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Abstract
In this paper, we introduce a new iterative forward–backward splitting algorithm with
errors for solving the split monotone variational inclusion problem of the sum of two
monotone operators in real Hilbert spaces. We suggest and analyze this method
under some mild appropriate conditions imposed on the parameters such that
another strong convergence theorem for this problem is obtained. We also apply our
main result to image-feature extraction with the multiple-image blends problem, the
split minimization problem, and the convex minimization problem, and provide
numerical experiments to illustrate the convergence behavior and show the
effectiveness of the sequence constructed by the inertial technique.
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1 Introduction
Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear operator.
Let f1 : H1 → H1 and f2 : H2 → H2 be two ψ1 and ψ2 inverse strongly monotone map-
pings, respectively, and B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multivalued maximal
monotone operators. The split monotone variational inclusion problem (SMVIP) is a fun-
damental problem in optimization theory, it can be applied to solve problems in many
areas of science and applied science, engineering, economics, and medicine [1–9] such as
image processing, machine learning, and modeling intensity-modulated radiation theory
treatment planning [10–15], which is to find x∗ ∈ H1 such that

0 ∈ f1
(
x∗) + B1

(
x∗) (1.1)

and such that

y∗ = Ax∗ ∈ H2 solves 0 ∈ f2
(
y∗) + B2

(
y∗), (1.2)
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and we will denote � the solution set of (1.1) and (1.2). That is

� =
{

x ∈ H1 : x solves (1.1) and y = Ax solves (1.2)
}

.

To solve SMVIP via the fixed-point theory, for λ > 0, we define the mappings J f1,B1
λ :

H1 → H1 and J f2,B2
λ : H2 → H2 as follows:

J f1,B1
λ = (I + λB1)–1
︸ ︷︷ ︸
backward step

(I – λf1)
︸ ︷︷ ︸

forward step

= JB1
λ (I – λf1)

and

J f2,B2
λ = (I + λB2)–1(I – λf2) = JB2

λ (I – λf2),

where JB1
λ = (I + λB1)–1 and JB2

λ = (I + λB2)–1 are two resolvent operators of B1 and B2 for
λ > 0, respectively. For x ∈ H1 and y = Ax ∈ H2, we see that

J f1,B1
λ (x) = x ⇔ x = (I + λB1)–1(x – λf1(x)

)

⇔ x – λf1(x) ∈ x + λB1(x)

⇔ 0 ∈ f1(x) + B1(x),

and in the same way, we have

J f2,B2
λ (y) = y ⇔ 0 ∈ f2(y) + B2(y).

This suggests the following iteration process to solve SMVIP, which is called the forward–
backward splitting algorithm (FBSA) as follows: x1 ∈ H1 and

xn+1 = J f1,B1
λ

(
xn + γ A∗(J f2,B2

λ – I
)
Axn
)

= JB1
λ (I – λf1)

(
xn + γ A∗(JB2

λ (I – λf2) – I
)
Axn
)
,

for all n ∈ N, where λ,γ > 0. Moudafi [16] proved that the sequence {xn} of FBSA weakly
converges to the solution of SMVIP under conditions γ ∈ (0, 1

L ) and λ ∈ (0, 2ψ) such that
L = ‖A‖2 and ψ = min{ψ1,ψ2}.

Let F1 : H1 → R and F2 : H2 → R be two convex and differentiable functions and
G1 : H1 → R ∪ {∞} and G2 : H2 → R ∪ {∞} be two convex and lower semicontinuous
functions. The SMVIP can be reduced as follows.

If f1 = ∇F1, f2 = ∇F2 and B1 = ∂G1, B2 = ∂G2, where ∇F1, ∇F2 are two gradients of F1,
F2, respectively, and ∂G1, ∂G2 are two subdifferentials of G1, G2, respectively, defined by

∂G1(x) =
{

z ∈ H1 : 〈y – x, z〉 + G1(x) ≤ G1(y),∀y ∈ H1
}

, ∀x ∈ H1,

and

∂G2(x) =
{

z ∈ H2 : 〈y – x, z〉 + G2(x) ≤ G2(y),∀y ∈ H2
}

, ∀x ∈ H2,
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then, SMVIP is reduced to a split convex minimization problem (SCMP), which is to find
x∗ ∈ H1 such that

F1
(
x∗) + G1

(
x∗) = min

x∈H1

{
F1(x) + G1(x)

} ⇔ 0 ∈ ∇F1
(
x∗) + ∂G1

(
x∗) (1.3)

and such that y∗ = Ax∗ ∈ H2 solves

F2
(
y∗) + G2

(
y∗) = min

y=Ax∈H2

{
F2(y) + G2(y)

} ⇔ 0 ∈ ∇F2
(
y∗) + ∂G2

(
y∗) (1.4)

and we will denote by � the solution set of (1.3) and (1.4). That is,

� =
{

x ∈ H1 : x solves (1.3) and y = Ax solves (1.4)
}

.

If B1 = ∂G1 = ∂iC and B2 = ∂G2 = ∂iQ are two subdifferentials of an indicator function of
nonempty, closed, and convex subsets C ⊂ H1 and Q ⊂ H2, respectively, defined by

iC(x) =

⎧
⎨

⎩
0, x ∈ C,

∞, x /∈ C,
and iQ(x) =

⎧
⎨

⎩
0, x ∈ Q,

∞, x /∈ Q,

then SMVIP is reduced to split a variational inequality problem (SVIP), which is to find
x∗ ∈ C such that

〈
f1
(
x∗), x – x∗〉≥ 0, ∀x ∈ C

and y∗ = Ax∗ ∈ Q such that

〈
f2
(
y∗), y – y∗〉≥ 0, ∀y ∈ Q.

If f1 = ∇F1, f2 = ∇F2, and B1 = B2 = 0 then SMVIP is reduced to a split feasibility problem
(SFP), which is to find x∗ ∈ H1 such that

F1
(
x∗) = min

x∈H1
F1(x) ⇔ 0 ∈ ∇F1

(
x∗)

and y∗ = Ax∗ ∈ H2 such that

F2
(
y∗) = min

y=Ax∈H2
F2(y) ⇔ 0 ∈ ∇F2

(
y∗).

If f2 = B2 = 0 then SMVIP is reduced to a monotone variational inclusion problem
(MVIP), which is to find x∗ ∈ H1 such that

0 ∈ f1
(
x∗) + B1

(
x∗)

and when f1 = ∇F1 and B1 = ∂G1, it can be reduced to a convex minimization problem
(CMP), which is to find x∗ ∈ H1 such that

F1
(
x∗) + G1

(
x∗) = min

x∈H1

{
F1(x) + G1(x)

} ⇔ 0 ∈ ∇F1
(
x∗) + ∂G1

(
x∗).
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Recall that the proximity operators proxλG1 of λG1 and proxηG2 of ηG2 for λ,η > 0, re-
spectively, are defined as follows:

proxλG1 (x) = Argmin
y∈H1

{
λG1(y) +

1
2
‖y – x‖2

2

}
, ∀x ∈ H1

and

proxηG2 (x) = Argmin
y∈H2

{
ηG2(y) +

1
2
‖y – x‖2

2

}
, ∀x ∈ H2.

For x ∈ H1, we see that

z = proxλG1 (x) ⇔ 0 ∈ λ∂G1(z) + z – x

⇔ x ∈ (I + λ∂G1)(z)

⇔ z = (I + λ∂G1)–1(x) = J∂G1
λ (x)

and in the same way, for y ∈ H2, we have

z = proxηG2 (y) ⇔ z = (I + η∂G2)–1(y) = J∂G2
η (y).

Therefore, SCMP is reduced to finding x∗ ∈ H1 such that

x∗ ∈ Argmin
x∈H1

{
F1(x) + G1(x)

} ⇔ 0 ∈ ∇F1
(
x∗) + ∂G1

(
x∗)

⇔ x∗ = J∇F1,∂G1
λ

(
x∗)

⇔ x∗ = J∂G1
λ (I – λ∇F1)x∗ = proxλG1 (I – λ∇F1)x∗

and such that y∗ = Ax∗ ∈ H2 solves

y∗ ∈ Argmin
y=Ax∈H2

{
F2(y) + G2(y)

} ⇔ y∗ = J∂G2
η (I – η∇F2)y∗ = proxηG2 (I – η∇F2)y∗.

Many researchers have proposed, analyzed, and modified FBSA for solving SMVIP and
also for solving other problems such as the variational inclusion problem and related op-
timization problems (see also, [17–28]). The forward–backward splitting mapping with
errors was introduced by Combettes and Wajs (see more details in [12]). Recently, Tian-
chai introduced a new iterative shrinkage thresholding algorithm (NISTA) with an er-
ror, based on the single forward–backward splitting mapping with an error for solving
MVIP, and also solving the fixed-point set of nonexpansive mapping S (see, [29]), as fol-
lows: x0, x1 ∈ H1 and
⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = S(αnf (xn) + (1 – αn)JB1
λn (yn – λnf1(yn) + εn)),

for all n ∈ N, and also introduced an improved fast iterative shrinkage thresholding al-
gorithm (IFISTA) with an error for solving MVIP of the image-deblurring problem (see,
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[30]) as follows: x0, x1 ∈ H1 and

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = αnf (zn) + (1 – αn)JB1
λn (zn – λnf1(zn) + εn),

xn+1 = JB1
λn (yn – λnf1(yn) + εn),

for all n ∈ N, where JB1
λn = (I + λnB1)–1 is a resolvent operator of B1 for λn > 0, f is a con-

traction mapping, and {αn} ⊂ (0, 1), {θn} ⊂ [0, 1), {λn} ⊂ (0, 2ψ1) and {εn} ⊂ H1.
We introduce two forward–backward splitting mappings with errors J f1,B1

λn ,εn : H1 → H1

and J f2,B2
ηn ,ξn : H2 → H2 as follows:

