
Fixed Point Theory and Algorithms
for Sciences and Engineering
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Abstract
A problem of motion of a piezoelectric actuator in contact with an elasto-plastic
obstacle is reformulated as a PDE in one spatial dimension with hysteresis in the bulk
and on the contact boundary. The model is shown to dissipate energy in agreement
with the principles of thermodynamics. The main result includes existence,
uniqueness, and continuous data dependence of solutions.
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1 Introduction
Piezoelectric or magnetostrictive actuators are often used, thanks to the capability of
transforming mechanical energy into the electromagnetic one and vice versa, in microp-
ositioning systems for accurate control of small displacements or in energy harvesting
devices. The main technical issue in applications is energy dissipation due to intrinsic
hysteresis of the material. Heat released during the process as a result of energy dissipa-
tion may in turn have a negative influence on the performance of the system. Reliable and
correct estimation of dissipated energy is therefore one of the crucial modeling issues.

It has been observed that in common magnetostrictive materials, such as galfenol or
terfenol D, hysteresis loops exhibit a self-similar character, that is, at different constant
stresses, the magnetization curves have a similar shape with slopes inversely proportional
to the stress. A natural idea is thus to model the phenomenon by a single scalar hystere-
sis operator acting on a self-similar variable. The same self-similarity is observed on the
magnetostrictive “butterfly-shaped” curves. It was shown in [4] that if magnetic hysteresis
is represented by the Preisach operator and the magnetostrictive hysteresis curve by the
associated Preisach hysteresis potential, then the full model with two inputs (magnetic
field and stress) and two outputs (magnetization and strain) is in agreement with classi-
cal thermodynamics as well as with the engineering intuitive rule that in cyclic processes
hysteresis dissipation is proportional to the area of the hysteresis loop.

A thermodynamically consistent theory of hysteresis phenomena in electro-magneto-
elastic materials has been proposed in [4], where the self-similar character of the consti-
tutive relations was exploited for the first time with a good agreement with experiments.
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However, small discrepancies have been observed at low fields. The inaccuracy was due to
mean field feedback effects which were neglected, so that for example mechanical depo-
larization or demagnetization was not accounted for. Feedback was theoretically included
in a thermodynamically consistent way into the model in [10] in connection with the prob-
lem of optimal energy harvesting, and it was recently experimentally confirmed in [3].

This paper is devoted to a mathematical model for the situation that a piezoelectric ac-
tuator comes into contact with an elasto-plastic obstacle. This situation typically occurs in
applications, where the electromechanical actuator is used for accurate micropositioning
of components in computer controlled mass production of complex systems, for example.
The actuator here is represented by a 1D rod of length L, with one end fixed and one end
free. The free end can come into contact with an elasto-plastic obstacle. If this happens,
then the force acting on this free boundary is activated according to the elasto-plastic
characteristics of the obstacle.

The constitutive law for the rod includes elastic, viscous, and piezoelectric effects. The
mathematical model consists of a 1D dynamic momentum balance equation combined
with the 1D Gauss law for the electrodynamic balance. The length of the rod is so small
that the speed of light can be assumed infinite. In this case, the Gauss law implies that the
dielectric displacement is only a function of time depending on the boundary condition
representing the impressed current, which is assumed to be the given driving force of the
process.

Unlike in [1, 5–8, 14, 15], we do not take into account the thermal effects in our model,
and we focus on the interaction between piezoelectricity and boundary contact. Coupling
the model with heat transfer will be a subject of a subsequent study.

The paper is organized as follows. The modeling issues are discussed in Sect. 2, where
we derive the PDE with hysteresis operators in the bulk and on the boundary taking into
account the piezoelectric constitutive law and the boundary contact condition. Basic ele-
ments of the theory of the Preisach operator are summarized in Sect. 3. Existence, unique-
ness, and continuous data dependence results are stated and proved in Sect. 4, and the
proofs are based on the Banach fixed point principle with respect to a suitable norm.

