇h(sk)

〉

+ κk
〈
st – kt ,�(sk) – �(rk)

〉
– κk

〈
sk – u,�(sk) – �(rk)

〉
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= Gh(u, rk) – Gh(sk , rk) – Gh(tk , sk) + κk
〈
sk – tk ,�(sk) – �(rk)

〉

–
〈
sk – u,∇h(rk) – ∇h(sk) – κk

(
�(rk) – �(sk)

)〉
. (3.8)

From the definition of sk , we obtain ∇h(rk) –κk(�(rk)) ∈ ∇h(sk) +κk�(sk). Since � is max-
imal monotone, there exists dk ∈ �(sk) such that ∇h(rk) – κk�(rk) = ∇h(sk) + κkdk , thus it
follows that

dk =
1
κk

(∇h(rk) – ∇h(sk) – κk�(sk)
)
. (3.9)

Using the fact that 0 ∈ (� + �)u and �(sk) + dk ∈ (� + �)sk , it follows from Lemma 2.8
that

〈
sk – u,�(sk) + dk

〉 ≥ 0. (3.10)

By substituting (3.9) and (3.10), we get

1
κk

〈
sk – u,∇h(rk) – ∇h(sk) – κk�(rk) + κk�(sk)

〉 ≥ 0.

That is

〈
sk – u,∇h(rk) – ∇h(sk) – κk

(
�(rk) – �(sk)

)〉 ≥ 0. (3.11)

By combining (3.8) and (3.11), we get

Gh(u, tk) ≤ Gh(u, rk) – Gh(sk , rk) – Gh(tk , sk)

+ κk
〈
sk – tk ,�(sk) – �(rk)

〉

≤ Gh(u, rk) – Gh(sk , rk) – Gh(tk , sk)

+
ωκk

κk+1

(

ρGh(sk , rk) +
1
ρ

Gh(sk , tk)
)

= Gh(u, rk) –
(

1 –
ωρκk

κk+1

)

Gh(sk , rk) –
(

1 –
ωκk

ρκk+1

)

Gh(sk , tk). (3.12)

It is obvious from Lemma 3.3 that

lim
k→∞

(

1 –
ωρκk

κk+1

)

= 1 – ωρ > 0,

and

lim
k→∞

(

1 –
ωκk

ρκk+1

)

= 1 –
ω

ρ
> 0.

Hence, there exists a positive integer N2 > 0 such that

1 –
ωρκk

κk+1
> 0, 1 –

ωκk

ρκk+1
> 0, ∀k ≥ N2.



Abass et al. Fixed Point Theory Algorithms Sci Eng         (2023) 2023:17 Page 11 of 19

Therefore, we conclude from (3.12) that

Gh(u, tk) ≤ Gh(u, rk). (3.13)
�

Lemma 3.6 Suppose {qk} is as defined in (3.2), then the sequences {qk}, {rk}, {sk} and {tk}
are all bounded.

Proof Let u ∈ � and gk = ∇h(qk) + σk(∇h(qk) – ∇h(qk–1)). Then, we can write rk as rk =
∇h∗(gk). Thus

Gh(u, rk) = Gh
(
u,∇h∗(gk)

)

= h(u) – 〈u, gk〉 + h∗(gk)

= h(u) –
〈
u,∇h(qk) + σk

(∇h(qk) – ∇h(qk–1)
)〉

+ h∗(∇h(qk) + σk
(∇h(qk) – ∇h(qk–1)

))

= h(u) –
〈
u,∇h(qk)

〉
+ (1 + σk)h∗(∇h(qk)

)
– σkh∗(∇h(qk–1)

)

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)

–
〈
u,σk

(∇h(qk) – ∇h(qk–1)
)〉

= h(u) –
〈
u,∇h(qk)

〉
+ h∗(∇h(qk)

)
+ σk

(
h∗(∇h(qk)

)
– h∗(∇(qk–1)

))

–
〈
u,σk

(∇h(qk) – ∇h(qk–1)
)〉

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)

= Gh(u, qk) + σk
(
h∗(∇h(qk)

)
– h∗(∇(qk–1)

))
–

〈
u,σk

(∇h(qk) – ∇h(qk–1)
)〉

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)

