Skip to main content

Fixed point theorems for F-expanding mappings

Abstract

Recently, Wardowski (Fixed Point Theory Appl. 2012:94, 2012) introduced a new concept of F-contraction and proved a fixed point theorem which generalizes the Banach contraction principle. Following this direction of research, in this paper, we present some new fixed point results for F-expanding mappings, especially on a complete G-metric space.

1 Introduction

Let \((X,d)\) be a metric space. A mapping \(T:X\rightarrow X\) is said to be expanding if

$$ \forall_{x,y\in X}\quad d(Tx,Ty)\geqslant \lambda d(x,y),\quad \mbox{where}\quad \lambda >1. $$
(1)

The condition \(\lambda >1\) is important, the function \(T:\mathbb{R} \rightarrow \mathbb{R}\) defined by \(Tx=x+e^{x}\) satisfies the condition \(\vert Tx-Ty \vert \geqslant \vert x-y \vert \) for all \(x,y\in \mathbb{R}\), and T has no fixed point.

For an expanding map, the following result is well known.

Theorem 1.1

Let \((X,d)\) be a complete metric space, and let \(T:X\rightarrow X\) be surjective and expanding. Then T is bijective and has a unique fixed point.

It follows from the Banach contraction principle and the following very simple observation.

Lemma 1.2

If \(T:X\rightarrow X\) is surjective, then there exists a mapping \(T^{*}:X\rightarrow X\) such that \(T\circ T^{*}\) is the identity map on X.

Proof

For any point \(x\in X\), let \(y_{x}\in X\) be any point such that \(Ty_{x}=x\). Let \(T^{*}x=y_{x}\) for all \(x\in X\). Then \((T\circ T^{*})(x)=T(T^{*}x)=Ty_{x}=x\) for all \(x\in X\). □

In the present paper, we introduce a new type of expanding mappings.

Definition 1.3

Let \(\mathcal{F}\) be the family of all function \(F:(0,+\infty )\rightarrow \mathbb{R}\) such that

(F1):

F is strictly increasing, i.e., for all \(\alpha , \beta \in (0,+\infty )\), if \(\alpha <\beta \), then \(F(\alpha )< F( \beta )\);

(F2):

for each sequence \(\{\alpha_{n}\}\subset (0,+\infty )\), the following holds:

$$ \lim_{n\rightarrow \infty }\alpha_{n}=0\quad \mbox{if and only if} \quad \lim_{n\rightarrow \infty }F(\alpha_{n})=- \infty ; $$
(F3):

there exists \(k\in (0,1)\) such that \(\lim_{\alpha \rightarrow 0_{+}}\alpha^{k}F(\alpha )=0\).

Definition 1.4

Let \((X,d)\) be a metric space. A mapping \(T:X\rightarrow X\) is called F-expanding if there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

$$ d(x,y)>0\quad \Rightarrow \quad F\bigl(d(Tx,Ty)\bigr)\geqslant F\bigl(d(x,y) \bigr)+t. $$
(2)

When we consider in (2) the different types of the mapping \(F\in \mathcal{F}\), then we obtain a variety of expanding mappings.

Example 1.5

Let \(F_{1}(\alpha )=\ln \alpha \). It is clear that \(F_{1}\) satisfies (F1), (F2), (F3) for any \(k\in (0,1)\). Each mapping \(T:X\rightarrow X\) satisfying (2) is an \(F_{1}\)-expanding map such that

$$ d(Tx,Ty)\geqslant e^{t}d(x,y)\quad\mbox{for all}\quad x,y\in X,~d(x,y)>0. $$

It is clear that for \(x,y\in X\) such that \(x=y\), the inequality \(d(Tx,Ty)\geqslant e^{t}d(x,y)\) also holds.

Example 1.6

If \(F_{2}(\alpha )=\ln \alpha +\alpha \), \(\alpha >0\), then \(F_{1}\) satisfies (F1), (F2) and (F3), and condition (2) is of the form

$$ d(Tx,Ty)e^{d(Tx,Ty)-d(x,y)}\geqslant e^{t}d(x,y)\quad\mbox{for all}\quad x,y \in X. $$

Example 1.7

Consider \(F_{3}(\alpha )=\ln (\alpha^{2}+\alpha )\), \(\alpha >0\). \(F_{3}\) satisfies (F1), (F2) and (F3), and for \(F_{3}\)-expanding T, the following condition holds:

$$ d(Tx,Ty)\cdot \frac{d(Tx,Ty)+1}{d(x,y)+1}\geqslant e^{t}d(x,y) \quad\mbox{for all}\quad x,y\in X. $$

Example 1.8

Consider \(F_{4}(\alpha )=\arctan (-\frac{1}{ \alpha })\), \(\alpha >0\). \(F_{4}\) satisfies (F1), (F2) and (F3), and for \(F_{4}\)-expanding T, the following condition holds:

$$ d(Tx,Ty)\geqslant \biggl[\frac{1+\frac{\tan t }{d(x,y)}}{1-\tan t\cdot d(x,y)} \biggr]d(x,y)\quad\mbox{for some}\quad 0< t< \frac{\pi }{2}. $$

Here, we have obtained a special type of nonlinear expanding map \(d(Tx,Ty)\geqslant \varphi (d(x, y))d(x,y)\).