2 Description of the model
The actuator is represented by a thin piezoelectric bar of length L which vibrates longitudi-
nally. The state variables are the displacement u and the electric field E, the state functions
are the stress σ and the dielectric displacement D. We assume that the bar driven by ap-
plied electric current is free to move on the one end as long as it does not hit a material
obstacle, while the other end is kept fixed. We consider u(x, t) to be the u1 component of
the displacement vector at time t of the material point of spatial coordinate x ∈ (0, L), and
σ to be the σ11 component of the stress tensor. The motion is governed by the system

ρutt – σx = 0, (2.1)

Dx = 0, (2.2)

consisting of the Newton law of motion for the displacement u with mass density ρ , and of
the Gauss law for the dielectric displacement D. We denote here for simplicity (·)x

def= ∂(·)
∂x
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and (·)t
def= ∂(·)

∂t . The stress σ is assumed to satisfy the constitutive equation

σ
def= Aε + νεt – eE + σpiezo and ε

def= ux, (2.3)

where ε is the ε11 component of the strain tensor, A > 0 is constant elasticity modulus,
e ∈ R is a constant piezoelectric coupling coefficient, ν > 0 is a constant viscosity modulus,
and σpiezo is the irreversible hysteretic piezoelectric stress component.

For σpiezo, we refer to the model of piezoelectricity presented in [10] as a counterpart of
the model for magnetostriction proposed in [3, 4]. It consists in assuming that the consti-
tutive relation is given in terms of one auxiliary scalar self-similar variable denoted by q.
We consider a hysteresis operator P which admits a potential operator U in the sense that
the hysteresis energy inequality

q
d
dt

P[q] –
d
dt

U [q] ≥ 0 a. e. (2.4)

holds for all absolutely continuous inputs q. We assume for definiteness that P is the
Preisach operator as in [9]. Then, in particular, (2.4) holds for Preisach potential operator
U . We recall the definition of the operators P and U in the next section.

We assume the piezoelectric constitutive relation in the form

σpiezo = f ′(ε)U [q] +
1
2

b′(ε)P2[q], (2.5)

D = eε + κE + P[q], (2.6)

q =
1

f (ε)
(
E – b(ε)P[q]

)
, (2.7)

where q the self-similar variable, f (ε) > 0 is a self-similarity function, b(ε) is a feedback
coefficient, and κ > 0 is the dielectric constant. The primes denote derivatives with respect
to ε. A detailed discussion about physical motivation for self-similarity can be found in [3].

System (2.5)–(2.7) coincides with the model in [9] for b(ε) = 0, that is, when the feedback
effects are neglected. Recent experimental investigations in [3] carried out in Benevento
in the case of magnetostriction illustrate the importance of the feedback term at low fields.
This is why we include the feedback term also here similarly as in [10].

Note that the equation for q in (2.7) is implicit, and we have to prove that it is well posed.
To this end, we invoke in Theorem 3.3 a general result on invertibility of the Preisach
operator with time-dependent coefficients.

Let us first check that model (2.5)–(2.7) is consistent with classical thermodynamics
in the sense that there exists a free energy operator F [ε, E] such that for all absolutely
continuous processes we have

DtE + εtσ –
d
dt

F [ε, E] ≥ 0 a. e. (2.8)

The left-hand side of (2.8) is the total energy dissipation rate which has to be nonnegative
in agreement with the first and the second principles of thermodynamics.

We claim that the right choice for the free energy operator is then

F [ε, E] =
A
2

ε2 +
κ

2
E2 + f (ε)U [q] +

1
2

b(ε)P2[q] (2.9)
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with q as in (2.7). An elementary computation now yields

DtE + εtσ –
d
dt

F [ε, E] = f (ε)
(

q
d
dt

P[q] –
d
dt

U [q]
)

+ νε2
t ≥ 0 a. e. (2.10)

by virtue of (2.4), hence (2.8) holds.
For (2.1) we prescribe the Cauchy initial data

u(x, 0) = u0(x) and ut(x, 0) = v0(x) (2.11)

for x ∈ (0, L), and boundary conditions at x = 0 and x = L for t ∈ (0, T), given by

u(0, t) = 0 and σ (L, t) = –B
[
u(L, ·)](t) (2.12)

with a boundary contact operatorB describing the elasto-plastic contact. For details about
modeling contact with an elasto-plastic obstacle, we refer to [14]. Here, we just note that
an energy inequality analogous to (2.4) has to be satisfied, namely

utB[u] – E[u]t =
∣
∣D[u]t

∣
∣ ≥ 0 a. e. (2.13)

for every absolutely continuous input u, with potential energy operator E and dissipation
operator D. We only assume the technical assumption on Lipschitz continuity to hold,
namely