≤ Gh(u, qk) + σk
〈
qk ,∇h(qk) – ∇(qk–1)

〉
–

〈
u,σk

(∇h(qk) – ∇h(qk–1)
)〉

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)

= Gh(u, qk) + σk
〈
u – qk ,∇h(qk–1) – ∇h(qk)

〉

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)

= Gh(u, qk) + σk
(
Gh(u, qk) – Gh(u, qk–1)

)
+ σkGh(qk , qk–1)

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)
. (3.14)

We deduce from step 3 of (3.2), (3.13), and (3.14) that

Gh(u, qk+1) = Gh
(
u,∇h∗(ψk∇h(v) + (1 – ψk)∇h(tk)

))

≤ ψkGh(u, v) + (1 – ψk)Gh(u, tk)

≤ ψkGh(u, v) + (1 – ψk)Gh(u, rk)

≤ ψGh(u, v) + (1 – ψk)
(
Gh(u, qk)

+ σk
(
Gh(u, qk) – Gh(u, qk–1)

)
+ σkGh(qk , qk–1)
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+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
))

≤ max
{

Gh(u, v), Gh(u, qk) + σk
(
Gh(u, qk) – Gh(u, qk–1)

)
+ σkGh(qk , qk–1)

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)}

.

Suppose Gh(u, v) is the maximum, then the conclusion follows trivially. Otherwise, there
exists k0 ∈ N such that for all k ≥ k0, we have

Gh(u, qk+1) ≤ Gh(u, qk) + σk
(
Gh(u, qk) – Gh(u, qk–1)

)
+ σkGh(qk , qk–1)

+ σk(1 + σk)φr
(∥
∥∇h(qk) – ∇h(qk–1)

∥
∥
)
.

Then by Lemma 2.9 we have that {Gh(u, qk)} convergent. Hence, {Gh(u, qk)} is bounded. It
follows from Lemma 2.5 that {qk} is bounded. Consequently, the sequences {rk}, {sk} and
{tk} are bounded. �

Theorem 3.7 Assume that {ψk} is a sequence in (0, 1),∇h is weakly sequentially continu-
ous on X , and Assumptions (3.2) holds. Then the sequence {qk} generated by (3.2) converges
strongly to an element in �.

Proof Let u ∈ �, then we have from Lemma 2.3, (3.14), and (3.12) that

Gh(u, qk+1) = Vh
(
u,ψk∇h(v) + (1 – ψk)∇h(tk)

)

≤ Vh
(
u,ψk∇h(v) + (1 – ψk)∇h(tk) – ψk

(∇h(tk) – ∇h(u)
))

+ ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉

= Vh
(
u,ψk∇h(u) + (1 – ψk)∇h(tk)

)
+ ψk

〈∇h(v) – ∇h(u), qk+1 – u
〉

≤ ψkGh(u, u) + (1 – ψk)Gh(u, tk) + ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉

= (1 – ψk)Gh(u, tk) + ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉

≤ (1 – ψk)Gh(u, rk) – (1 – ψk)
(

1 –
ωρκk

κk+1

)

Gh(sk , rk)

– (1 – ψk)
(

1 –
ωκk

ρκk+1

)

Gh(sk , tk) + ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉

≤ (1 – ψk)Gh(u, qk) – (1 – ψk)
(

1 –
ωρκk

κk+1

)

Gh(sk , rk)

– (1 – ψk)
(

1 –
ωκk

ρκk+1

)

Gh(sk , tk)

+ ψk
σk

ψk

[(
Gh(u, qk) – Gh(u, qk–1)

)
+ Gh(qk , qk–1)

+ (1 + σk)φr
(‖∇h(qk) – ∇h(qk–1)

)]

+ ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉
(3.15)

≤ (1 – ψk)Gh(u, qk) + ψk
〈∇h(v) – ∇h(u), qk+1 – u

〉

+ ψk
σk

ψk

[(
Gh(u, qk) – Gh(u, qk–1)

)
+ Gh(qk , qk–1)
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+ (1 + σk)φr
(‖∇h(qk) – ∇h(qk–1)

)]
, (3.16)

with Zk = (〈∇h(v) – ∇h(u), qk+1 – u〉 + σk
ψk

[(Gh(u, qk) – Gh(u, qk–1)) + Gh(qk , qk–1) + (1 +
σk)φr(‖∇h(qk) – ∇h(qk–1))]).