J f1,B1
λn ,εn = (I + λnB1)–1((I – λnf1) + εn

)
= JB1

λn

(
(I – λnf1) + εn

)

and

J f2,B2
ηn ,ξn = (I + ηnB2)–1((I – ηnf2) + ξn

)
= JB2

ηn

(
(I – ηnf2) + ξn

)
,

for all n ∈ N, where JB1
λn = (I + λnB1)–1 and JB2

ηn = (I + ηnB2)–1 are two resolvent opera-
tors of B1 and B2 for λn,ηn > 0, respectively, and {εn} ⊂ H1, {ξn} ⊂ H2. In this paper, we
introduce the forward–backward splitting algorithm with errors (FBSA_Err) for solving
SMVIP under some mild appropriate conditions on their parameters as follows: x0, x1 ∈ H1

and

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = zn + γnA∗(JB2
ηn ((I – ηnf2)Azn + ξn) – Azn),

xn+1 = αnf (yn) + (1 – αn)JB1
λn ((I – λnf1)yn + εn),

for all n ∈ N, where {αn} ⊂ (0, 1), {θn} ⊂ [0, 1), {λn} ⊂ (0, 2ψ1], {ηn} ⊂ (0, 2ψ2] and {γn} ⊂
(0, 1

L ) such that L = ‖A|2. Moreover, it can be applied to solve SCMP under some mild
appropriate conditions on their parameters by letting f1 = ∇F1, f2 = ∇F2 and B1 = ∂G1,
B2 = ∂G2 as follows: x0, x1 ∈ H1 and

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = zn + γnA∗(proxηnG2 ((I – ηn∇F2)Azn + ξn) – Azn),

xn+1 = αnf (yn) + (1 – αn) proxλnG1 ((I – λn∇F1)yn + εn),

for all n ∈N.
Our work is divided into several sections. In Sect. 2, some basic definitions and concepts

are provided. In Sect. 3, the proof of the strong convergence theorem of FBSA_Err is pre-
sented. In Sect. 4, we propose the application of image restoration to the image-feature
extraction with multiple-image blends problem, the split minimization problem, the con-
vex minimization problem, and demonstrate the effectiveness of the sequence constructed
by the inertial technique.
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2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . We will use the
notation: → to denote the strong convergence, ⇀ to denote the weak convergence, and
Fix(T) = {x : Tx = x} to denote the fixed-point set of the mapping T .

Recall that the metric projection PC : H → C is defined as follows: for each x ∈ H , PCx
is the unique point in C satisfying

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}
.

The operator T : H → H is called:
(i) monotone if

〈x – y, Tx – Ty〉 ≥ 0, ∀x, y ∈ H ,

(ii) L-Lipschitzian with L > 0 if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H ,

(iii) k-contraction if it is k-Lipschitzian with k ∈ (0, 1),
(iv) nonexpansive if it is 1-Lipschitzian,
(v) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥∥(I – T)x – (I – T)y

∥∥2, ∀x, y ∈ H ,

(vi) α-strongly monotone with α > 0 if

〈Tx – Ty, x – y〉 ≥ α‖x – y‖2, ∀x, y ∈ H ,

(vii) α-inverse strongly monotone with α > 0 if

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖2, ∀x, y ∈ H .

Let B be a mapping of H into 2H . The domain and the range of B are denoted by
D(B) = {x ∈ H : Bx �= ∅} and R(B) =

⋃{Bx : x ∈ D(B)}, respectively. The inverse of B, de-
noted by B–1, is defined by x ∈ B–1y if and only if y ∈ Bx. A multivalued mapping B is said
to be a monotone operator on H if 〈x – y, u – v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx and v ∈ By.
A monotone operator B on H is said to be maximal if its graph is not strictly contained in
the graph of any other monotone operator on H . For a maximal monotone operator B on H
and r > 0, we define the single-valued resolvent operator JB

r : H → D(B) by JB
r = (I + rB)–1.

It is well known that JB
r is firmly nonexpansive and Fix(JB

r ) = B–1(0).
We collect together some known lemmas that are the main tools in proving our result.

Lemma 2.1 ([31]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Then,

(i) ‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H ,
(ii) ‖λx + (1 – λ)y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2, ∀x, y ∈ H ,λ ∈R,
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(iii) 〈x – PCx, PCx – y〉 ≥ 0, ∀x ∈ H , y ∈ C,
(iv) ‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H .

Lemma 2.2 ([32]) Let H and K be two real Hilbert spaces and let T : K → K be a firmly
nonexpansive mapping such that ‖(I – T)x‖ is a convex function from K to R = [–∞, +∞].
Let A : H → K be a bounded linear operator and f (x) = 1

2‖(I – T)Ax‖2 for all x ∈ H .
Then,

(i)
f is convex and differentiable,

(ii)
∇f (x) = A∗(I – T)Ax for all x ∈ H such that A∗ denotes the adjoint of A,

(iii)
f is weakly lower semicontinuous on H ,

(iv)
∇f is ‖A‖2-Lipschitzian.

Lemma 2.3 ([32]) Let H be a real Hilbert space and T : H → H be an operator. The fol-
lowing statements are equivalent:

(i) T is firmly nonexpansive,
(ii) ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ,

(iii) I – T is firmly nonexpansive.

Lemma 2.4 ([33]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be an α-inverse strongly monotone and r > 0 be a constant. Then,
we have

∥
∥(I – rA)x – (I – rA)y

∥
∥2 ≤ ‖x – y‖2 – r(2α – r)‖Ax – Ay‖2

for all x, y ∈ C. In particular, if 0 < r ≤ 2α then I – rA is nonexpansive.

Lemma 2.5 ([34] (Demiclosedness principle)) Let C be a nonempty, closed, and convex
subset of a real Hilbert space H and let S : C → C be a nonexpansive mapping with Fix(S) �=
∅. If the sequence {xn} ⊂ C converges weakly to x and the sequence {(I – S)xn} converges
strongly to y. Then, (I – S)x = y; in particular, if y = 0 then x ∈ Fix(S).

Lemma 2.6 ([35, 36]) Let C be a nonempty, closed, and convex subset of a real Hilbert
space H . Let {Tn} and ϕ be two classes of nonexpansive mappings of C into itself such that

∅ �= Fix(ϕ) =
∞⋂

n=0

Fix(Tn).

Then, for any bounded sequence {zn} ⊂ C, we have,
(i) if limn→∞ ‖zn – Tnzn‖ = 0 then limn→∞ ‖zn – Tzn‖ = 0 for all T ∈ ϕ; which is called

the NST-condition (I),
(ii) if limn→∞ ‖zn+1 – Tnzn‖ = 0 then limn→∞ ‖zn – Tmzn‖ = 0 for all m ∈N∪ {0}; which

is called the NST-condition (II).
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Lemma 2.7 ([37]) Let {an} and {cn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 – δn)an + bn + cn, ∀n = 0, 1, 2, . . . ,

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume that
∑∞

n=0 cn < ∞.
Then, the following results hold:

(i) if bn ≤ δnM for some M ≥ 0 then {an} is a bounded sequence,
(ii) if
∑∞

n=0 δn = ∞ and lim supn→∞ bn/δn ≤ 0 then limn→∞ an = 0.

Lemma 2.8 ([38]) Assume that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – μn)sn + μnδn, ∀n = 0, 1, 2, . . .

and

sn+1 ≤ sn – σn + ρn, ∀n = 0, 1, 2, . . . ,

where {μn} is a sequence in (0, 1), {σn} is a sequence of nonnegative real numbers, and {δn},
{ρn} are real sequences such that

(i)
∑∞

n=0 μn = ∞,
(ii) limn→∞ ρn = 0,

(iii) if limk→∞ σnk = 0 then lim supk→∞ δnk ≤ 0 for any subsequence {nk} of {n}.
Then, limn→∞ sn = 0.

3 Main result
For solving the split monotone variational inclusion problem using the forward–backward
splitting algorithm (with errors), we assume an initial condition (A), as follows:

Fix(U ) =
∞⋂

n=1

Fix(Un) �= ∅ and Fix(V) =
∞⋂

n=1

Fix(Vn) �= ∅,

where U = JB1
λ (I –λf1), V = JB2

η (I –ηf2) and Un = JB1
λn (I –λnf1), Vn = JB2

ηn (I –ηnf2) with λn → λ

and ηn → η as → ∞ such that f1, f2, B1, B2, and λn, ηn, λ, η are defined below.

Theorem 3.1 Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded lin-
ear operator. Let f1 : H1 → H1 and f2 : H2 → H2 be two ψ1 and ψ2 inverse strongly monotone
mappings, respectively, and B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multivalued maxi-
mal monotone operators. Let f : H1 → H1 be a k-contraction mapping, and assume that
� is nonempty and satisfies the condition (A). Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence
generated by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = zn + γnA∗(JB2
ηn ((I – ηnf2)Azn + ξn) – Azn),

xn+1 = αnf (yn) + (1 – αn)JB1
λn ((I – λnf1)yn + εn),

for all n ∈ N, where {αn} ⊂ (0, 1), {γn} ⊂ [a1, b1] ⊂ (0, 1
L ) such that L = ‖A‖2, and {λn} ⊂

[a2, b2] ⊂ (0, 2ψ1], {ηn} ⊂ [a3, b3] ⊂ (0, 2ψ2] such that λn → λ, ηn → η as n → ∞, and
{εn} ⊂ H1, {ξn} ⊂ H2, {θn} ⊂ [0, 1) satisfy the following conditions:
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(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) limn→∞ ‖εn‖

αn
= limn→∞ ‖ξn‖

αn
= 0,

(C3)
∑∞

n=1 ‖εn‖ < ∞ and
∑∞

n=1 ‖ξn‖ < ∞,
(C4) limn→∞ θn

αn
‖xn – xn–1‖ = 0,

then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Proof Selecting p ∈ � and fixing n ∈ N, it follows that p = JB1
λn (I – λnf1)p and Ap = JB2

ηn (I –
ηnf2)Ap. First, we will show that {xn}, {yn}, and {zn} are bounded. Since,

‖zn – p‖ =
∥∥(xn – p) + θn(xn – xn–1)

∥∥

≤ ‖xn – p‖ + θn‖xn – xn–1‖ (3.1)

and on the other hand, we have

γ 2
n ‖A∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)‖2

= γ 2
n
〈
JB2
ηn

(
(I – ηnf2)Azn + ξn

)
– Azn, AA∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)〉

≤ Lγ 2
n
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2,

and

2γn
〈
zn – p, A∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)〉

= 2γn
〈
Azn – Ap, JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
〉

= 2γn
[〈

Azn – Ap + JB2
ηn

(
(I – ηnf2)Azn + ξn

)
– Azn, JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
〉

–
〈
JB2
ηn

(
(I – ηnf2)Azn + ξn

)
– Azn, JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
〉]

= 2γn

[
1
2
(∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Ap
∥
∥2 +
∥
∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥
∥2

– ‖Azn – Ap‖2) –
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2
]

= –γn
∥
∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥
∥2 + γn

∥
∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Ap
∥
∥2

– γn‖Azn – Ap‖2.