∣∣B[u1](t) – B[u2](t)
∣∣ ≤ CB max

τ∈[0,t]

∣∣u1(τ ) – u2(τ )
∣∣ (2.14)

for all u1, u2 ∈ C0([0, T]) with a constant CB > 0.
We may consider the boundary contact operator B in the form B[u] = g(S[u]), where S

is the solution operator S : u �→ w = S[u] of the variational inequality

⎧
⎪⎪⎨

⎪⎪⎩

w(t) – au(t) ≤ c for every t ∈ [0, T],

w(0) = min{au(0) + c, bu(0)},
(but(t) – wt(t))(w(t) – au(t) – z) ≥ 0 a. e. for every z ≤ c,

(2.15)

with constants a > b > 0, c > 0, where a is the elasticity modulus of the obstacle, b is its
hardening modulus, c is its yield point, and g is a Lipschitz continuous nondecreasing
function which vanishes for negative arguments. A typical choice of g is the positive part
g(ζ ) = ζ + def= max{ζ , 0}. To illustrate the meaning of (2.15), assume that the bar touches at
some time t0 the elasto-plastic obstacle for some value u(t0) ≥ 0 of the displacement u, see
Fig. 1, and that u increases in some time interval [t0, t1].

The reaction of the obstacle is first elastic with slope b. It becomes plastic with linear
kinematic hardening of slope a when the yield criterion is reached. If u(t) starts decreasing
after the time t1, then S[u](t) decreases as well and follows the reversible elastic unloading
path with slope b until the contact is lost at some time t2, that is, S[u](t2) = 0. The value
u(t2) represents a remanent deformation of the obstacle at time t2, so that the next contact
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Figure 1 Deformation of an elasto-plastic obstacle

with the obstacle takes place when u(t) reaches u(t2) again. The reader is referred to [14]
for some further explanations.

The energy balance (2.13) holds provided we choose

E[u] def=
1
b

(
G(w) +

b – a
a

G
(

a
b – a

(bu – w)
))

,

D[u] def=
b – a

ab

(
G

(
a

b – a
(bu – w) +

bc
b – a

)
– G

(
a

b – a
(bu – w)

))
,

where G(z) def=
∫ z

0 g(s) ds. Identity (2.13) can easily be checked by a straightforward differen-
tiation, taking into account the fact that but – vt ≥ 0 almost everywhere, and if but – vt > 0,
then w = au + c. The Lipschitz continuity (2.14) of this operator is a standard result which
goes back to [11], see also [14].

We define the space X def= {φ ∈ W1,2(0, L) : φ(0) = 0} and state the problem in a variational
form as

∀φ ∈ X :
∫ L

0
(ρuttφ + σφx) dx + B

[
u(L, ·)](t)φ(L) = 0. (2.16)

The equation Dx = 0 means that D is a function of t only, say, D(x, t) = r(t), that is,

eε + κE + P[q] = r(t), (2.17)

where r(t) is a function which is known from an additional boundary condition D(0, t) =
D(L, t) = r(t), corresponding to an impressed (or measured) boundary current.

If no energy supply takes place, that is, if r(t) ≡ 0 in (2.17), then the total energy of the
system is nonincreasing in agreement with physical expectation. Indeed, we test (2.16) by
φ = ut and use the fact that D = 0. Then by (2.8) we have

σuxt ≥ ∂

∂t
F [ux, E]. (2.18)

We multiply (2.1) by ut , and we integrate this expression over [0, L]. Then, according to
(2.11), (2.13), and (2.18), we find

d
dt

(∫ L

0

(
ρ

2
u2

t + F [ux, E]
)

(x, t) dx + E[u](L, t)
)

≤ 0. (2.19)