Thus

Gh(u, qk+1) ≤ (1 – ψk)Gh(u, qk) + ψkZk . (3.17)

Let ak = Gh(u, qk+1), then (3.16) becomes

qk+1 ≤ (1 – ψk)ak + ψkZk . (3.18)

To establish a strong convergence result, we claim that lim supl→∞ Zkl ≤ 0 whenever exists
a subsequence {akl} of {ak} satisfying

lim inf
l→∞

(akl+1 – akl ) ≥ 0,

Indeed, assume there exists such subsequence, in view of (3.15), we obtain

lim sup
l→∞

[

(1 – ψk)
(

1 –
ωρκkl

κkl+1

)

Gh(skl , rkl ) +
(

1 –
ωκkl

ρκkl+1

)

Gh(skl , tkl )
]

≤ lim sup
l→∞

[
(1 – ψkl )Gh(u, qkl )

– Gh(u, qkl+1 ) + M3ψkl

]

= – lim inf
l→∞

(akl+1 – akl )

≤ 0, (3.19)

where M3 = supl∈N Zkl and thus

lim
l→∞

Gh(skl , rkl ) = 0 = lim
l→∞

Gh(skl , tkl ). (3.20)

By Lemma 2.4, we get

lim
l→∞

‖skl – rkl‖ = 0 = lim
l→∞

‖skl – tkl‖. (3.21)

Observe from step 1 of (3.2) that

∥
∥∇h(rkl ) – ∇h(qkl )

∥
∥ = σkl

∥
∥∇h(qkl ) – ∇h(qkl–1 )

∥
∥

≤ ψkl

σkl

ψkl

∥
∥∇h(qkl ) – ∇h(qkl–1 )

∥
∥ → 0, as l → ∞. (3.22)

Since ∇h∗ is continuous on bounded subsets of X ∗, we obtain

lim
l→∞

‖rkl – qkl‖ = 0. (3.23)
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It is obvious from (3.21) that

lim
l→∞

‖tkl – rkl‖ = 0. (3.24)

Using (3.21), (3.23), and (3.24), we obtain that

lim
l→∞

‖skl – qkl‖ = 0 = lim
l→∞

‖tkl – qkl‖. (3.25)

We deduce from step 3 of (3.2) that

∥
∥∇h(qkl+1) – ∇h(tkl )

∥
∥ ≤ ψkl

∥
∥∇h(v) – ∇h(tkl )

∥
∥ → 0 as l → ∞. (3.26)

Using the fact that ∇h∗ is continuous on bounded subsets of X ∗, we get

lim
l→∞

‖qkl+1 – tkl‖ = 0, (3.27)

which implies from (3.25) that

lim
l→∞

‖qkl+1 – qkl‖ = 0. (3.28)

We next show that lim supl→∞ Zkl ≤ 0. Clearly, it suffices to show that

lim sup
l→∞

〈∇h(v) – ∇h(u), qkl+1 – u
〉 ≤ 0.

Let {qkli
} be a s subsequence of {qkl } such that

lim
j→∞

〈∇h(v) – ∇h(u), qklj +1 – u
〉

= lim sup
l→∞

〈∇h(v) – ∇h(u), qkl+1 – u
〉
.

From the boundedness of the sequence {qkl } is the existence of {qklj
} such that qklj

⇀

x∗ ∈ X . In view of (3.25), there exist subsequences {sklj
} and {tklj

} which converge weakly
to x∗, respectively. Now, to establish that x∗ ∈ (� + �)–1(0), let (μ1,μ2) ∈ Gra(� + �), we
have μ2 – �μ1 ∈ �μ1. From the definition of skl , we observe that

∇h(rkl ) – κklj
�rklj

∈ ∇h(skklj
) + κklj

�sklj
,

which implies

1
κklj

(∇h(rklj
) – ∇h(sklj

) – κklj
�(rklj

)
) ∈ �(sklj

).

Applying the maximal monotonicity of � , we obtain

〈

μ1 – sklj
,μ2 – �μ1 +

1
κklj

(∇h(rklj
) – ∇h(sklj

) – κklj
�(rklj

)
)
〉

≥ 0.