Therefore, it follows by nonexpansiveness of JB2
ηn and I – ηnf2 that

‖yn – p‖2 =
∥
∥(zn – p) + γnA∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)∥∥2

= ‖zn – p‖2 + γ 2
n
∥
∥A∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)∥∥2

+ 2γn
〈
zn – p, A∗(JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
)〉

≤ ‖zn – p‖2 + Lγ 2
n
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

– γn
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+ γn
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Ap
∥∥2 – γn‖Azn – Ap‖2

= ‖zn – p‖2 – γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2



Tianchai Fixed Point Theory Algorithms Sci Eng          (2023) 2023:5 Page 10 of 34

+ γn
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– JB2

ηn (I – ηnf2)Ap
∥∥2

– γn‖Azn – Ap‖2

≤ ‖zn – p‖2 – γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+ γn
∥∥((I – ηnf2)Azn + ξn

)
– (I – ηnf2)Ap

∥∥2 – γn‖Azn – Ap‖2

≤ ‖zn – p‖2 – γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+ γn
(‖Azn – Ap‖ + ‖ξn‖

)2 – γn‖Azn – Ap‖2

= ‖zn – p‖2 – γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+ 2γn‖Azn – Ap‖‖ξn‖ + γn‖ξn‖2

≤ ‖zn – p‖2 – γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+ 2
(

1
L

)
L1/2‖zn – p‖‖ξn‖ +

1
L

‖ξn‖2

=
(

‖zn – p‖ +
1√
L

‖ξn‖
)2

– γn(1 – Lγn)
∥∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2. (3.2)

This implies that

‖yn – p‖ ≤ ‖zn – p‖ +
1√
L

‖ξn‖. (3.3)

Hence, by (3.1) and (3.3), and the nonexpansiveness of JB1
λn and I – λnf1, we have

‖xn+1 – p‖ =
∥
∥αn
(
f (yn) – p

)
+ (1 – αn)

(
JB1
λn

(
(I – λnf1)yn + εn

)
– p
)∥∥

≤ αn
(∥∥f (yn) – f (p)

∥
∥ +
∥
∥f (p) – p

∥
∥)

+ (1 – αn)
∥
∥JB1

λn

(
(I – λnf1)yn + εn

)
– JB1

λn (I – λnf1)p
∥
∥

≤ αn
(
k‖yn – p‖ +

∥
∥f (p) – p

∥
∥)

+ (1 – αn)
∥
∥((I – λnf1)yn + εn

)
– (I – λnf1)p

∥
∥

≤ αn
(
k‖yn – p‖ +

∥
∥f (p) – p

∥
∥) + (1 – αn)

(‖yn – p‖ + ‖εn‖
)

≤ (1 – αn(1 – k)
)‖yn – p‖ + αn

∥
∥f (p) – p

∥
∥ + ‖εn‖

≤ (1 – αn(1 – k)
)‖zn – p‖ +

1√
L

‖ξn‖ + αn
∥
∥f (p) – p

∥
∥ + ‖εn‖

≤ (1 – αn(1 – k)
)‖xn – p‖ + αn(1 – k)

[
1

1 – k
θn

αn
‖xn – xn–1‖

+
‖f (p) – p‖

1 – k

]
+
(

1√
L

‖ξn‖ + ‖εn‖
)

.

Hence, by conditions (C3) and (C4), and putting M = 1
1–k (‖f (p) – p‖ + supn∈N

θn
αn

‖xn –
xn–1‖) ≥ 0 in Lemma 2.7 (i), we conclude that the sequence {‖xn – p‖} is bounded. That
is, the sequence {xn} is bounded, and so is {zn}. Moreover, by condition (C3), we obtain
limn→∞ εn = limn→∞ ξn = 0, it follows that the sequence {yn} is also bounded.
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Since, P�f is a k-contraction on H1, by Banach’s contraction principle there exists a
unique element x∗ ∈ H1 such that x∗ = P�f (x∗), that is x∗ ∈ �, it follows that x∗ = JB1

λn (I –
λnf1)x∗ and Ax∗ = JB2

ηn (I – ηnf2)Ax∗. Now, we will show that xn → x∗ as n → ∞. On the
other hand, we have

∥∥zn – x∗∥∥2 =
〈
zn – x∗, zn – x∗〉

=
〈
xn + θn(xn – xn–1) – x∗, zn – x∗〉

=
〈
xn – x∗, zn – x∗〉 + θn

〈
xn – xn–1, zn – x∗〉

≤ ∥∥xn – x∗∥∥∥∥zn – x∗∥∥ + θn‖xn – xn–1‖
∥∥zn – x∗∥∥

≤ 1
2
(∥∥xn – x∗∥∥2 +

∥∥zn – x∗∥∥2) + θn‖xn – xn–1‖
∥∥zn – x∗∥∥.

Therefore,

∥∥zn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 + 2θn‖xn – xn–1‖
∥∥zn – x∗∥∥. (3.4)

Since,

∥∥xn+1 – x∗∥∥2 =
〈
αnf (yn) + (1 – αn)JB1

λn

(
(I – λnf1)yn + εn

)
– x∗, xn+1 – x∗〉

=
〈
αn
(
f (yn) – x∗) + (1 – αn)

(
JB1
λn

(
(I – λnf1)yn + εn

)
– x∗), xn+1 – x∗〉

= αn
〈
f (yn) – f

(
x∗), xn+1 – x∗〉 + αn

〈
f
(
x∗) – x∗, xn+1 – x∗〉

+ (1 – αn)
〈
JB1
λn

(
(I – λnf1)yn + εn

)
– x∗, xn+1 – x∗〉

≤ αnk
∥∥yn – x∗∥∥∥∥xn+1 – x∗∥∥ + αn

〈
f
(
x∗) – x∗, xn+1 – x∗〉

+ (1 – αn)
∥
∥JB1

λn

(
(I – λnf1)yn + εn

)
– x∗∥∥∥∥xn+1 – x∗∥∥

≤ 1
2
αnk
(∥∥yn – x∗∥∥2 +

∥∥xn+1 – x∗∥∥2) + αn
〈
f
(
x∗) – x∗, xn+1 – x∗〉

+
1
2

(1 – αn)
(∥∥JB1

λn

(
(I – λnf1)yn + εn

)
– x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2),

it follows by (3.2) and (3.4), and the nonexpansiveness of JB1
λn and I – λnf1 that

∥
∥xn+1 – x∗∥∥2 ≤ αnk

1 + αn(1 – k)
∥
∥yn – x∗∥∥2 +

2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉

+
1 – αn

1 + αn(1 – k)
∥∥JB1

λn

(
(I – λnf1)yn + εn

)
– JB1

λn (I – λnf1)x∗∥∥2

≤ αnk
∥
∥yn – x∗∥∥2 +

2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉

+ (1 – αn)
∥∥((I – λnf1)yn + εn

)
– (I – λnf1)x∗∥∥2

≤ αnk
∥∥yn – x∗∥∥2 +

2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉

+ (1 – αn)
(∥∥yn – x∗∥∥ + ‖εn‖

)2

≤ (1 – αn(1 – k)
)∥∥yn – x∗∥∥2 +

2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉
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+ 2
∥∥yn – x∗∥∥‖εn‖ + ‖εn‖2

≤ (1 – αn(1 – k)
)[(∥∥zn – x∗∥∥ +

1√
L

‖ξn‖
)2

– γn(1 – Lγn)
∥
∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥
∥2
]

+
2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉 + 2

∥
∥yn – x∗∥∥‖εn‖ + ‖εn‖2

≤ (1 – αn(1 – k)
)
[∥∥xn – x∗∥∥2 + 2θn‖xn – xn–1‖

∥∥zn – x∗∥∥

+
2√
L

∥
∥zn – x∗∥∥‖ξn‖ +

1
L

‖ξn‖2

– γn(1 – Lγn)
∥
∥JB2

ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥
∥2
]

+
2αn

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉 + 2

∥
∥yn – x∗∥∥‖εn‖ + ‖εn‖2.