Hence, the sum of kinetic energy, potential energy in the bulk, and boundary potential
energy is nonincreasing, which we wanted to check.
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Equation (2.17) allows us to eliminate the electric variables from (2.16) similarly as in [9],
where the feedback contribution was not taken into account. The strategy is to reformulate
the constitutive equation (2.3) in the form

σ = Aε + νεt + W[ε] (2.20)

with a Lipschitz continuous operatorW : C0([0, T]) →C0([0, T]). Indeed, by virtue of (2.7),
we have

E = f (ε)q + b(ε)P[q], (2.21)

so that we can rewrite (2.17) as

q +
1 + κb(ε)

κf (ε)
P[q] =

r – eε
κf (ε)

. (2.22)

We need here to represent the auxiliary variable q in (2.22) as an operator acting on ε.
In other words, we need to find the inverse operator to the left-hand side of (2.22). In
general, the inversion of hysteresis operators is a nontrivial problem. An explicit formula
for the inverse Prandtl–Ishlinskii operator as a special case of the Preisach operator has
been derived in [12]. The first proof of the existence and Lipschitz continuity of a general
inverse Preisach operator given in [2] was based on a geometric idea of evolving memory
curves. Here in (2.22), however, the situation is more complicated because of the time
dependent factor in front of the Preisach operator, and the memory curve argument fails.
The invertibility of such operators was proved much later in [9, Proposition 3.7], and we
state the result in Theorem 3.3. Before, we recall some basic elements of the theory of
Preisach operators.

3 The Preisach operator
We use the following definition of the Preisach operator which is shown in [13] to be
equivalent to the original Preisach construction in [16].

Definition 3.1 Let ψ : (0,∞) ×R →R be a measurable function which is Lipschitz con-
tinuous in the second variable and such that ψ(r, 0) = 0 for a. e. r > 0. For a given input
q ∈ W1,1(0, T), we define the output P[q] ∈ W1,1(0, T) of a Preisach operator P by the
integral

P[q](t) def=
∫ ∞

0
ψ

(
r, ξr(t)

)
dr for t ∈ [0, T], (3.1)

where ξr ∈ W1,1(0, T) is the unique solution of the variational inequality

⎧
⎪⎪⎨

⎪⎪⎩

|q(t) – ξr(t)| ≤ r for all t ∈ [0, T],

ξ̇r(t)(q(t) – ξr(t) – rz) ≥ 0 a. e. and for all |z| ≤ 1,

ξr(0) = max{q(0) – r, min{0, q(0) + r}}.
(3.2)

The Preisach operator P is called a Prandtl–Ishlinskii operator if ψ is linear in v, that is,
ψ(r, v) = μ(r)v for some μ ∈ L1

loc(0, +∞).
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We easily check from (3.2) that ξr(t) = 0 for r ≥ ‖q‖, where ‖ · ‖ denotes the sup-norm
in C0([0, T]), so that the integral in (3.1) is meaningful.

The parameter r is the memory variable, and the mapping q �→ ξr introduced in [11] is
called the play operator. Note that its extension to C0([0, T]) is Lipschitz continuous with
Lipschitz constant 1, that is,

∣
∣ξ 1

r (t) – ξ 2
r (t)

∣
∣ ≤ max

τ∈[0,t]

∣
∣q1(τ ) – q2(τ )

∣
∣. (3.3)

For our purposes, it is convenient to reduce the set of admissible functions ψ , and we
adopt the following hypothesis.

Hypothesis 3.2 We assume that ψ(r, 0) = 0 for a. e. r > 0, and
(i) 0 ≤ ∂ψ

∂v (r, v) ≤ μ(r) a. e., where μ ∈ L1(0, +∞),
∫ ∞

0 μ(r) dr = M;
(ii) There exists 0 < M1 < +∞ such that

∫ +∞

0

∫ +∞

–∞
∂ψ

∂v
(r, v) dv dr = M1; (3.4)

(iii) |v| ∂ψ

∂v (r, v) ≤ μ2(r) a. e., where μ2 ∈ L1(0, +∞),
∫ ∞

0 μ2(r) dr = M2.