Other functions belonging to \(\mathcal{F}\) are, for example, \(F(\alpha )=\ln (\alpha^{n})\), \(n\in \mathbb{N}\), \(\alpha >0\); \(F(\alpha )=\ln (\arctan \alpha )\), \(\alpha >0\).

Now we recall the following.

Definition 1.9

Let \((X,d)\) be a metric space. A mapping \(T:X\rightarrow X\) is an F-contraction on X if there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

$$ d(Tx,Ty)>0\quad \Rightarrow \quad t+F\bigl(d(Tx,Ty)\bigr)\leqslant F\bigl(d(x,y) \bigr). $$
(3)

For such mappings, Wardowski [1] proved the following theorem.

Theorem 1.10

Let \((X,d)\) be a complete metric space and \(T:X\rightarrow X\) be an F-contraction. Then T has a unique fixed point \(u\in X\) and for every \(x\in X\), a sequence \(\{x_{n}=T ^{n}x\}\) is convergent to u.

2 The result

In this section, we give some fixed point theorem for F-expanding maps.

Theorem 2.1

Let \((X,d)\) be a complete metric space and \(T:X\rightarrow X\) be surjective and F-expanding. Then T has a unique fixed point.

Proof

From Lemma 1.2, there exists a mapping \(T^{*}:X\rightarrow X\) such that \(T\circ T^{*}\) is the identity mapping on X. Let \(x,y\in X\) be arbitrary points such that \(x\neq y\), and let \(z=T^{*}x\) and \(w=T^{*}y\) (obviously, \(z\neq w\)). By using (2) applied to z and w, we have

$$ F\bigl(d(Tz,Tw)\bigr)\geqslant F\bigl(d(z,w)\bigr)+t. $$

Since \(Tz=T(T^{*}x)=x\) and \(Tw=T(T^{*}y)=y\), then

$$ F\bigl(d(x,y)\bigr)\geqslant F\bigl(d\bigl(T^{*}x,T^{*}y \bigr)\bigr)+t, $$

so \(T^{*}:X\rightarrow X\) is an F-contraction. By Theorem 1.10, \(T^{*}\) has a unique fixed point \(u\in X\). In particular, u is also a fixed point of T because \(T^{*}u=u\) implies that \(Tu=T(T^{*}u)=u\).

Let us observe that T has at most one fixed point. If \(u,v\in X\) and \(Tu=u\neq v=Tv\), then we would get the contradiction

$$\begin{aligned}& F\bigl(d(Tu,Tv)\bigr)\geqslant F\bigl(d(u,v)\bigr)+t, \\& 0=F\bigl(d(Tu,Tv)\bigr)-F\bigl(d(u,v)\bigr)\geqslant t>0, \end{aligned}$$

so the fixed point of T is unique. □

Remark 2.2

If T is not surjective, the previous result is false. For example, let \(X=[0,\infty )\) endowed with the metric \(d(x,y)=\vert x-y \vert \) for all \(x,y\in X\), and let \(T:X\rightarrow X\) be defined by \(Tx=2x+1\) for all \(x\in X\). Then T satisfies the condition \(d(Tx,Ty)\geqslant 2d(x,y)\) for all \(x,y\in X\) and T is fixed point free.

3 Applications to G-metric spaces

In 2006 Mustafa and Sims (see [2] and the references therein) introduced the notion of a G-metric space and investigated the topology of such spaces. The G-metric space is as follows.

Definition 3.1

Let X be a nonempty set. A function \(G:X\times X\times X\rightarrow [0,\infty )\) satisfying the following axioms:

(\(G_{1}\)):

\(G(x,y,z)=0\) if \(x=y=z\),

(\(G_{2}\)):

\(G(x,x,y)>0\) for all \(x,y\in X\) with \(x\neq y\),

(\(G_{3}\)):

\(G(x,x,y)\leqslant G(x,y,z)\) for all \(x,y,z\in X\) with \(z\neq y\),

(\(G_{4}\)):

\(G(x,y,z)=G(x,z,y)=G(y,z,x)=\cdots \) (symmetry in all three variables),

(\(G_{5}\)):

\(G(x,y,z)\leqslant G(x,a,a)+G(a,y,z)\) for all \(x,y,z,a\in X\),

is called a G-metric on X, and the pair \((X,G)\) is called a G-metric space.