Therefore,

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn(1 – k)

)∥∥xn – x∗∥∥2 + αn(1 – k)
[

2
1 – k

θn

αn
‖xn – xn–1‖

∥
∥zn – x∗∥∥

+
2√

L(1 – k)
‖ξn‖
αn

∥∥zn – x∗∥∥ +
1

L(1 – k)
‖ξn‖
αn

‖ξn‖

+
2

1 – k
1

1 + αn(1 – k)
〈
f
(
x∗) – x∗, xn+1 – x∗〉 +

2
1 – k

‖εn‖
αn

∥∥yn – x∗∥∥

+
1

1 – k
‖εn‖
αn

‖εn‖
]

and

‖xn+1 – x∗‖2

≤ ∥∥xn – x∗∥∥2 –
(
1 – αn(1 – k)

)
γn(1 – Lγn)

∥∥JB2
ηn

(
(I – ηnf2)Azn + ξn

)
– Azn
∥∥2

+
[

2αn
θn

αn
‖xn – xn–1‖

∥
∥zn – x∗∥∥ +

2√
L

∥
∥zn – x∗∥∥‖ξn‖ +

1
L

‖ξn‖2

+ 2αn
∥
∥f
(
x∗) – x∗∥∥∥∥xn+1 – x∗∥∥ + 2

∥
∥yn – x∗∥∥‖εn‖ + ‖εn‖2

]
,

which are of the forms

sn+1 ≤ (1 – μn)sn + μnδn

and

sn+1 ≤ sn – σn + ρn,

respectively, where sn = ‖xn – x∗‖2, μn = αn(1 – k), δn = 2
1–k

θn
αn

‖xn – xn–1‖‖zn – x∗‖ +
2√

L(1–k)
‖ξn‖
αn

‖zn – x∗‖ + 1
L(1–k)

‖ξn‖
αn

‖ξn‖ + 2
1–k

1
1+αn(1–k) 〈f (x∗) – x∗, xn+1 – x∗〉 + 2

1–k
‖εn‖
αn

‖yn –
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x∗‖ + 1
1–k

‖εn‖
αn

‖εn‖, σn = (1 – αn(1 – k))γn(1 – Lγn)‖JB2
ηn ((I – ηnf2)Azn + ξn) – Azn‖2 and

ρn = 2αn
θn
αn

‖xn – xn–1‖‖zn – x∗‖ + 2√
L
‖zn – x∗‖‖ξn‖ + 1

L‖ξn‖2 + 2αn‖f (x∗) – x∗‖‖xn+1 – x∗‖ +
2‖yn – x∗‖‖εn‖+‖εn‖2. Therefore, using conditions (C1), (C3), and (C4), we can check that
all those sequences satisfy conditions (i) and (ii) in Lemma 2.8. To complete the proof, we
verify that condition (iii) in Lemma 2.8 is satisfied. Let limi→∞ σni = 0. Then, by conditions
(C1) and (C3), we have

lim
i→∞
∥
∥JB2

ηni

(
(I – ηni f2)Azni + ξni

)
– Azni

∥
∥ = 0

lim
i→∞
∥
∥JB2

ηni
(I – ηni f2)Azni – Azni

∥
∥ = 0. (3.5)

Consider a subsequence {zni} of {zn}. As {zn} is bounded, so is {zni}, and there exists a
subsequence {znij

} of {zni} that converges weakly to x ∈ H1. Without loss of generality, we
can assume that zni ⇀ x as i → ∞. It follows that Azni ⇀ Ax as i → ∞. Hence, by (3.5)
and the demiclosedness at zero in Lemma 2.5, we obtain y = Ax ∈ Fix(JB2

η (I – ηf2)), indeed
also, y = Ax ∈ Fix(JB2

ηni
(I – ηni f2)), that is y = Ax solves 0 ∈ f2(y) + B2(y). Since,

‖yni – x‖ ≤ ‖zni – x‖ + γni

∥
∥A∗(JB2

ηni

(
(I – ηni f2)Azni + ξni

)
– Azni

)∥∥

≤ ‖zni – x‖ + γni

√
L
∥∥JB2

ηni

(
(I – ηni f2)Azni + ξni

)
– Azni

∥∥

and

‖xni – x‖ =
∥
∥(zni – x) – θni (xni – xni–1)

∥
∥

≤ ‖zni – x‖ + αni
θni

αni

‖xni – xni–1‖,

by conditions (C1), (C3), (C4), and (3.5), we obtain yni ⇀ x and xni ⇀ x as i → ∞, it follows
that yni – xni ⇀ 0 as i → ∞. Hence, by the nonexpansiveness of JB1

λni
and I –λni f1, we obtain

‖xni+1 – JB1
λni

(I – λni f1)xni‖
=
∥∥αni f (yni ) + (1 – αni )J

B1
λni

(
(I – λni f1)yni + εni

)
– JB1

λni
(I – λni f1)xni

∥∥

=
∥∥αni

(
f (yni ) – JB1

λni
(I – λni f1)xni

)

+ (1 – αni )
(
JB1
λni

(
(I – λni f1)yni + εni

)
– JB1

λni
(I – λni f1)xni

)∥∥

≤ αni

∥
∥f (yni ) – JB1

λni
(I – λni f1)xni

∥
∥

+ (1 – αni )
∥∥JB1

λni

(
(I – λni f1)yni + εni

)
– JB1

λni
(I – λni f1)xni

∥∥

≤ αni

∥∥f (yni ) – JB1
λni

(I – λni f1)xni

∥∥

+ (1 – αni )
∥
∥((I – λni f1)yni + εni

)
– (I – λni f1)xni

∥
∥

≤ αni

∥
∥f (yni ) – JB1

λni
(I – λni f1)xni

∥
∥ + (1 – αni )

(‖yni – xni‖ + ‖εni‖
)
.

Hence, by conditions (C1) and (C3), we have

lim
i→∞
∥∥xni+1 – JB1

λni
(I – λni f1)xni

∥∥ = 0.
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Therefore, by NST-condition (II) in Lemma 2.6, we obtain

lim
i→∞
∥∥xni – JB1

λni
(I – λni f1)xni

∥∥ = 0.

Hence, by the demiclosedness at zero in Lemma 2.5 again, we obtain x ∈ Fix(JB1
λ (I – λf1)),

indeed also, x ∈ Fix(JB1
λni

(I – λni f1)), that is x solves 0 ∈ f1(x) + B1(x). It follows that x =
JB1
λni

(I – λni f1)x ∈ �. Since, by the nonexpansiveness of JB1
λni

and I – λni f1, we have

‖xni+1 – xni‖ =
∥
∥αni

(
f (yni ) – xni

)
+ (1 – αni )

(
JB1
λni

(
(I – λni f1)yni + εni

)
– xni

)∥∥

≤ αni

∥∥f (yni ) – xni

∥∥ + (1 – αni )
∥∥JB1

λni

(
(I – λni f1)yni + εni

)
– xni

∥∥

≤ αni

∥∥f (yni ) – xni

∥∥ + (1 – αni )
(∥∥JB1

λni

(
(I – λni f1)yni + εni

)
– x
∥∥

+ ‖xni – x‖)

= αni

∥∥f (yni ) – xni

∥∥ + (1 – αni )
(‖xni – x‖

+
∥
∥JB1

λni

(
(I – λni f1)yni + εni

)
– JB1

λni
(I – λni f1)x

∥
∥)

≤ αni

∥∥f (yni ) – xni

∥∥ + (1 – αni )
(‖xni – x‖

+
∥
∥((I – λni f1)yni + εni

)
– (I – λni f1)x

∥
∥)

≤ αni

∥∥f (yni ) – xni

∥∥ + (1 – αni )
(‖xni – x‖ + ‖yni – x‖ + ‖εni‖

)
,

it follows by conditions (C1) and (C3) that xni+1 – xni ⇀ 0 as i → ∞. Hence, by Lem-
ma 2.1(iii) we obtain

lim sup
i→∞

〈
f
(
x∗) – x∗, xni+1 – x∗〉

= lim sup
i→∞

(〈
f
(
x∗) – x∗, xni+1 – xni

〉
+
〈
f
(
x∗) – x∗, xni – x∗〉)

=
〈
f
(
x∗) – x∗, x – x∗〉≤ 0.

It follows by conditions (C1), (C2), (C3), and (C4) that lim supi→∞ δni ≤ 0. Hence, by
Lemma 2.8, we conclude that xn → x∗ as n → ∞. This completes the proof. �

Remark 3.2 Indeed, the parameter θn can be chosen as follows:

θn =

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
∀n ∈ N,

and for the speed up of convergence, the parameter θn is often chosen as follows:

θn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

σn = 1
2n or

σn = tn–1
tn+1

such that t1 = 1 and tn+1 =
1+
√

1+4t2
n

2

if n ≤ N ,

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
otherwise,

∀n ∈N,

where N ∈N and {ωn} is a positive sequence such that ωn = o(αn).
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4 Applications and numerical examples
In this section, we give some applications of our result using FBSA_Err to the image-
feature extraction with multiple-image blends problem, the split minimization problem
and convex minimization problem.

4.1 Image-feature extraction with multiple-image blends problem
Let F1 : H1 → R and F2 : H2 → R be two convex and differentiable functions, G1 : H1 →
R∪{∞} and G2 : H2 →R∪{∞} be two convex and lower semicontinuous functions such
that the gradients ∇F1 and ∇F2 are 1

ψ1
- and 1

ψ2
-Lipschitz continuous functions, ∂G1 and

∂G2 are subdifferentials of G1 and G2, respectively. It is well known from [39] that (1/α)-
Lipschitz continuous functions are also α-inverse strongly monotones, that is, if ∇F1 and
∇F2 are 1

ψ1
- and 1

ψ2
-Lipschitz continuous functions, respectively, then both are also ψ1

and ψ2 inverse strongly monotones, respectively. Moreover, ∂G1 and ∂G2 are maximal
monotones [40].

Putting f1 = ∇F1, f2 = ∇F2 and B1 = ∂G1, B2 = ∂G2 into Theorem 3.1, and we assume an
initial condition (A∗) as follows:

Fix(U ) =
∞⋂

n=1

Fix(Un) �= ∅ and

Fix(V) =
∞⋂

n=1

Fix(Vn) �= ∅,

where U = proxλG1 (I – λ∇F1), V = proxηG2 (I – η∇F2) and Un = proxλnG1 (I – λn∇F1), Vn =
proxηnG2 (I – ηn∇F2) with λn → λ and ηn → η as → ∞ such that F1, F2, G1, G2 and λn, ηn,
λ, η are defined below, we obtain the following result.

