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Abstract
In this paper, we prove strong convergence theorem of the general inertial
Mann–Halpern algorithm for nonexpansive mappings in the setting of Hilbert spaces.
We also prove weak convergence theorem of the general inertial Mann algorithm for
k-strict pseudo-contractive mappings in the setting of Hilbert spaces. These
convergence results extend and generalize some existing results in the literature.
Finally, we provide examples to verify our main results.
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1 Introduction
Let D be a nonempty closed convex subset of a Hilbert space H. A self-mapping S on D is
said to be a k-strict pseudo-contractive mapping if there exists k ∈ [0, 1) such that

‖Sx – Sy‖2 ≤ ‖x – y‖2 + k
∥
∥(I – S)x – (I – S)y

∥
∥

2

for all x, y ∈ D. The set of fixed points of the mapping S : D → D is defined by Fix(S) = {y ∈
D : Sy = y}. S is nonexpansive if and only if S is a 0-strict pseudo-contractive mapping.

The development of various iterative methods for finding the approximate solution of
nonlinear equations has become an active area of research in many scientific fields, and
as a result various iteration methods for fixed point problems have been developed (see
[3–6]). One of the most popular methods is the Mann algorithm [16], which is described
as follows:

xn+1 = αnxn + (1 – αn)Txn, (1)

where {αn} ⊂ [0, 1) satisfying the following conditions: (i) limn→∞ αn = 0; (b)
∑∞

n=1 αn = ∞,
where T is a nonexpansive mapping. But the convergence rate of the Mann algorithm is
slow in general. Due to the fact that fast convergence is required in many practical ap-
plications (see [9, 12, 13, 17]), many researchers constructed fast iterative algorithms by
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using inertial extrapolation methods (see [2, 4, 7, 8, 11, 14, 15, 18–20]). Specifically, Mainge
[15] developed the following algorithm by employing the Mann algorithm together with
inertial extrapolation method:

⎧

⎨

⎩

wn = xn + αn(xn – xn–1),

xn+1 = wn + λn[Twn – wn],
(2)

for each n ≥ 1. He showed weak convergence of the iterative sequence {xn} to a fixed point
of a nonexpansive mapping T under the conditions listed below:

(A1) αn ∈ [0,α] for any α ∈ [0, 1); (A2)
∑∞

n=1 αn‖xn – xn–1‖2 < ∞; (A3) 0 < infn≥1 λn ≤
supn≥1 λn < 1. In 2018, Dong et al. [11] introduced the general inertial Mann algorithm for
a nonexpansive mapping T , which is shown below:

⎧

⎪⎪⎨

⎪⎪⎩

yn = xn + αn(xn – xn–1),

zn = xn + βn(xn – xn–1),

xn+1 = (1 – λn)yn + λnTzn,

(3)

for each n ≥ 1, where {αn}, {βn}, and λn satisfy:
(D1) {αn} ⊂ [0,α] and {βn} ⊂ [0,β] are nondecreasing with α1 = β1 = 0 and α,β ∈ [0, 1);

(D2) For any λ,σ , δ > 0, δ > αξ (1+ξ )+ασ

1–α2 , 0 < λ ≤ λn ≤ δ–α[ξ (1+ξ )+αδ+σ ]
δ[1+ξ (1+ξ )+αδ+σ ] , where ξ = max{α,β}.

Inspired by the above work, in this paper, we extend the works of Dong et al. [11] for
k-strict pseudo-contractive mappings. Moreover, we combine their algorithm with the
Halpern algorithm to obtain strong convergence result for nonexpansive mappings.

The structure of this paper is as follows: In Sect. 2, we present some notations and lem-
mas that will be used in the main results. In Sect. 3, we prove strong convergence result
by combining the general inertial Mann algorithm with the Halpern algorithm for nonex-
pansive mappings. In Sect. 4, we prove the weak convergence of the general inertial Mann
algorithm for k-strict pseudo-contractive mappings. In the final section, conclusions are
provided.

2 Preliminaries
In this section, we provide some useful notations and lemmas that will be used in the
sequel.

We use the notation:
1. “⇀” for weak convergence and
2. “→” for strong convergence.