Hypothesis 3.2(i) means that the Preisach operator P is dominated by a Prandtl–
Ishlinskii operator. Hypothesis 3.2(ii) implies that ‖P[q]‖ ≤ M1 for all q ∈ C0([0, T]). It
is easy to check that even without Hypothesis 3.2(i), (ii), the Preisach operator satisfies the
energy inequality (2.4) with the choice

U [q](t) =
∫ +∞

0



(
r, ξr(t)

)
dr, (3.5)

with


(r, v) =
∫ v

0
v′ ∂ψ

∂v
(
r, v′)dv′. (3.6)

By (3.3), the operator P can be extended to C0([0, T]), and if Hypothesis 3.2(i) is fulfilled,
then the Lipschitz property

∣
∣P[q1](t) – P[q2](t)

∣
∣ ≤ M max

τ∈[0,t]

∣
∣q1(τ ) – q2(τ )

∣
∣ (3.7)

holds for all q1, q2 ∈ C0([0, T]) and all t ∈ [0, T]. If moreover Hypothesis 3.2(iii) holds, then
the operator U is also Lipschitz continuous, and we have

∣∣U [q1](t) – U [q2](t)
∣∣ ≤ M2 max

τ∈[0,t]

∣∣q1(τ ) – q2(τ )
∣∣ (3.8)

for all q1, q2 ∈ C0([0, T]) and all t ∈ [0, T].

Theorem 3.3 Let Hypotheses 3.2(i), (ii) hold. Then, for every nonnegative function b ∈
C0([0, T]) and for every w ∈ C0([0, T]), there exists unique q ∈ C0([0, T]) such that

q(t) + b(t)P[q](t) = w(t) ∀t ∈ [0, T]. (3.9)
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Furthermore, let b1, b2 ∈ C0([0, T]) be such that 0 ≤ bi(t) ≤ b̄ for all t ∈ [0, T], i = 1, 2, and
let w1, w2 ∈ C0([0, T]) be given. Let q1, q2 ∈ C0([0, T]) be solutions of the equations

qi(t) + bi(t)P[qi](t) = wi(t) for all t ∈ [0, T], i = 1, 2. (3.10)

Then we have

‖q1 – q2‖ ≤ eb̄M(‖w1 – w2‖ + M1‖b1 – b2‖
)
. (3.11)

In order to apply Theorem 3.3 to case (2.22), we need to restrict the class of admissible
functions f (ε) and b(ε). We assume the following conditions to hold.

Hypothesis 3.4 The functions ε �→ f (ε), ε �→ b(ε), ε �→ εf (ε), ε �→ f ′(ε), ε �→ b′(ε) are
Lipschitz continuous from R to R, and there exist constants b� < b�, 0 < f � < f � such that
1 + κb� ≥ 0 and the inequalities

f � ≤ f (ε) ≤ f � and b� ≤ b(ε) ≤ b�

hold for all ε ∈R.

From Theorem 3.3 and from identities (2.3), (2.5), and (2.21), we obtain the following
result.

Corollary 3.5 Let Hypotheses 3.2 and 3.4 hold. Then there exists a Lipschitz continuous
operator W : C0([0, T]) → C0([0, T]) such that the constitutive equation (2.3), (2.5) can be
written in the form (2.20).

4 Existence, uniqueness, and continuous data dependence
The existence and uniqueness result can be stated as follows.

Theorem 4.1 Let Hypotheses 3.2, 3.4, and (2.14) hold, let r ∈ C0([0, T]) on the right-hand
side of (2.17) be given, and let the initial data in (2.11) be given such that u0, v0 ∈ X. Then
system (2.16), (2.20), (2.11) has a unique solution u ∈ C0([0, T]) × [0, T]) such that uxt ∈
L2((0, L) × (0, T)), ut ∈ C0([0, T]; L2(0, L)) ∩ L2(0, T ; X), utt ∈ L2(0, T ; X ′).