Theorem 4.1 Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded
linear operator. Let F1 : H1 → R and F2 : H2 → R be two convex and differentiable func-
tions with 1

ψ1
- and 1

ψ2
-Lipschitz continuous gradients ∇F1 and ∇F2, respectively, and

G1 : H1 → R and G2 : H2 → R be two convex and lower semicontinuous functions. Let
f : H1 → H1 be a k-contraction mapping, and assume that � is nonempty and satisfies the
condition (A∗). Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = zn + γnA∗(proxηnG2 ((I – ηn∇F2)Azn + ξn) – Azn),

xn+1 = αnf (yn) + (1 – αn) proxλnG1 ((I – λn∇F1)yn + εn),

for all n ∈ N, where {αn} ⊂ (0, 1), {γn} ⊂ [a1, b1] ⊂ (0, 1
‖A‖2 ), and {λn} ⊂ [a2, b2] ⊂ (0, 2ψ1],

{ηn} ⊂ [a3, b3] ⊂ (0, 2ψ2] such that λn → λ, ηn → η as n → ∞, and {εn} ⊂ H1, {ξn} ⊂ H2,
{θn} ⊂ [0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) limn→∞ ‖εn‖

αn
= limn→∞ ‖ξn‖

αn
= 0,

(C3)
∑∞

n=1 ‖εn‖ < ∞ and
∑∞

n=1 ‖ξn‖ < ∞,
(C4) limn→∞ θn

αn
‖xn – xn–1‖ = 0,

then the sequence {xn} converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).
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Figure 1 Image-encryption process and image-superposition process

We now propose the image-feature extraction with multiple-image blends using the
fixed-point optimization algorithm in Theorem 4.1. The image information or the hidden
image (messages) H went through a hybrid image-encryption system to the encrypted im-
age L using the linear chaos-based method, and went through a digital image watermark-
ing system using linear combination of superposition of carrier images C1, C2, . . . , CN and
the encrypted image with additive noise L† to the mixed image M, see Fig. 1.

The discrete logistic chaotic map is defined as follows: x1 ∈ (0, 1) and

xn+1 = μxn(1 – xn), ∀n ∈ N,

where 0 < μ ≤ 4, and when 3.57 ≤ μ ≤ 4, the unpredictability of the sequence {xn} is gen-
erated by logistic chaotic maps. We introduce the linear method for image encryption
using logistic chaotic maps as follows:

A ∗ x = L + ε, (4.1)

where A ∗ x is Hadamard product (element-wise multiplication) of A and x such that A ∈
R

m×m represents a known image-encryption operator (which is called the point-spread
function: PSF) such that stacking the columns of A corresponding with a discrete logistic
chaotic map {xn}m2

n=1, and L ∈R
m×m is a known encrypted image, ε ∈ R

m×m is an unknown
white Gaussian noise, and x ∈R

m×m is an unknown image to be decrypted, the (estimated)
image.

Let C1, C2, . . . , CN ∈ R
m×m be N-carrier images, and {μn}N

n=1 ⊂ (0, 1). We introduce the
linear combination method for image mixing of superposition carrier images C1, C2, . . . ,
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CN , and the encrypted image with additive white Gaussian noise L† = L + ε as fol-
lows:

M1 = μ1C1 + (1 – μ1)L†,

M2 = μ2C2 + (1 – μ2)M1,

M3 = μ3C3 + (1 – μ3)M2,

...

MN = μN CN + (1 – μN )MN–1,

where M = MN , which is called the superimposed mixed image. For each N ∈N, it is clear
that

( N∏

i=1

(1 – μi)

)

L† = M –
N∑

i=1

[( N∏

j=i+1
i�=N

(1 – μj)

)

μiCi

]

,

ρ(A ∗ x) = M –
N∑

i=1

βiCi, (4.2)

where ρ =
∏N

i=1(1 – μi) and

βi =

⎧
⎨

⎩
(
∏N

j=i+1(1 – μj))μi, i �= N ,

μi, i = N .

For brevity, we use the notation Ax instead of A ∗ x. In order to solve (4.1) and (4.2)
of the solution set � using Theorem 4.1, we let F1(x) = ‖Ax – L†‖2

2, F2(y) = ‖ρ(y) – (M –
∑N

i=1 βiCi)‖2
2 and G1(x) = κ1‖x‖1, G2(y) = κ2‖y‖1 with y = Ax ∈R

m×m for all x ∈R
m×m such

that κ1,κ2 > 0, and for (x1, x2, . . . , xm2 )T ∈ R
m2 corresponding to stacking the columns of

x ∈R
m×m, ‖x‖1 =

∑m2

i=1 |xi| and ‖x‖2 =
√∑m2

i=1 |xi|2. That is, we find the decrypted (hidden)
image x∗ ∈ R

m×m that solves

min
x∈Rm×m

{∥∥Ax – L†
∥∥2

2 + κ1‖x‖1
}

(4.3)

and such that the watermark (superposition images) extracted image y∗ = Ax∗ ∈ R
m×m

solves

min
y=Ax∈Rm×m

{∥∥∥
∥∥
ρ(Ax) –

(

M –
N∑

i=1

βiCi

)∥∥∥
∥∥

2

2

+ κ2‖Ax‖1

}

. (4.4)

It is well known from Lemma 2.2 by putting T(Ax) = PRm×m Ax = L† that ∇F1(x) = 2AT (Ax–
L†) and ∇F1 is 1

ψ1
-Lipschitzian such that ψ1 = 1

2‖A‖2 , and putting T(ρ(Ax)) = PRm×mρ(Ax) =
M –
∑N

i=1 βiCi that ∇F2(x) = 2ρAT (ρ(Ax) – (M –
∑N

i=1 βiCi)) and ∇F2 is 1
ψ2

-Lipschitzian
such that ψ2 = 1

2ρ2‖A‖2 , and AT stands for the transpose of A, and ‖A‖ is the largest singular
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value of A (i.e., the square root of the largest eigenvalue of the matrix AT A) or the spectral
norm ‖A‖2.

By [29] and the references therein, for (u1, u2, . . . , um2 )T , (ũ1, ũ2, . . . , ũm2 )T ∈ R
m2 corre-

sponding with stacking the columns of u, ũ ∈ R
m×m, respectively, and for each n ∈ N, we

have

proxλnG1 (u) = proxλnκ1‖u‖1 (u) = v and proxηnG2 (ũ) = proxηnκ2‖Aũ‖1 (ũ) = ṽ,

where vi = sign(ui) max{|ui| – λnκ1, 0} and ṽi = sign(ũi) max{|(Aũ)i| – ηnκ2, 0} for all i =
1, 2, . . . , m2 such that (v1, v2, . . . , vm2 )T , (ṽ1, ṽ2, . . . , ṽm2 )T ∈ R

m2 corresponding to stacking
the columns of v, ṽ ∈R

m×m, respectively.

Example 4.2 We illustrate the performance of FBSA_Err in Algorithm 1 for solving image-
feature extraction with the multiple-image blends problem through (4.3) and (4.4) with
κ1 = κ2 = 10–4. We implemented them in MATLAB R2019a to solve and run on a personal
laptop: Intel(R) Core(TM) i5-8250U CPU @1.80 GHz 8 GB RAM.

Let x = (aij), xn = (bij) ∈ R
m×m represent the hidden image and the estimated image at

the first n iteration(s), respectively. We use the normalized crosscorrelation (NCC) as the
digital image-matching measure (it is better if this is near 1) of the images x and xn, which
is defined by

NCC(x, xn) =
∑m

i=1
∑m

j=1[(aij – ā)(bij – b̄)]
√

[
∑m

i=1
∑m

j=1(aij – ā)2][
∑m

i=1
∑m

j=1(bij – b̄)2]
,

where ā = 1
m2
∑m

i=1
∑m

j=1 aij and b̄ = 1
m2
∑m

i=1
∑m

j=1 bij, and also use the signal-to-noise ratio
(SNR) measure (it is better if this is a large value) of the images x and xn, and the improve-
ment in signal-to-noise ratio (ISNR) measure (it is better if this is a large value) of the

Algorithm 1 The image-feature extraction with multiple-image blends algorithm
procedure FBSA_Err1

Choose the initials x0, x1 ∈R
m×m arbitrarily.

Set M as the maximum loops to stop.
Set the operator A and the mapping f in backing tracks.
n ← 0
repeat

n ← n + 1
Update the parameters αn, γn, λn, ηn, θn and the errors εn, ξn ∈R

m×m.
% Hadamard product (element-wise multiplication) is used in the processes.
zn ← xn + θn(xn – xn–1)
yn ← zn + γnAT (proxηnG2 (Azn – 2ρηnAT (ρ(A2zn) – (M –

∑N
i=1 βiCi)) + ξn) – Azn)

xn+1 ← αnf (yn) + (1 – αn) proxλnG1 (yn – 2λnAT (Ayn – L†) + εn)
until n = M
return xn+1

end procedure
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images x, xn and L†, which are defined (measured in decibels: dB) by

SNR(x, xn) = 10 log10
‖xn‖2

2
‖x – xn‖2

2
and

ISNR
(
x, xn, L†

)
= 10 log10

‖x – L†‖2
2

‖x – xn‖2
2

,

where L† ∈ R
m×m represents the observed encrypted image with additive noise.

For illustration, we consider the standard test images downloaded from [41] for Woman,
Pirate, and Cameraman, and image information downloaded from [42] with all images
converted to the double class type of a monochrome image and resized to 256 × 256 pix-
els by img = im2double(imread(‘image_name’)) and imresize(img,[256,256]) in MATLAB,
respectively, which represent the carrier images C1, C2, C3 ∈ R

256×256 and the hidden im-
age H ∈R

256×256, respectively, see Fig. 2.
The hidden image H went through chaos-based image encryption, to an encrypted im-

age L = A ∗ H such that stacking the columns of A ∈ R
256×256 corresponding with dis-

crete logistic chaotic map x̃ = {xn}2562
n=1 with μ = 3.57 and the logistic chaotic map ini-

tial x1 = 0.25 by A = reshape(x̃, [256, 256]) and L = A. ∗ H in MATLAB, and followed by
adding the zero-mean white Gaussian noise ε with standard deviation 10–3 to the image
L† = L + ε = L + 10–3 ∗ randn(size(L)) in MATLAB, see Fig. 3.