Lemma 1 [1] Let {ψn}, {δn}, and {αn} be sequences in [0,∞) satisfying ψn+1 ≤ ψn +αn(ψn –
ψn–1) + δn for each n ≥ 1, where

∑∞
n=1 δn < ∞. Moreover, suppose there exists a real number

α with 0 ≤ αn ≤ α < 1 for all n ∈N. Then the following hold:
1.

∑

n≥1[ψn – ψn–1]+ < ∞, where [t]+ = max{t, 0};
2. There exists ψ∗ ∈ [0,∞) such that limn→∞ ψn = ψ∗.

Lemma 2 [3] Let D be a nonempty closed convex subset of H and S : D → H be a nonex-
pansive mapping. Let {xn} be a sequence in D such that xn ⇀ x ∈ H and Sxn – xn → 0 as
n → ∞. Then x ∈ Fix(S).
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Lemma 3 [3] Let D be a nonempty subset of H and {xn} be a sequence in H, then the
sequence {xn} converges weakly to a point in D if for all x ∈ D, limn→∞ ‖xn – x‖ exists and
every sequential weak cluster point of {xn} is in D.

Lemma 4 [10] Suppose that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – γn)sn + γn�n and sn+1 ≤ sn – μn + ϕn

for all n ≥ 0, where {γn} is a sequence in (0, 1), {μn} is a sequence of nonnegative real
numbers, {�n} and {ϕn} are real sequences such that (i)

∑∞
n=0 γn = ∞; (ii) limn→∞ ϕn = 0;

(iii) limk→∞ μnk = 0 implies lim supk→∞ �nk ≤ 0 for any subsequence {nk} of {n}. Then
limn→∞ sn = 0.

3 General inertial Mann–Halpern algorithm for nonexpansive mappings
In this section, we introduce a general inertial Mann–Halpern algorithm and prove its
strong convergence under some assumptions.

Theorem 1 Assume that D is a nonempty closed and convex subset of a Hilbert space
H and S : D → H is a nonexpansive mapping with at least one fixed point. Given a fixed
element v in D and sequences {θn}, {φn} in [0, 1) and {ψn}, {γn} in (0, 1). In addition, suppose
the following conditions hold:

(H1)
∑∞

n=0 γn = ∞ and limn→∞ γn = 0;
(H2) limn→∞ θn

γn
‖xn – xn–1‖ = limn→∞ φn

γn
‖xn – xn–1‖ = 0;

(H3) infψn
n > 0, supψn

n < 1.
Let x–1, x0 ∈ C be arbitrary. Define a sequence {xn} by the following algorithm:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = xn + θn(xn – xn–1),

zn = xn + φn(xn – xn–1),

wn = (1 – ψn)yn + ψnSzn,

xn+1 = γnv + (1 – γn)wn.

(4)

Then the iterative sequence {xn} defined by (4) converges strongly to q = PFix(S)v.

Proof Take arbitrary q ∈ Fix(S). Using (4), we have

‖xn+1 – q‖ ≤γn‖v – q‖ + (1 – γn)‖wn – q‖
≤γn‖v – q‖ + (1 – γn)

[

(1 – ψn)‖yn – q‖ + ψn‖Szn – q‖]

≤γn‖v – q‖ + (1 – γn)
[

(1 – ψn)‖yn – q‖ + ψn‖zn – q‖].

(5)

Again from (4), we get

‖yn – q‖ ≤ ‖xn – q‖ + θn‖xn – xn–1‖. (6)

Similarly, we get

‖zn – q‖ ≤ ‖xn – q‖ + φn‖xn – xn–1‖. (7)
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Substituting (6) and (7) into (5), we get

‖xn+1 – q‖ ≤ γn‖v – q‖ + (1 – γn)‖xn – q‖ + θn‖xn – xn–1‖
+ φn‖xn – xn–1‖.

(8)

Let M = 3 max{‖v – q‖, supn≥1
θn
γn

‖xn – xn–1‖, supn≥1
φn
γn

‖xn – xn–1‖}. Then (8) reduces to

‖xn+1 – q‖ ≤ (1 – γn)‖xn – q‖ + γnM

≤ max
{‖xn – q‖, M

}

...

≤ max
{‖x0 – q‖, M

}

.