Abass et al. Fixed Point Theory Algorithms Sci Eng         (2023) 2023:17 Page 15 of 19

In addition, by the monotonicity of �, we obtain

〈μ1 – sklj
,μ2〉 ≥

〈

μ1 – sklj
,�μ1 +

1
κklj

(∇h(rklj
) – ∇h(skl ) – κklj

�(rklj
)
)
〉

=
〈
μ1 – sklj

,�μ1 – �(rklj
)
〉
+

1
κklj

〈
μ1 – sklj

,∇h(rklj
) – ∇h(sklj

)
〉

= 〈μ1 – sklj
,�(μ1) – �(sklj

) +
〈
μ1 – sk–lj ,�(sklj

) – �(rklj
)
〉

+
1

kklj

〈
μ1 – sklj

,∇h(rklj
) – ∇h(sklj

)
〉

≥ 〈
μ1 – sklj

,�(sklj
) – �(rklj

)
〉
+

1
kklj

〈
μ1 – sklj

,∇h(rkl ) – ∇h(sklj
)
〉
. (3.29)

From the fact that � is Lipschitz continuous and sklj
⇀ x∗, it follows from (3.21) that

〈
μ1 – x∗,μ2

〉 ≥ 0.

From the monotonicity of � + � , we obtain that 0 ∈ (� + �)x∗, thus x∗ ∈ �. It follows
from Lemma 2.7 and (3.28), that

lim sup
l→∞

〈∇h(v) – ∇h(u), qkl+1 – u
〉

≤ lim sup
l→∞

〈∇h(v) – ∇h(u), qkl+1 – qkl

〉
+ lim sup

l→∞

〈∇h(v) – ∇h(u), qkl – u
〉

= lim
j→∞

〈∇h(v) – ∇h(u), qklj
– u

〉

=
〈∇h(v) – ∇h(u), x∗ – u

〉

≤ 0. (3.30)

By applying (3.30) and Lemma 2.10, we obtain that liml→∞ Gh(u, qkl ) → 0 and l → ∞, thus
liml→∞ ‖qkl – u‖ = 0. Therefore, we conclude that {qk} converges strongly to u ∈ �, where
u = Proj� v. �

If X is a 2-uniformly convex and uniformly smooth Banach space, and h(u) = 1
2‖u‖2,

then Algorithm 3.2 becomes

Algorithm 3.8 MIP and its convergence analysis.
Initialization: Given κ1 > 0,σ > 0,ρ > 0, and ω ∈ (0, 1). Let v, q0, q1 ∈ X and ψk be a se-
quence in (0,1) such that limk→∞ ψk = 0 and

∑∞
k=1 ψk = ∞ for all k ∈ N.

Step 1: Given qk–1, qk , choose σk such that σk ∈ [0,σk], where

σk =

⎧
⎨

⎩

min{σ , πk
‖(qk )–(qk–1)‖ } if ‖(qk) – (qk–1)‖ 	= 0,

σ otherwise.
(3.31)

and {πk} is a sequence of nonnegative numbers such that πk = ◦(ψk), that is
limk→∞ πk

ψk
= 0.
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Compute

⎧
⎨

⎩

rk = J–1(J(qk) + σk(J(qk) – J(qk–1)))

sk = R�
κk

J–1(J–1(rk) – κk�(rk))
(3.32)

Step 2: Compute

tk = J–1(J(sk) – κk
(
�(sk) – �(rk)

)
, (3.33)

and κk+1 is defined as

κk+1 =

⎧
⎨

⎩

min{κk , {μ((ρφ(sk ,rk ))+ 1
ρ φ(sk ,tk ))

〈Jsk –Jtk ,�(sk )–�(rk )〉 }, if 〈Jsk – Jtk ,�(sk) – �(rk)〉} 	= 0.

κk , otherwise.
(3.34)

Step 3: Compute

qk+1 = J–1(ψkJ(v) + (1 – ψk)J(tk)
)

(3.35)

Stopping criterion If qk+1 = rk for k ≥ 1 then stop. Otherwise set k := k + 1 and return to
step 1.

4 Numerical example
In this section, we provide the numerical experiments to illustrate the convergence of the
proposed algorithms and compare with other algorithms.