The encrypted image with additive noise L† went through image mixing of superpo-
sition carrier images of C1 = Woman, C2 = Pirate, and C3 = Cameraman, respectively,
to the superimposed mixed image M with μ1 = 0.999, μ2 = 0.25, and μ3 = 0.5 as fol-

Figure 2 Hidden image and carrier images

Figure 3 Hidden image and encrypted image with additive noise
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lows:

M1 = μ1C1 + (1 – μ1)L†,

M2 = μ2C2 + (1 – μ2)M1,

M3 = μ3C3 + (1 – μ3)M2,

or

where M = M3. That is,

M = ρL† + β1C1 + β2C2 + β3C3

such that ρ = (1 – μ1)(1 – μ2)(1 – μ3) = 0.000375, β1 = (1 – μ2)(1 – μ3)μ1 = 0.3746,
β2 = (1 – μ3)μ2 = 0.125 and β3 = μ3 = 0.5, and L†, M1, M2, and M3 are as in Fig. 4. We
now find the decrypted (hidden) image x∗ ∈R

256×256 that solves

min
x∈R256×256

{∥∥Ax – L†
∥∥2

2 + κ1‖x‖1
}

and such that the watermark (superposition images) extracted image y∗ = Ax∗ ∈ R
256×256

solves

min
y=Ax∈R256×256

{∥∥
∥∥
∥
ρ(Ax) –

(

M –
3∑

i=1

βiCi

)∥∥
∥∥
∥

2

2

+ κ2‖Ax‖1

}

.
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Figure 4 Encrypted image with additive noise L† and superimposed mixed imagesM1, M2, and M3

Table 1 The best choice types of testing the parameters γn , λn , and ηn for the fast convergence

Type γn λn ηn

A1 L0
10

L1
10

L2
10

A2 L0 –
L0
10 L1 –

L1
10 L2 –

L2
10

A3 L0 L1 L2

A4 L0 +
L0
10 L1 +

L1
10 L2 +

L2
10

A5 2L0 –
L0
10 2L1 –

L1
10 2L2 –

L2
10

A6 – 2L1 2L2

B1 L0n
n+1

L1n
n+1

L2n
n+1

B2 L0(n+2)
n+1

L1(n+2)
n+1

L2(n+2)
n+1

B3 – 2L1n
n+1

2L2n
n+1

C1 L0 +
(–1)nL0
n+1 L1 +

(–1)nL1
n+1 L2 +

(–1)nL2
n+1

C2 L0 +
(–1)n+1L0

n+1 L1 +
(–1)n+1L1

n+1 L2 +
(–1)n+1L2

n+1

Let L = ‖A‖2, ψ1 = 1
2‖A‖2 = 1

2L and ψ2 = 1
2ρ2‖A‖2 = 1

2ρ2L . We introduce the best choice types
of testing the parameters γn, λn and ηn for the fast convergence with L0 = 1

2L , L1 = ψ1,
and L2 = ψ2 as in Table 1. For each n ∈ N, we assume the parameters λn and ηn are A6
type, which is the best choice type for all cases of the parameter γn, and setting αn = 10–6

n+1
and

θn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σn = tn–1
tn+1

such that t1 = 1 and tn+1 =
1+
√

1+4t2
n

2 if n ≤ 1000,⎧
⎨

⎩
min{ 1/(n+1)3

‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
otherwise,

(4.5)

and the errors εn = ξn = M
(n+1)3 , and we also set f (x) = x

5 for all x ∈ R
256×256 and choose the

algorithm initials x0 = x1 = M.
We use NCC, SNR, and ISNR that measure the quality of the decrypted image at the

first 10,000 iterations, which are shown in Table 2. Moreover, we also show the relative
error that is defined by

‖xn+1 – xn‖2

‖xn‖2
≤ tol,

where tol denotes a prescribed tolerance value of the algorithm, and their convergence
behaviors are shown in Fig. 5.
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Table 2 All cases of the parameter γn (with A6 type of the parameters λn and ηn) at the first 10,000
iterations

Case γn λn ηn CPU (s) NCC SNR ISNR tol

1 A1 A6 A6 425.51 0.9924 19.4825 9.8366 2.42× 10–7

2 A2 A6 A6 429.86 0.9763 23.5064 14.4992 2.52× 10–7

3 A3 A6 A6 431.31 0.9687 23.4392 14.5077 2.57× 10–7

4 A4 A6 A6 425.90 0.9572 23.1888 14.3321 2.65× 10–7

5 A5 A6 A6 425.94 0.7978 18.5734 10.2851 3.59× 10–7

6 B1 A6 A6 434.32 0.9689 23.4424 14.5101 2.57× 10–7

7 B2 A6 A6 430.61 0.9686 23.4359 14.5052 2.58× 10–7

8 C1 A6 A6 430.83 0.9687 23.4392 14.5077 2.57× 10–7

9 C2 A6 A6 440.86 0.9687 23.4392 14.5077 2.57× 10–7

Figure 5 Convergence behaviors of NCC, SNR, ISNR and tol

From the results of all quality measures of the feature-extracted image as in Table 2,
we see that the quantity of NCC in cases 1 and 2 are greater than the others, but
the quantities of SNR and ISNR of them are lower and greater than others, respec-
tively, and then, we conclude that for quality measure of the decrypted image by NCC
measure only, case 1 is the best choice, and by NCC, SNR, and ISNR measures to-
gether, case 2 is the best choice, for image-feature extraction with multiple-image blends
using FBSA_Err, which are shown in Figs. 6, 7, and 8, and also show the increasing
of NCC, SNR, and ISNR of them in the first 10,000 to 100,000 iterations as in Ta-
ble 3.

We next consider seven different choices of the parameter θn for testing the fast conver-
gence at the first 10,000 iterations of the case 2 only, as follows: σn = 1

2n (choice 1), σn = 1
n+1

(choice 2), σn = 0 (choice 3), σn = 0.5 (choice 4), σn = n
n+1 (choice 5), σn = tn–1

tn+1
such that t1 =

1 and tn+1 =
1+
√

1+4t2
n

2 (choice 6) of

θn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σn if n ≤ 1000,⎧
⎨

⎩
min{ 1/(n+1)3

‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
otherwise

(4.6)
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Figure 6 The best feature extracted images of cases 1 and 2

Figure 7 Convergence behavior of the image xn in case 1

and choice 7 is

θn =

⎧
⎨

⎩
min{ 1/(n+1)3

‖xn–xn–1‖ , 0.5} if xn �= xn–1,

0.5 otherwise,
(4.7)

and the others constant.
From the results of seven different choices of the parameter θn as in Table 4, we see that

all quality measures of choice 6 are greater than the others, and then we conclude that
the choice 6 of the parameter θn as (4.5) is to be an accelerated choice for the speed up of
convergence of solving this complex example.
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Figure 8 Convergence behavior of the image xn in case 2

Table 3 The increasing of NCC, SNR, and ISNR of cases 1 and 2

Case 1 Case 2

n NCC SNR ISNR n NCC SNR ISNR

10,000 0.9924 19.4825 9.8366 10,000 0.9763 23.5064 14.4992
25,000 0.9941 19.6572 10.0205 25,000 0.9768 23.8564 14.8513
50,000 0.9954 19.8115 10.1833 50,000 0.9769 24.1426 15.1397
75,000 0.9961 19.8835 10.2593 75,000 0.9769 24.2643 15.2628
100,000 0.9964 19.9184 10.2960 100,000 0.9769 24.3201 15.3195

Table 4 Choices of the parameter θn for testing fast convergence at the first 10,000 iterations

Choice CPU (s) NCC SNR ISNR tol

1 469.60 0.7163 12.5216 4.3232 5.49× 10–6

2 470.78 0.7151 12.7150 4.3570 5.14× 10–6

3 470.51 0.7180 12.1811 4.1980 6.03× 10–6

4 463.59 0.7158 13.1323 4.1536 4.09× 10–6

5 471.47 0.5356 6.4557 –1.3499 9.50× 10–6

6 429.86 0.9763 23.5064 14.4992 2.52× 10–7

7 468.06 0.7180 12.1859 4.2001 6.02× 10–6

Remark 4.3 The architecture of the chaos-based image cryptosystem mainly consists of
two stages: the confusion (pixel permutation) stage and the diffusion (sequential pixel-
value modification) stage, which are directly generated by the point-spread function A
on pixels of the hidden image H to the encrypted image L = A♦H (pixel permutation or
sequential pixel-value modification of H by A). In this paper, the hidden image H encrypts
of the confusion stage to the encrypted image L = A ∗ H , which is generated by the linear
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Figure 9 Encrypted images using linear method

method of element-wise multiplication of A and H such that stacking the columns of A ∈
R

m×m corresponding with the discrete logistic chaotic map {xn}m2
n=1. For the diffusion stage

using this linear method, the encrypted image L can be generated by L = A · H (regular
matrix multiplication of A and H) as in Fig. 9.

Open problem How to write a programming technique of FBSA_Err to solve the image-
feature extraction with multiple-image blends problem of the encrypted image L = A · H?

4.2 Split minimization problem
Let G1 : H1 →R∪ {∞} and G2 : H2 →R∪ {∞} be two convex and lower semicontinuous
functions. If f1 = f2 = 0 and B1 = ∂G1, and B2 = ∂G2 then the SMVIP is reduced to the split
variational inclusion problem (SVIP) or the split minimization problem (SMP), which is
to find x∗ ∈ H1 such that

G1
(
x∗) = min

x∈H1
G1(x) ⇔ 0 ∈ ∂G1

(
x∗) (4.8)

and such that y∗ = Ax∗ ∈ H2 solves

G2
(
y∗) = min

y=Ax∈H2
G2(y) ⇔ 0 ∈ ∂G2

(
y∗) (4.9)

and we will denote by � the solution set of (4.8) and (4.9). That is,

� =
{

x ∈ H1 : x solves (4.8) and y = Ax solves (4.9)
}

.

Many researchers have proposed, analyzed, and modified the iteration methods for solv-
ing the SMVIP and the SVIP using self-adaptive, step-size methods. Recently, Yao et al.
[43] introduced the YSLD method in Algorithm 2.1 for solving SMVIP, and also Tan et al.
[44] introduced TQY methods in Algorithms 3.3 and 3.4, and Thong et al. [45] introduced
the TDC method in Algorithm 3.3 for solving SVIP, as follows.