(9)

Hence {xn} is bounded, and consequently {yn}, {zn}, and {wn} are bounded.
From (4), we get

‖xn+1 – q‖2 =
∥
∥(1 – γn)(wn – q) + γn(v – q)

∥
∥

2

≤ (1 – γn)2‖wn – q‖2 + 2γn〈v – q, xn+1 – q〉
≤ (1 – γn)‖wn – q‖2 + 2γn〈v – q, xn+1 – q〉.

(10)

Again from (4), we get

‖wn – q‖2 =
∥
∥(1 – ψn)(yn – q) + ψn(Szn – q)

∥
∥

2

≤ (1 – ψn)‖yn – q‖2 + ψn‖Szn – q‖2

– ψn(1 – ψn)‖Szn – yn‖2

≤ (1 – ψn)‖yn – q‖2 + ψn‖zn – q‖2

– ψn(1 – ψn)‖Szn – yn‖2.

(11)

Substituting (11) into (10), we get

‖xn+1 – q‖2 ≤(1 – γn)(1 – ψn)‖yn – q‖2 + (1 – γn)ψn‖zn – q‖2

– (1 – γn)ψn(1 – ψn)‖Szn – yn‖2

+ 2γn〈v – q, xn+1 – q〉.
(12)

Again from (4), we obtain

‖yn – q‖2 =
∥
∥xn – q + θn(xn – xn–1)

∥
∥

2

≤ ∥
∥xn – q

∥
∥

2 + 2θn〈xn – xn–1, yn – q〉
≤ ∥

∥xn – q
∥
∥

2 + 2θn‖xn – xn–1‖‖yn – q‖.

(13)
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Similarly, we get

‖zn – q‖2 ≤∥
∥xn – q

∥
∥

2 + 2φn〈xn – xn–1, zn – q〉
≤∥

∥xn – q
∥
∥

2 + 2φn‖xn – xn–1‖‖zn – q‖.
(14)

Substituting (13) and (14) into (12), we get

‖xn+1 – q‖2 ≤ (1 – γn)‖xn – q‖2 + 2θn‖xn – xn–1‖‖yn – q‖
+ 2φn‖xn – xn–1‖‖zn – q‖ – ψn(1 – ψn)(1 – γn)‖Szn – yn‖2

+ 2γn〈v – q, xn+1 – q〉.
(15)

Now, letting

sn = ‖xn – q‖2,

�n = 2
θn

γn
‖xn – xn–1‖‖yn – q‖ + 2

φn

γn
‖xn – xn–1‖‖zn – q‖ + 2〈v – q, xn+1 – q〉,

ϕn = γn�n, and

μn = ψn(1 – ψn)(1 – γn)‖Szn – yn‖2,

(15) reduces to

sn+1 ≤ (1 – γn)sn + γn�n and sn+1 ≤ sn – μn + ϕn.

We know that {γn} ⊂ (0, 1), and from conditions (H1) and (H2), we see that
∑∞

n=0 γn = ∞
and limn→∞ ϕn = 0.

Now, if we first assume that limk→∞ μnk = 0 and then show that lim supk→∞ �nk ≤ 0 for
any subsequence {nk} of {n}, then by Lemma 4 we can conclude that limn→∞ sn = 0. For
this reason, assume limk→∞ μnk = 0. Using this assumption together with condition (H3),
we obtain

lim
k→∞

‖Sznk – ynk ‖ = 0. (16)

It follows that

‖Sznk – znk ‖ ≤ ‖Sznk – ynk ‖ + ‖ynk – znk ‖
= ‖Sznk – ynk ‖ + |θn – φn|‖xnk – xnk–1‖.

Now, applying (16) and (H2), we obtain

lim
k→∞

‖Sznk – znk ‖ = 0.

Since {xnk } is bounded, there exists a subsequence {xnkj
} of {xnk } such that xnkj

⇀ x̃ as
j → ∞ and

lim sup
k→∞

〈v – q, xnk – q〉 = lim
j→∞〈v – q, xnkj

– q〉.
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Since ‖znk – xnk ‖ = φn‖xnk – xnk–1‖, we can see that

lim
k→∞

‖znk – xnk ‖ = 0.