Proof Proof For v ∈ C0([0, T]; X) such that vxt ∈ L2((0, L) × (0, T)) and v(x, 0) = u0(x), we
find u with the desired regularity as the solution of the linear problem

∀φ ∈ X :

ρ

∫ L

0
uttφ dx +

∫ L

0

(
Aux + νuxt + W[vx]

)
φx dx + B

[
v(L, ·)]φ(L) = 0 a. e. (4.1)

with initial conditions (2.11). We now prove that the mapping v �→ u is a contraction in
the space

Y def=
{

v ∈ C0([0, L] × [0, T]; X
)

: vxt ∈ L2((0, L) × (0, T)
)
, v(x, 0) = u0(x), v(0, t) = 0

}
,
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endowed with a suitable norm defined in (4.5). Let v, v̂ ∈ Y be given, and let u, û be the
corresponding solutions. We test the difference of Eqs. (4.1) for u and û

∀φ ∈ X :
∫ L

0
ρ(utt – ûtt)φ dx +

∫ L

0

(
A(ux – ûx) + ν(uxt – ûxt) + W[vx] – W [̂vx]

)
φx dx

+
(
B

[
v(L, ·)] – B

[
v̂(L, ·)])φ(L) = 0 a. e.

Choosing φ = ut – ût and by using the Lipschitz continuity of W and B, we get

ρ

2
d
dt

∫ L

0
(ut – ût)2 dx +

A
2

d
dt

∫ L

0
(ux – ûx)2 dx + ν

∫ L

0
(uxt – ûxt)2 dx

= –
∫ L

0

(
W[vx] – W [̂vx]

)
(uxt – ûxt) dx

–
(
B

[
v(L, ·)](t) – B

[
v̂(L, ·)](t)

)(
ut(L, t) – ût(L, t)

)

≤ C
(∫ L

0
|uxt – ûxt|2 dx

)1/2(∫ L

0
max
τ∈[0,t]

∣∣vx(x, τ ) – v̂x(x, τ )
∣∣2 dx

)1/2

(4.2)

with some constant C > 0. We have

max
τ∈[0,t]

∣
∣vx(x, τ ) – v̂x(x, τ )

∣
∣ ≤

∫ t

0

∣
∣vxt(x, τ ) – v̂xt(x, τ )

∣
∣dτ ,

so that the right-hand side of (4.2) can be further estimated from above, using the Cauchy–
Schwarz and Young inequalities, by the expression

ν

2

∫ L

0
(uxt – ûxt)2 dx +

C2t
2ν

∫ t

0

∫ L

0
(vxt – v̂xt)2(x, τ ) dx dτ .

We thus obtain from (4.2) that

d
dt

1
ν

∫ L

0

(
ρ(ut – ût)2 + A(ux – ûx)2)dx +

∫ L

0
(uxt – ûxt)2 dx

≤ C̃t
∫ t

0

∫ L

0
(vxt – v̂xt)2(x, τ ) dx dτ

(4.3)

with C̃ def= C2

ν2 . This is an inequality of the form

α̇(t) + β(t) ≤ C̃t
∫ t

0
δ(τ ) dτ (4.4)

with nonnegative functions

α
def=

1
ν

∫ L

0

(
ρ(ut – ût)2 + A(ux – ûx)2)dx, β

def=
∫ L

0
(uxt – ûxt)2 dx and

δ
def=

∫ L

0
(vxt – v̂xt)2 dx.
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We multiply (4.4) by e–C̃t2 to get

d
dt

(
e–C̃t2

(
α(t) +

1
2

∫ t

0
δ(τ ) dτ

))
+ 2C̃te–C̃t2

α(t) + e–C̃t2
β(t) ≤ 1

2
e–C̃t2

δ(t).

We now integrate the above inequality from 0 to T , and using the facts that α(0) = δ(0) = 0,
α and β are two nonnegative functions, we find

∫ T

0
e–C̃t2

β(t) dt ≤ 1
2

∫ T

0
e–C̃t2

δ(t) dt.

We conclude that the mapping v �→ u is a contraction in Y endowed with norm

|||v||| def=
(∫ T

0

∫ L

0
e–C̃t2 ∣∣vxt(x, t)

∣∣2 dx dt +
∫ L

0

∣∣v(x, 0)
∣∣2 dx

) 1
2

, (4.5)

which implies the existence and uniqueness of solutions. �

To prove the continuous data dependence, we consider two inputs r, r̂ ∈ C0([0, T]), and
two sets of initial conditions u0, û0, v0, v̂0 ∈ X, and denote the corresponding solutions to
(2.16), (2.20), (2.11) by u, û, respectively. We have the following result.