Recently, Samet et al. [3] observed that some fixed point theorems in the context of G-metric spaces can be concluded from existence results in the setting of quasi-metric spaces. Especially, the following theorem is a simple consequence of Theorem 1.10.

Theorem 3.2

Let \((X,G)\) be a complete G-metric space, and let \(T:X\rightarrow X\) satisfy one of the following conditions:

  1. (a)

    T is an F-contraction of type I on a G-metric space X, i.e., there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

    $$ G(Tx,Ty,Ty)>0\quad \Rightarrow \quad t+F\bigl(G(Tx,Ty,Ty)\bigr)\leqslant F \bigl(G(x,y,y)\bigr); $$
    (4)
  2. (b)

    T is an F-contraction of type II on a G-metric space X, i.e., there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y,z\in X\),

    $$ G(Tx,Ty,Tz)>0\quad \Rightarrow \quad t+F\bigl(G(Tx,Ty,Tz)\bigr)\leqslant F \bigl(G(x,y,z)\bigr). $$
    (5)

Then T has a unique fixed point \(u\in X\), and for any \(x\in X\), a sequence \(\{x_{n}=T^{n}x\}\) is G-convergent to u.

The previous ideas lead also to analogous fixed point theorems for F-expanding mappings on G-metric spaces.

Definition 3.3

A mapping \(T:X\rightarrow X\) from a G-metric space \((X,G)\) into itself is said to be

  1. (a)

    F-expanding of type I on a G-metric space X if there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

    $$ G(x,y,y)>0\quad \Rightarrow \quad F\bigl(G(Tx,Ty,Ty)\bigr)\geqslant F \bigl(G(x,y,y)\bigr)+t; $$
    (6)
  2. (b)

    F-expanding of type II on a G-metric space X if there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y,z\in X\),

    $$ G(x,y,z)>0\quad \Rightarrow \quad F\bigl(G(Tx,Ty,Tz)\bigr)\geqslant F \bigl(G(x,y,z)\bigr)+t. $$
    (7)

Theorem 3.4

Let \((X,G)\) be a complete G-metric space and \(T:X\rightarrow X\) be a surjective and F-expanding mapping of type I (or type II). Then T has a unique fixed point.

Proof

Let T be an F-expanding mapping of type I. From Lemma 1.2, there exists a mapping \(T^{*}:X\rightarrow X\) such that \(T\circ T^{*}\) is the identity mapping on X. Let \(x,y\in X\) be arbitrary points such that \(x\neq y\), and let \(\xi =T^{*}x\) and \(\eta =T^{*}y\). Obviously, \(\xi \neq \eta \) and \(G(\xi ,\eta ,\eta )>0\). By using (6) applied to ξ and η, we have

$$ F\bigl(G(T\xi ,T\eta ,T\eta )\bigr)\geqslant F\bigl(G(\xi ,\eta ,\eta )\bigr)+t. $$

Since \(T\xi =T(T^{*}x)=x\) and \(T\eta =T(T^{*}y)=y\), then

$$ F\bigl(G(x,y,y)\bigr)\geqslant F\bigl(G\bigl(T^{*}x,T^{*}y,T^{*}y \bigr)\bigr)+t, $$

so \(T^{*}\) is an F-contraction of type I on a G-metric space \((X,G)\). Theorem 3.2 guarantees that \(T^{*}\) has a unique fixed point \(u\in X\). The point u is also a fixed point of T because \(Tu=T(T^{*}u)=u\).

Now, we prove the uniqueness of the fixed point. Assume that v is another fixed point of T different from u: \(Tu=u\neq v=Tv\). This means \(G(u,v,v)>0\), so by (6)

$$ 0< t\leqslant F\bigl(G(Tu,Tv,Tv)\bigr)-F\bigl(G(u,v,v)\bigr)=0, $$

which is a contradiction, and hence \(u=v\).

For F-expanding mappings of type II, it is necessary to take \(z=y\) and apply the proof for F-expanding mappings of type I. □

As a corollary of Theorem 3.4, taking \(F_{1}\in \mathcal{F}\), see Examples 1.5, we obtain the following.

Corollary 3.5

[2], Corollary 9.1.4

Let \((X,G)\) be a complete G-metric space and \(T:X\rightarrow X\) be surjective, and let there exist \(\lambda >1\) such that

$$ G(Tx,Ty,Ty)\geqslant \lambda G(x,y,y)\quad\textit{for all}\quad x,y\in X, $$

or

$$ G(Tx,Ty,Tz)\geqslant \lambda G(x,y,z)\quad\textit{for all}\quad x,y,z\in X. $$

Then T has a unique fixed point.