Hence, we have znk ⇀ x̃ as j → ∞. So, applying Lemma 2, we get x̃ ∈ Fix(S).
Combining the projection property and q = pFix(S)v, it follows that

lim sup
k→∞

〈v – q, xnk – q〉 = lim
j→∞〈v – q, xnkj

– q〉 = 〈v – q, x̃ – q〉 ≤ 0. (17)

From (4), we see that

‖wnk – xnk ‖ ≤ (1 – ψnk )‖ynk – xnk ‖ + ψnk ‖Sznk – xnk ‖
≤ (1 – ψnk )‖ynk – xnk ‖ + ψnk

[‖Sznk – ynk ‖ + ‖ynk – xnk ‖
]

= ‖ynk – xnk ‖ + ψnk ‖Sznk – ynk ‖,

which implies that

lim
k→∞

‖wnk – xnk ‖ = 0.

Again from (4), we get

‖xnk+1 – xnk ‖ ≤ γn‖v – xnk ‖ + (1 – γn)‖wnk – xnk ‖,

which implies that

lim
k→∞

‖xnk+1 – xnk ‖ = 0. (18)

Combining (17) and (18), we conclude that

lim sup
k→∞

〈v – q, xnk+1 – q〉 ≤ 0,

and taking condition (H2) into account, we conclude that lim supk→∞ �nk ≤ 0 for any sub-
sequence {nk} of {n}. As a result, we have limn→∞ sn = 0 by means of Lemma 4, and hence
xn converges strongly to q as n → ∞. �

Next, we derive the following corollary from Theorem 1 by putting θn = φn in (4).

Corollary Assume that D is a nonempty closed and convex subset of a Hilbert space H and
S : D →H is a nonexpansive mapping with at least one fixed point. Given a fixed element v
in D and sequences {θn} in [0, 1) and {ψn} , {γn} in (0, 1). In addition, suppose the following
conditions hold:

(H1)
∑∞

n=0 γn = ∞ and limn→∞ γn = 0;
(H2) limn→∞ θn

γn
‖xn – xn–1‖ = 0;

(H3) infψn
n > 0, supψn

n < 1.
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Let x–1, x0 ∈ C be arbitrary. Define a sequence {xn} by the following algorithm:

⎧

⎪⎪⎨

⎪⎪⎩

yn = xn + θn(xn – xn–1),

wn = (1 – ψn)yn + ψnSyn,

xn+1 = γnv + (1 – γn)wn.

(19)

Then the iterative sequence {xn} defined by (19) converges strongly to q = PFix(S)v.

Remark We can also derive other three corollaries by by considering three cases (that
is, Case 1: when θn = 0 and φn �= 0, Case 2: when φn = 0 and θn �= 0, and Case 3: when
θn = φn = 0).

Now, we illustrate Theorem 1 using the following examples.

Let the projection of v onto Fix(S), that is, PFix(S)v be the Euclidean projection.

Example 1 Let S : R →R be defined as Sx = – 1
2 x, which is a nonexpansive mapping. Take

v = 0, ψn = 1
2 , θn = 1

5 , φn = 2
5 , and γn = 3

4 , algorithm (4) becomes

xn+1 =
(

1
4

)2n–2

x1,

which goes to 0 = PFix(S)v.

Example 2 Let S : R → R be given by Sx = – 1
2 x + 1, which is a nonexpansive mapping.

Take v = 4
3 , ψn = 2

3 , θn = φn = 4
5 , and γn = 1

n+1 , algorithm (4) becomes

xn+1 =
1

n + 2
+

2
3

,

which goes to 2
3 = PFix(S)v.

4 General inertial Mann algorithm for k-strict pseudo-contractive mappings
In this section, we study the weak convergence of the general inertial Mann algorithm for
k-strict pseudo-contractive mappings under the conditions (E1)–(E5).