Example 4.1 This example is taken from [23]. Let X = R
m(m = 2k), and K := {x =

(x1, x2, . . . , xm) ∈ R
m : xi ≥ 0,

∑m
i=1 xi = 1}. Let h : K → R be defined by h(x) =

∑m
i=1 xi ln xi,

then h satisfies the condition of Theorem 3.7 and strongly convex with σ = 1 with re-
spect to �1-norm on K . It follows that ∇h(x) = (1 + ln x1, 1 + ln x2, . . . , 1 + ln xm) and
∇h∗(y) = (ex1–1, ex2–1, . . . , exm–1). Now, define the mapping � : X → X ∗ by �(x) = (2x1 +
1, 0, 2x3 +1, 0 · · · , 0, 2x2k–1 +1, 0) and � : X →X ∗ by �(x) = NK (x), where NK is the normal
cone defined by NK (x) = {p ∈ R

m : 〈p, y – x〉 ≥ 0,∀y ∈ K}. Then, the mapping � is mono-
tone and Lipschitz continuous with a constant 2. The mapping � is maximal monotone.
Thus, R∂iK

κk (x) = Projh
K x. From [15, Remark 4] the Bregman projection onto K is defined as

Projh
K (x) =

(
x1ea1

∑m
i=1 xieai

,
x2ea2

∑m
i=1 xieai

, . . . ,
xmeam

∑m
i=1 xieai

)

a ∈R
m and x int(K).

For this example, we choose πk = 1
k1.2 , ψk = 1

k+1 , μ = 0.5, ρ = 0.4, σ = 0.7 and κ1 = 1.7. The
starting points x0 and x1 are chosen randomly in R

m. We compare our Algorithm 3.2 with
Algorithm 2 in Sunthrayuth et al. [23]. The result of this experiment is given in Fig. 1 with
the m = 10, 20, 40, 50.

The next example is given in �p spaces (1 ≤ p < ∞) with p 	= 2. It is known that �∗
p is

isomorphic to lq if 1
p + 1

q = 1. It is known that �p is a reflexive Banach space. In this case,
we set h(x) = 1

2‖x‖2. Thus, we obtain that ∇h(x) = x = ∇h∗(x).
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Figure 1 Top left:m = 10; Top right:m = 20; Bottom left:m = 40; Bottom right:m = 50

Example 4.2 Let X = �3(R) be a Banach space defined by �3(R) = {x = (x1, x2, x3, . . .), xi ∈
R : (

∑∞
i=1 |xi|3) 1

3 }, with norm ‖ · ‖�3 : �3 → N defined by �3(x) = (
∑∞

i=1 |xi|3) 1
3 for all x =

(x1, x2, x3, . . .) ∈ �3. Let � : �3 → �3 be given by �(x) = 3x + (1, 1, 1, 0, 0, 0, . . .). It is easy to
see that � is monotone. Also, define the mapping � : �3 → �3 by �(x) = 7x. By direct
calculation, we obtain for κk > 0, that

sk =
(∇h(rk) – κk�

)–1∇h ◦ ∇h∗(∇h(rk) – κk�(rk)
)

=
1 – 3κk

1 + 7κk
rk –

κk

1 + 7κk
(1, 1, 1, 0, 0, 0, . . .).

We choose the parameters as in the previous example with comparison to Algorithm 2
of Sunthrayuth et al. [23]. The report of this example is given in Fig. 2, which shows the
competitive advantage of our method in terms of number of iterations to convergence.
The stopping criterion in both examples is given as ‖xn+1 – xn‖ ≤ ε, where ε = 10–4.

(Case 1) x0 = [1, 1, 1, 0, 0, 0, . . .] and x1 = [2, 2, 2, 1, 1, 1, . . .],
(Case 2) x0 = [1, 1, 0, 0, . . .] and x1 = [3, 3, 0, 0, 0, 0, . . .].
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Figure 2 Left: Case 1; Right: Case 2

5 Conclusions
In our article, we propose a new self-adaptive step-size and an inertial Tseng method for
solving monotone inclusion problem using the Bregman distance approach in reflexive
Banach space. Using an inertial Halpern method, we proved that our proposed method
converges strongly to an element in the solution set. Lastly, we show through our exper-
iment that our new step size for the proposed algorithm is more efficient than the result
of [23].
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