Let H1, H2, A, f1, f2, B1, B2, and f be defined as the state of Theorem 3.1, and assume
that � and � are nonempty and satisfy the condition (A).
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YSLD method in Algorithm 2.1 Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence generated
by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = zn + γnA∗(JB2
λ (I – λf2)Azn) – Azn),

xn+1 = JB1
λ (I – λf1)yn,

for all n ∈N, where θn ∈ [0, θ̄n], λ ∈ (0, 2ψ) such that ψ = min{ψ1,ψ2} and

θ̄n =

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖2 , θ}, xn �= xn–1,

θ , otherwise,

and

γn =

⎧
⎪⎨

⎪⎩

ρn‖JB2
λ (I–λf2)Azn–Azn‖2

‖A∗(JB2
λ (I–λf2)Azn–Azn)‖2

, JB2
λ (I – λf2)Azn – Azn �= 0,

γ , otherwise,

such that ρn ∈ [a, b] ⊂ (0, 1), {ωn} ∈ �1, θ ∈ [0, 1) and γ > 0.

TQY method in Algorithm 3.3 Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence generated
by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = JB1
λ (zn – γnA∗(I – JB2

λ )Azn),

xn+1 = (1 – αn – βn)zn + βnyn,

for all n ∈ N, where {αn}, {βn} ⊂ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂
(a, b) ⊂ (0, 1 – αn), and

θn =

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ , θ}, xn �= xn–1,

θ , otherwise,
(4.10)

and

γn =

⎧
⎪⎨

⎪⎩

ρn‖(I–JB2
λ )Azn‖2

‖A∗(I–JB2
λ )Azn‖2

, ‖A∗(I – JB2
λ )Azn‖ �= 0,

γ , otherwise,
(4.11)

such that θ > 0, γ > 0, λ > 0, ρn ∈ (0, 2), ωn = o(αn) and limn→∞ ωn
αn

= 0.

TQY method in Algorithm 3.4 Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence generated
by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = JB1
λ (zn – γnA∗(I – JB2

λ )Azn),

xn+1 = αnf (xn) + (1 – αn)yn,
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for all n ∈ N, where {αn} ⊂ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, θn defined as
(4.10) and γn defined as (4.11) such that θ > 0, γ > 0, λ > 0, ρn ∈ (0, 2), ωn = o(αn) and
limn→∞ ωn

αn
= 0.

TDC method in Algorithm 3.3 Let x0, x1 ∈ H1 and {xn} ⊂ H1 be a sequence generated
by

⎧
⎪⎪⎨

⎪⎪⎩

zn = xn + θn(xn – xn–1),

yn = JB1
λ (zn – γnA∗(I – JB2

λ )Azn),

xn+1 = (1 – αn)(zn – βnd(zn, yn)) + αnf (xn),

for all n ∈ N, where θn ∈ [0, θ̄n], {αn} ⊂ (0, 1), {γn} ⊂ [a, b] ⊂ (0, 1
L ) such that L = ‖A‖2,

limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and

θ̄n =

⎧
⎨

⎩
min{ ωn

‖xn–xn–1‖ , θ}, xn �= xn–1,

θ , otherwise,

and

βn =
〈zn – yn, d(zn, yn)〉

‖d(zn, yn)‖2

such that

d(zn, yn) = zn – yn – γn
(
A∗(I – JB2

λ

)
Azn – A∗(I – JB2

λ

)
Ayn
)

and θ > 0, λ > 0, ωn = o(αn) ∈ [0, θ ), and limn→∞ ωn
αn

= 0.

Example 4.4 We illustrate the performance of our Algorithm 2 in Theorem 3.1 compared
with the YSLD Algorithm 2.1, TQY Algorithms 3.3 and 3.4, and the TDC Algorithm 3.3.
We implemented them in MATHEMATICA 5.0 to solve and run on a personal laptop:
Intel(R) Core(TM) i5-8250U CPU @1.80 GHz 8 GB RAM.

Let H1 = H2 = L2([0, 1]) embedded with the inner product 〈x(t), y(t)〉 =
∫ 1

0 x(t)y(t) dt and
the induced norm ‖x(t)‖ = (

∫ 1
0 |x(t)|2 dt)1/2 for all x(t), y(t) ∈ L2([0, 1]). Let A : L2([0, 1]) →

L2([0, 1]) be the Volterra integration operator, which is given by (Ax)(t) =
∫ t

0 x(s) ds for all
t ∈ [0, 1] and x(t) ∈ L2([0, 1]). It is well known that the adjoint A∗ of A, which is defined by
(A∗x)(t) =

∫ 1
t x(s) ds for all t ∈ [0, 1] and x(t) ∈ L2([0, 1]), is a bounded linear operator and

‖A‖ = 2
π

(see [46]).
Let f1 = f2 = 0 and B1 = ∂‖x(t)‖, B2 = ∂‖y(t)‖ with y(t) = Ax for all x(t), y(t) ∈ L2([0, 1]).

Then, the SMVIP and the SVIP are reduced to finding x∗(t) ∈ L2([0, 1]) such that

∥
∥x∗(t)
∥
∥ = min

x(t)∈L2([0,1])

∥
∥x(t)
∥
∥ ⇔ 0 ∈ ∂

∥
∥x∗(t)
∥
∥

and such that y∗(t) = Ax∗ ∈ L2([0, 1]) solves

∥
∥y∗(t)
∥
∥ = min

y(t)=Ax∈L2([0,1])

∥
∥y(t)
∥
∥ ⇔ 0 ∈ ∂

∥
∥y∗(t)
∥
∥.
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Algorithm 2 The forward–backward splitting algorithm with errors
procedure FBSA_Err2

Choose the initials x0, x1 ∈ H1 arbitrarily. Set the error ε.
Set the operator A, and the mapping f in backing tracks.
n ← 0
repeat

n ← n + 1
Update the parameters αn, γn, λn, ηn, θn and the errors εn ∈ H1 and ξn ∈ H2.
zn ← xn + θn(xn – xn–1)
yn ← zn + γnA∗(JB2

ηn ((I – ηnf2)Azn + ξn) – Azn)
xn+1 ← αnf (yn) + (1 – αn)JB1

λn ((I – λnf1)yn + εn)
until ‖xn+1 – xn‖ < ε

return xn+1

end procedure

Table 5 Numerical results of Example 4.4 for ψ1 =ψ2 = 1

Algorithms x0 = x1 = 15 x0 = x1 = 20t2 + t x0 = x1 = 20 sin(t) x0 = x1 = 5et

(ψ1 =ψ2 = 1) n CPU (s) n CPU (s) n CPU (s) n CPU (s)

Our Alg. 2 5 0.6880 5 1.1710 5 2.3760 4 0.7660
YLSD Alg. 2.1 6 0.9220 6 1.6250 6 2.0940 5 2.1410
TQY Alg. 3.3 7 3.9380 6 2.9060 7 4.9690 6 3.1710
TQY Alg. 3.4 7 2.1090 6 2.5470 6 2.2500 5 2.1710

Note that (x(t), y(t)) = (0, 0) ∈ � = �. For λ > 0 and x(t) ∈ L2([0, 1]), by [43] we have

(
JB1
λ x
)
(t) =

⎧
⎨

⎩
x – λx

‖x‖ , ‖x‖ > λ,

0, ‖x‖ ≤ λ,
and
(
JB2
λ x
)
(t) =

⎧
⎨

⎩
x – λAx

‖Ax‖ , ‖Ax‖ > λ,

x – Ax, ‖Ax‖ ≤ λ.

In the compared algorithms, all parameters have been set to their high performance.
Since, f1 and f2 are ψ1 and ψ2 inverse strongly monotones for all ψ1,ψ2 > 0, respectively,
we fix ψ1 = ψ2 and let L = ‖A‖2, L0 = 1

2L , L1 = ψ1 and L2 = ψ2.
For each n ∈N, we set αn = 10–10

n+1 , βn = (1 – 10–10)(1 – αn), γn = L0 (A3 type in Table 2 for
our Alg. 2 and TDC Alg. 3.3), λn = 2L1 (A6 type in Table 2), λ = 2L1 – 0.01 (for YLSD Alg.
2.1), λ = 2L1 (for TQY Algs. 3.3 and 3.4, and TDC Alg. 3.3), ηn = 2L2 (A6 type in Table 2),
θn (for our Alg. 2) is as (4.5), θn = θ̄n (for YSLD Alg. 2.1 and TDC Alg. 3.3), ωn = 1

(n+1)2 ,
ρn = θ = γ = 0.5, the errors εn(t) = ξn(t) = 1

(n+1)3 and f (x(t)) = x
5 for all x(t) ∈ L2([0, 1]).