Theorem 2 Suppose that S : H →H is a k-strict pseudo-contractive mapping with at least
one fixed point. Suppose that the following conditions hold:

(E1) {θn} ⊂ [0, θ ] and {φn} ⊂ [0,φ] are nondecreasing with θ1 = φ1 = 0 and θ ,φ ∈ [0, 1);
(E2) For any λ, ξ ,ψ > 0,

λ >
θ [η(1 + η) + θξ ]

(1 – k) – θ2 , 1 – k �= θ2,

0 < ψ ≤ ψn ≤ λ(1 – k) – θ [η(1 + η) + θλ + ξ ]
λ[1 + η(1 + η) + θλ + ξ ]

,

where η = max{θ ,φ},
(E3) k ≤ 1 – ψn,
(E4) {Szn – zn} is bounded,
(E5)

∑∞
n=1 θn‖xn – xn–1‖ < ∞.
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Let x–1, x0 ∈ C be arbitrary. Define a sequence {xn} by the following algorithm:

⎧

⎪⎪⎨

⎪⎪⎩

yn = xn + θn(xn – xn–1),

zn = xn + φn(xn – xn–1),

xn+1 = (1 – ψn)yn + ψnSzn.

(20)

Then the sequence {xn} generated by the general Mann algorithm (20) converges weakly to
a point of Fix(S).

Proof Take arbitrary q ∈ Fix(S). From (20), it follows that

‖xn+1 – q‖2 =
∥
∥(1 – ψn)(yn – q) + ψn(Szn – q)

∥
∥

= (1 – ψn)‖yn – q‖2 + ψn‖Szn – q‖2

– ψn(1 – ψn)‖Szn – yn‖2

= (1 – ψn)‖yn – q‖2 + ψn
[‖zn – q‖2 + k‖zn – Szn‖2]

– ψn(1 – ψn)‖Szn – yn‖2.

(21)

Again using (20), we get

‖yn – q‖2 =
∥
∥(1 + θn)xn – θn(xn–1 – q)

∥
∥

2

= (1 + θn)‖xn – q‖2 – θn‖xn–1 – q‖2

+ θn(1 + θn)‖xn – xn–1‖2.

(22)

Similarly, we have

‖zn – q‖2 = (1 + φn)‖xn – q‖2 – φn‖xn–1 – q‖2

+ φn(1 + φn)‖xn – xn–1‖2.
(23)

Substituting (22) and (23) into (21), we get

‖xn+1 – q‖2 – (1 + �n)‖xn – q‖2 + �n‖xn–1 – q‖2

≤ kψn‖Szn – zn‖2 – ψn(1 – ψn)‖Szn – yn‖2

+
[

(1 – ψn)θn(1 + θn) + ψnφn(1 + φn)
]‖xn – xn–1‖2,

(24)

where �n = θn(1 – ψn) + φnψn.
Observe that

‖Szn – zn‖2 = ‖Szn – yn + yn – zn‖2

≤ ‖Szn – yn‖2 + 2〈Szn – zn, yn – zn〉
≤ ‖Szn – yn‖2 + 2θn‖xn – xn–1‖‖Szn – zn‖.

(25)
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Substituting (25) into (24) and rearranging, we get

‖xn+1 – q‖2 – (1 + �n)‖xn – q‖2 + �n‖xn–1 – q‖2

≤ [

(1 – ψn)θn(1 + θn) + ψnφn(1 + φn)
]‖xn – xn–1‖2

+ ψn
[

k – (1 – ψn)
]‖Szn – yn‖2 + 2kψnθn‖xn – xn–1‖‖Szn – zn‖.

(26)

Since ψn ∈ (0, 1) and using (E1) and (E2), we see that �n ⊂ [0,η) is nondecreasing with
�1 = 0, where η = max{θ ,φ}.

Again from (20), we get

‖Szn – yn‖2 =
∥
∥
∥
∥

1
ψn

(xn+1 – xn) +
θn

ψn
(xn–1 – xn)

∥
∥
∥
∥

2

=
1

ψ2
n
‖xn+1 – xn‖2 +

θ2
n

ψ2
n
‖xn–1 – xn‖2

+ 2
θn

ψ2
n
〈xn+1 – xn, xn–1 – xn〉

≥ 1
ψ2

n
‖xn+1 – xn‖2 +

θ2
n

ψ2
n
‖xn–1 – xn‖2

+
θn

ψ2
n

(

–νn‖xn+1 – xn‖2 –
1
νn

‖xn–1 – xn‖2
)