Theorem 4.2 Assume that Hypotheses 3.2 and 3.4 hold. Then there exists a constant C > 0
such that

∫ T

0

∫ L

0
(uxt – ûxt)2(x, t) dx dt

≤ C
(

max
t∈[0,T]

∣
∣r(t) – r̂(t)

∣
∣2 +

∫ L

0

∣
∣u0

x – û0
x
∣
∣2 dx +

∫ L

0

∣
∣v0 – v̂0∣∣2 dx

)
.

Proof Proof Let q, q̂ satisfy (2.22) for r, r̂ and ε = ux, ε̂ = ûx, respectively. By using Theo-
rem 3.3 together with Hypothesis 3.4, we have for x ∈ [0, L] and t ∈ [0, T] that

∣∣q(x, t) – q̂(x, t)
∣∣ ≤ C0

(
max
τ∈[0,t]

∣∣ε(x, τ ) – ε̂(x, τ )
∣∣ + max

τ∈[0,t]

∣∣r(τ ) – r̂(τ )
∣∣
)

with a constant C0 > 0.
We now construct the operators W associated with r and Ŵ associated with r̂ as in

Corollary 3.5 to obtain that

∣∣W[ε](x, t) – Ŵ [̂ε](x, t)
∣∣ ≤ C1

(
max
τ∈[0,t]

∣∣ε(x, τ ) – ε̂(x, τ )
∣∣ + max

τ∈[0,t]

∣∣r(τ ) – r̂(τ )
∣∣
)

with a constant C1 > 0. We now proceed as in the proof of Theorem 4.1 and test the identity

∀φ ∈ X :
∫ L

0
ρ(utt – ûtt)φ dx +

∫ L

0

(
A(ux – ûx) + ν(uxt – ûxt) + W[ux] – Ŵ [̂ux]

)
φx dx

+
(
B

[
u(L, ·)] – B

[
v̂(L, ·)])φ(L) = 0 a. e.
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Choosing once again φ = ut – ût , we obtain similarly as in (4.2) that

ρ

2
d
dt

∫ L

0
(ut – ût)2 dx +

A
2

d
dt

∫ L

0
(ux – ûx)2 dx + ν

∫ L

0
(uxt – ûxt)2 dx

= –
∫ L

0

(
W[ux] – Ŵ [̂ux]

)
(uxt – ûxt) dx

–
(
B

[
u(L, ·)](t) – B

[
û(L, ·)](t)

)(
ut(L, t) – ût(L, t)

)

≤ C3

(∫ L

0
|uxt–ûxt|2 dx

)1/2

×
(∫ L

0
max
τ∈[0,t]

∣
∣ux(x, τ )–̂ux(x, τ )

∣
∣2 dx + max

τ∈[0,t]

∣
∣r(τ )–̂r(τ )

∣
∣2

)1/2

(4.6)

with a constant C3 > 0. Hence, by using the Cauchy–Schwarz and Young inequalities, we
find

1
ν

d
dt

(∫ L

0

(
ρ(ut – ût)2(x, t) + A(ux – ûx)2(x, t)

)
dx

)
+

∫ L

0
(uxt – ûxt)2(x, t) dx

≤ C2
3

ν2 t
∫ t

0

∫ L

0
|uxt – ûxt|2(x, τ ) dx dτ +

C2
3

ν2 max
τ∈[0,t]

∣∣r(τ ) – r̂(τ )
∣∣2,

(4.7)

and the assertion is obtained from the Grönwall argument. �
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P. Krejčí is a member of the Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in
Prague, Czech Republic. A. Petrov is affiliated with the Laboratory of Mathematics and their applications, Institut Camille
Jordan & INSA-Lyon, Lyon, France.

Author details
1Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ-16629 Praha 6, Czech Republic. 2CNRS,
INSA-Lyon, Institut Camille Jordan UMR 5208, Université de Lyon, 20 Avenue A. Einstein, F-69621 Villeurbanne, France.
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12. Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193, 247–264 (1986)
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