We use ‖xn+1 – xn‖ < ε such that the error ε = 10–10 is the stopping criterion in the
process of all compared algorithms. The numerical results are shown in Table 5 (for ψ1 =
ψ2 = 1), Table 6 (for ψ1 = ψ2 = 10), and Table 7 (for ψ1 = ψ2 = 20), and the convergence
behaviors of the error sequences {‖xn+1 – xn‖} are shown in Fig. 10 (for ψ1 = ψ2 = 1 only)
with four different initial functions x0(t) = x1(t) (except for the TDC Algorithm 3.3 because
their convergence is slow). Moreover, we also show the approximate solution functions
of some case studies via the speed up of convergence from increased values ψ1 = ψ2 =
1, 10, 20 with initial functions x0(t) = x1(t) = 15, see Fig. 11.
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Table 6 Numerical results of Example 4.4 for ψ1 =ψ2 = 10

Algorithms x0 = x1 = 15 x0 = x1 = 20t2 + t x0 = x1 = 20 sin(t) x0 = x1 = 5et

(ψ1 =ψ2 = 10) n CPU (s) n CPU (s) n CPU (s) n CPU (s)

Our Alg. 2 3 0.2030 3 4.2960 3 0.6100 2 0.2030
YLSD Alg. 2.1 2 0.0620 2 0.1100 2 0.1870 2 0.2190
TQY Alg. 3.3 3 0.0620 3 0.1870 3 0.2970 3 0.2960
TQY Alg. 3.4 3 0.0780 2 0.1100 3 0.3270 2 0.2340

Table 7 Numerical results of Example 4.4 for ψ1 =ψ2 = 20

Algorithms x0 = x1 = 15 x0 = x1 = 20t2 + t x0 = x1 = 20 sin(t) x0 = x1 = 5et

(ψ1 =ψ2 = 20) n CPU (s) n CPU (s) n CPU (s) n CPU (s)

Our Alg. 2 3 0.1870 3 4.2970 3 0.5780 2 0.2030
YLSD Alg. 2.1 2 0.0620 2 0.1560 2 0.2190 2 0.2500
TQY Alg. 3.3 3 0.0780 3 0.2030 3 0.2810 3 0.2810
TQY Alg. 3.4 3 0.0780 2 0.1100 3 0.2810 2 0.2350

Figure 10 Convergence behaviors of the error sequences for ψ1 =ψ2 = 1

Remark 4.5 From the results in Tables 5, 6, and 7, we see that the quantities of loops n
and the CPU times usage of all the compared algorithms depend on ψ1 and ψ2, which
means that they are better for large ψ1 and ψ2, and worse for small ψ1 and ψ2, at the same
time the speed of convergence behaves similarly. Moreover, the speed of convergence to
the solution of the YLSD Algorithm 2.1 is better than others, their approximate solution
function is (x∗(t), y∗(t)) = (0., 0.), where “0.” means that it is in interval (–p, p), where p =
2.22507 × 10–308 (the smallest positive machine-precision number in MATHEMATICA),
see Fig. 11.



Tianchai Fixed Point Theory Algorithms Sci Eng          (2023) 2023:5 Page 30 of 34

Figure 11 Approximate solution functions of Example 4.4 with initial functions x0(t) = x1(t) = 15

4.3 Convex minimization problem
Let F1 : H1 → R be a convex and differentiable function and G1 : H1 → R ∪ {∞} be a
convex and lower semicontinuous function such that the gradient ∇F1 is a 1

ψ1
-Lipschitz

continuous function and ∂G1 is a subdifferential of G1. If F2 = G2 = 0 then the SCMP is
reduced to a convex minimization problem (CMP), which is to find x∗ ∈ H1 such that

F1
(
x∗) + G1

(
x∗) = min

x∈H1

{
F1(x) + G1(x)

} ⇔ 0 ∈ ∇F1
(
x∗) + ∂G1

(
x∗).

Example 4.6 We illustrate the performance of our Algorithm 3 in Theorem 4.1 for solving
a convex minimization problem. We implemented them in MATHEMATICA 5.0 to solve
and run on a personal laptop: Intel(R) Core(TM) i5-8250U CPU @1.80 GHz 8 GB RAM.

Find the minimization of the following �1-least-square problem:

min
x∈R3

{
‖x‖1 +

1
2
‖x‖2

2 – (2, 3, 4)x + 3
}

,

where x = (u, v, w)T ∈R
3.

Let H1 = H2 = (R3,‖·‖2), F1(x) = 1
2‖x‖2

2 –(2, 3, 4)x+3, F2(x) = 0 and G1(x) = ‖x‖1, G2(x) =
0 for all x ∈ R

3, and A = I . Then, ∇F1(x) = (u – 2, v – 3, w – 4)T and ∇F2(x) = (0, 0, 0)T

for all x ∈ R
3. It follows that F1 is convex and differentiable on R

3 with ψ1 = 1 of 1
ψ1

-
Lipschitz continuous gradient ∇F1. Moreover, G1 is convex and lower semicontinuous
but not differentiable on R

3.
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Algorithm 3 The forward–backward algorithm with errors
procedure FBSA_Err3

Choose the initials x0, x1 ∈ H1 arbitrarily. Set the error ε.
Set the mapping f in backing tracks.
n ← 0
repeat

n ← n + 1
Update the parameters αn, λn, θn and the error εn ∈ H1.
zn ← xn + θn(xn – xn–1)
yn ← zn

xn+1 ← αnf (yn) + (1 – αn) proxλnG1 ((I – λn∇F1)yn + εn)
until ‖xn+1 – xn‖ < ε

return xn+1

end procedure

Table 8 Numerical results of Example 4.6 for the initial points x0 = (–1, 2, 1)T and x1 = (2, –1, –2)T

using Algorithm 3 in Theorem 4.1

Type λn for L1 = 1 n CPU (s) x∗ ‖xn+1 – xn‖2
A1 L1

10 142 0.546 (1.00001, 2.00000, 2.99999)T 8.78× 10–7

A2 L1 –
L1
10 49 0.046 (1.00001, 2.00001, 3.00001)T 9.60× 10–7

A3 L1 48 0.047 (1.00001, 2.00001, 3.00001)T 9.38× 10–7

A4 L1 +
L1
10 47 0.063 (1.00001, 2.00001, 3.00001)T 9.27× 10–7

A5 2L1 –
L1
10 – – – –

A6 2L1 – – – –

B1 L1n
n+1 48 0.046 (1.00001, 2.00001, 3.00001)T 9.65× 10–7

B2 L1(n+2)
n+1 47 0.046 (1.00001, 2.00001, 3.00001)T 9.92× 10–7

B3 2L1n
n+1 – – – –

C1 L1 +
(–1)nL1
n+1 37 0.031 (1.00002, 2.00002, 3.00002)T 8.75× 10–7

C2 L1 +
(–1)n+1L1

n+1 36 0.031 (1.00002, 2.00002, 3.00002)T 9.74× 10–7

We set f (x) = x
5 for all x ∈ R

3. Then, f is a contraction. For each n ∈ N, we choose αn =
10–6

n+1 , εn = 1
(n+1)3 (1, 1, 1)T , ξn = (0, 0, 0)T , and we define θn as (4.5), and for all x ∈R

3 we have

proxλnG1 (x)

=
(
sign(u) max

{|u| – λn, 0
}

, sign(v) max
{|v| – λn, 0

}
, sign(w) max

{|w| – λn, 0
})T .

We choose the initial points x0 = (–1, 2, 1)T and x1 = (2, –1, –2)T for computing the re-
cursive of the sequence {xn} using Algorithm 3 in Theorem 4.1 with an error ε = 10–6 in
each of the chosen types of the sequences {λn} with L1 = ψ1 = 1 as in Table 8 (except for
A5, A6, and B3 types because their convergence is slow). As n → ∞, we obtain xn → x∗

such that the approximate minimization of F1 + G1 is (1, 2, 3)T and its approximate min-
imum value is –4, as in Table 8, and we also show the convergence behavior of the error
sequences {‖xn+1 – xn‖2} that converge to the zero value for each of the best choices A4,
B2, and C2 types of the sequences {λn}, see Fig. 12.
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Figure 12 Convergence behavior of the error sequences {‖xn+1 – xn‖2} for each of the best choices A4, B2,
and C2 types in Example 4.6

Table 9 Choices of the parameter θn for testing the fast convergence with C2 type of the parameter
λn

Choice n CPU (s) x∗ ‖xn+1 – xn‖2
1 34 0.016 (1.00002, 2.00002, 3.00002)T 9.93× 10–7

2 34 0.016 (1.00002, 2.00002, 3.00002)T 9.99× 10–7

3 34 0.015 (1.00002, 2.00002, 3.00002)T 9.93× 10–7

4 36 0.031 (1.00002, 2.00002, 3.00002)T 8.96× 10–7

5 36 0.031 (1.00002, 2.00002, 3.00002)T 9.83× 10–7

6 36 0.031 (1.00002, 2.00002, 3.00002)T 9.74× 10–7

7 36 0.016 (1.00002, 2.00002, 3.00002)T 8.96× 10–7

We next consider seven different choices of the parameter θn for testing the fast con-
vergence as (4.6) and (4.7) with C2 type of the parameter λn only, and the others as they
were.

From the results of the seven different choices of the parameter θn as in Table 9, we
see that the quantities of loops n and the CPU times usage of choices 1, 2, and 3 are less
than the others, and we conclude that choices 1, 2, and 3 of the parameter θn are to be an
accelerated choice for the speed up of convergence of solving this simple example.

5 Conclusion
A new iterative forward–backward splitting algorithm with errors (FBSA_Err) for solv-
ing SMVIP is obtained in our main result. It can be applied to solving the image-feature
extraction with multiple-image blends problem. Under the encrypted image L = A ∗ H ,
which is generated by the linear method of element-wise multiplication of A and H such
that stacking the columns of A ∈ R

m×m corresponding with the discrete logistic chaotic
map {xn}m2

n=1, and setting all parameters to their fast convergence, we obtain the following
results:

1. For the quality measure of the decrypted image by the NCC measure only, A1, A6,
and A6 types of the parameters γn, λn, and ηn, respectively, and choice 6 of the
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parameter θn as (4.5) are the best choices to solve the image-feature extraction with
multiple-image blends problem using FBSA_Err.

2. For the quality measure of the decrypted image by NCC, SNR, and ISNR measures
together, A2, A6, and A6 types of the parameters γn, λn, and ηn, respectively, and
choice 6 of the parameter θn as (4.5) are the best choices to solve the image-feature
extraction with multiple-image blends problem using FBSA_Err.

For application of our main result to the split variational inclusion problem or the split
minimization problem, compared with the YSLD Algorithm 2.1 [43], TQY Algorithms 3.3
and 3.4 [44], and the TDC Algorithm 3.3 [45], the speed of convergence to the solution of
the YLSD Algorithm 2.1 is better than the others except for complex problems (e.g., the
image/signal-recovery problems).

For application of our main result to the convex minimization problem, theC2 type of
the parameter λn and choices 1, 2, and 3 of the parameter θn are the best choices to solve
the convex minimization problem.
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