,

(27)

where νn = 1
θn+λψn

.
Now, substituting (27) into (26), we get

‖xn+1 – q‖2 – (1 + �n)‖xn – q‖2 + �n‖xn–1 – q‖2

≤ [k – (1 – ψn)](1 – νnθn)
ψn

‖xn+1 – xn‖2 + ζn‖xn – xn–1‖2

+ θn‖xn – xn–1‖πn,

(28)

where πn = 2kψn‖Szn – zn‖2 and

ζn = (1 – ψn)θn(1 + θn) + ψnφn(1 + φn) + θn
[

k – (1 – ψn)
]νnθn – 1

νnψn
≥ 0, (29)

applying condition (E3) and the fact that νnθn < 1.
We can also observe that πn is bounded taking into account condition (E4).
Again, taking into account the choice of νn, we have

λ =
1 – νnθn

νnψn
,

and from (29), we have

ζn = (1 – ψn)θn(1 + θn) + ψnφn(1 + φn) – θn
[

k – (1 – ψn)
]

λ ≤ η(1 + η) + θλ. (30)



Gebregiorgis and Kumam Fixed Point Theory Algorithms Sci Eng         (2023) 2023:18 Page 10 of 14

Next, we adapted some techniques from [2, 5] to show

∞
∑

n=1

‖xn+1 – xn‖2 < ∞.

So, first, we let

σn = ‖xn – q‖2

for all n ≥ 1 and

τn = σn – �nσn–1 + ζn‖xn – xn–1‖2 + θn‖xn – xn–1‖πn.

Using the monotonicity of {�n} and the fact that σn ≥ 0 for all n ∈ N, we have

τn+1 – τn = σn+1 – (1 + �n)σn + �nσn–1 + ζn+1‖xn+1 – xn‖2 – ζn‖xn – xn–1‖2

+ θn+1‖xn+1 – xn‖πn+1 – θn‖xn – xn–1‖πn.
(31)

Rearranging (28), we have

σn+1 – (1 + �n)σn + �nσn–1 – ζn‖xn – xn–1‖2 – θn‖xn – xn–1‖πn

≤ [k – (1 – ψn)](1 – νnθn)
ψn

‖xn+1 – xn‖2.
(32)

Combining (31) and (32), we get

τn+1 – τn ≤
(

[k – (1 – ψn)](1 – νnθn)
ψn

+ ζn+1

)

‖xn+1 – xn‖2

+ θn+1‖xn+1 – xn‖πn+1.
(33)

Now, we claim that

[k – (1 – ψn)](1 – νnθn)
ψn

+ ζn+1 ≤ –ξ (34)

for each n ∈ N. In other words, we are claiming that

(θn + λψn)(ζn+1 + ξ ) + λ(k + ψn) ≤ λ

holds taking into account the upper bounds of ζn+1 and ψn, and after substituting the
expression for νn. Indeed, upon substitution of the upper bounds of these sequences and
employing (30), we get

(θn + λψn)(ζn+1 + ξ ) + λ(k + ψn)

≤ (θn + λψn)
(

η(1 + η) + θλ + ξ
)

+ λ(k + ψn)

≤ λ.

(35)
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Combining inequalities (33) and (34), we get

τn+1 – τn ≤ –ξ‖xn+1 – xn‖2 + θn+1‖xn+1 – xn‖πn+1. (36)

Since πn is bounded, there exists M1 > 0 such that πn ≤ M1 for all n ≥ 1.

τn+1 – τn ≤ – ξ‖xn+1 – xn‖2 + θn+1‖xn+1 – xn‖πn+1

≤ – ξ‖xn+1 – xn‖2 + θn+1‖xn+1 – xn‖M1

≤ θn+1‖xn+1 – xn‖M1.

(37)

Taking the summation on both sides of inequality (37), we get

τn+1 – τ1 ≤ M2, (38)

where M2 = M1
∑∞

n=2 θn‖xn – xn–1‖ < ∞ using condition (E5).
Rearranging (28), we have

‖xn+1 – q‖2 – �n‖xn – q‖2 –
[k – (1 – ψn)](νnθn – 1)

ψn
‖xn+1 – xn‖2

≤ ‖xn – q‖2 – �n‖xn–1 – q‖2 + ζn‖xn – xn–1‖2

+ θn‖xn – xn–1‖πn = τn.

(39)

From (39), we get σn+1 – �nσn ≤ τn.
Now, since �n is bounded and nondecreasing, we have

σn+1 – ησn ≤ τn. (40)

Combining inequalities (38) and (40), we obtain

σn+1 – ησn ≤ τn ≤ M2 + τ1, (41)

which implies that

σn ≤ M2 + τ1 + ησn–1.

From this proceeding inductively, we derive that

σn ≤ ηnσ0 +
M2 + τ1

1 – η
(42)

for each n ≥ 1, where τ1 = σ1 ≥ 0 (due to the relation �1 = θ1 = φ1 = 0).
Using (40), we have

–τn ≤ –σn+1 + ησn ≤ ησn,
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which implies that

–τn+1 ≤ ησn+1 ≤ η

[

ηn+1σ0 +
M2 + τ1

1 – η

]

. (43)

Using (37), we see that

ξ‖xn+1 – xn‖2 ≤ τn – τn+1 + θn+1‖xn+1 – xn‖M1.

It follows that

∞
∑

k=1

ξ‖xn+1 – xn‖2 ≤
( ∞

∑

k=1

(τn+1 – τn)

)

+ M2 ≤ τ1 – τn+1 + M2. (44)

Now, using (43) and (44), we get

ξ

∞
∑

k=1

‖xn+1 – xn‖2 ≤ τ1 – τn+1 + M2

≤ τ1 + η

[

ηn+1σ0 +
M2 + τ1

1 – η

]

+ M2,

(45)

which implies

∞
∑

k=1

‖xn+1 – xn‖2 < ∞. (46)

Thus, we have

lim
n→∞‖xn+1 – xn‖ = 0. (47)

From (20) and (47), we see that

‖yn – xn+1‖ ≤ ‖xn – xn+1‖ + θn‖xn – xn–1‖,

which in turn implies that

lim
n→∞‖yn – xn+1‖ = 0. (48)

Similarly, we have

lim
n→∞‖zn – xn+1‖ = 0. (49)

Now, using (20), (48), and (49), we have

‖Szn – zn‖ ≤ ‖Szn – yn‖ + ‖yn – zn‖

≤ 1
ψ

‖xn+1 – yn‖ +
(‖yn – xn+1‖ + ‖xn+1 – zn‖

)

,
(50)
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which implies that

lim
n→∞‖Szn – zn‖ = 0. (51)

Using (E4), (28), and (30), we see that

σn+1 ≤ σn + �n(σn – σn–1) + Γn,

where �n ⊂ [0,η) is a nondecreasing sequence and Γn = θn‖xn – xn–1‖M1 + [η(1 + η) +
θλ]‖xn+1 – xn‖2.

Using (E5) and (46), we also see that
∑∞

n=1 �n < ∞. Hence all the conditions of Lemma 1
are satisfied and therefore limn→∞ ‖xn – q‖ exists which in turn implies that {xn} is
bounded.

Now, let x be a sequential weak cluster point of {xn}, that is, {xn} has a subsequence
{xnk } which converges weakly to x. Since limn→∞ ‖zn – xn‖ = 0, it follows that znk ⇀ x as
k → ∞. Furthermore, we obtained that ‖Szn – zn‖ → 0 as k → ∞ and hence x ∈ Fix(S) by
Lemma 2. Applying now Lemma 3, we conclude that the sequence {xn} converges weakly
to a point x in Fix(S). �

Remark We can drive a corollary of Theorem 2 by putting θn = 0 in (20). Consequently,
some of the conditions imposed can be avoided.

Now, we provide an example in support of Theorem 2.

Example 3 The mapping S : R → R defined by Sx = –2x is a 1
3 -strict pseudo-contractive

mapping. Taking ψn = 0.5, θn = 0.9, and φn = 0.45, algorithm (3) becomes

xn+1 =
(

–
1
2

)n–1

x1,

which goes to 0 = Fix(S) swinging around it.

5 Conclusions
In this study, we established and proved a strong convergence theorem by combining the
general inertial Mann algorithm [11] with the Halpern algorithm in the setting of Hilbert
spaces. We also extended the works of Dong et al. [11] by using a more general mapping,
that is, a k-strict pseudo-contractive mapping in the setting of a Hilbert space. We also
verified the convergence of our algorithms by using examples.
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