Remark 3.6

If T is not surjective, the previous results are false. Consider \(X=(-\infty ,-1]\cup [1,\infty )\) endowed with the G-metric \(G(x,y,z)=\vert x-y \vert +\vert x-z \vert +\vert y-z \vert \) for all \(x,y,z\in X\) and the mapping \(T:X\rightarrow X\) defined by \(Tx=-2x\). Then \(G(Tx,Ty,Tz)\geqslant 2G(x,y,z)\) for all \(x,y,z\in X\) and T has no fixed point.

Now, we will improve some results contained in the book [2]. We will use the following observation: if \(T:X\rightarrow X\) is a surjective mapping, based on each \(x_{0}\in X\), there exists a sequence \(\{x_{n}\}\) such that \(Tx_{n+1}=x_{n}\) for all \(n\geqslant 0\). Generally, a sequence \(\{x_{n}\}\) verifying the above condition is not necessarily unique.

Theorem 3.7

Let \((X,G)\) be a complete G-metric space, and let \(T:X\rightarrow X\) be a surjective mapping. Suppose that there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

$$ G(x,Tx,y)>0\quad \Rightarrow \quad F\bigl(G\bigl(Tx,T^{2}x,Ty\bigr) \bigr)\geqslant F\bigl(G(x,Tx,y)\bigr)+t. $$
(8)

Then T has a unique fixed point.

Proof

Let \(x_{0}\in X\) be arbitrary. Since T is surjective, there exists \(x_{1}\in X\) such that \(Tx_{1}=x_{0}\). By continuing this process, we can find a sequence \(\{x_{n}=Tx_{n+1}\}\) for all \(n=0,1,2,\ldots\) . If there exists \(n_{0}\in \mathbb{N}\cup \{0\}\) such that \(x_{n_{0}}=x_{n_{0}+1}\), then \(x_{n_{0}+1}\) is a fixed point of T.

Now assume that \(x_{n}\neq x_{n+1}\) for all \(n\geqslant 0\). Then \(G(x_{n+1},x_{n},x_{n})>0\) for all \(n\geqslant 0\), and from (8) with \(x=x_{n+1}\) and \(y=x_{n}\), we have, for all \(n\geqslant 1\),

$$\begin{aligned} F\bigl(G(x_{n},x_{n-1},x_{n-1})\bigr)&=F\bigl(G \bigl(Tx_{n+1},T^{2}x_{n+1},Tx_{n}\bigr) \bigr) \\ &\geqslant F\bigl(G(x_{n+1},Tx_{n+1},x_{n})\bigr)+t = F\bigl(G(x_{n+1},x_{n},x_{n})\bigr)+t, \end{aligned}$$

and hence

$$ t+F\bigl(G(x_{n+1},x_{n},x_{n})\bigr)\leqslant F \bigl(G(x_{n},x_{n-1},x_{n-1})\bigr). $$
(9)

Using (9), the following holds for every \(n\geqslant 1\):

$$\begin{aligned} F\bigl(G(x_{n+1},x_{n},x_{n})\bigr)&\leqslant F \bigl(G(x_{n},x_{n-1},x_{n-1})\bigr)-t \\ &\leqslant F\bigl(G(x_{n-1},x_{n-2},x_{n-2})\bigr)-2t \leqslant \cdots \leqslant F\bigl(G(x_{1},x_{0},x_{0}) \bigr)-nt. \end{aligned}$$
(10)

From (10) we obtain

$$ \lim_{n\rightarrow \infty } F\bigl(G(x_{n+1},x_{n},x_{n}) \bigr)=-\infty, $$

which together with (F2) gives

$$ \lim_{n\rightarrow \infty }G(x_{n+1},x_{n},x_{n})=0. $$
(11)

From (F3) there exists \(k\in (0,1)\) such that

$$ \lim_{n\rightarrow \infty }\bigl[G(x_{n+1},x_{n},x_{n}) \bigr]^{k}F\bigl(G(x _{n+1},x_{n},x_{n}) \bigr)=0. $$
(12)

By (10), the following holds for all \(n\geqslant 1\):

$$\begin{aligned}& \bigl[G(x_{n+1},x_{n},x_{n})\bigr]^{k}F \bigl(G(x_{n+1},x_{n},x_{n})\bigr)- \bigl[G(x_{n+1},x _{n},x_{n})\bigr]^{k}F \bigl(G(x_{1},x_{0},x_{0})\bigr) \\& \quad \leqslant \bigl[G(x_{n+1},x_{n},x_{n}) \bigr]^{k}\bigl(F\bigl(G(x_{1},x_{0},x_{0}) \bigr)-nt\bigr) \\& \quad \quad {}-\bigl[G(x_{n+1},x_{n},x_{n}) \bigr]^{k}F\bigl(G(x_{1},x_{0},x_{0}) \bigr)= -\bigl[G(x_{n+1},x _{n},x_{n}) \bigr]^{k}\cdot nt\leqslant 0. \end{aligned}$$
(13)

Letting \(n\rightarrow \infty \) in (13) and using (11), (12), we obtain

$$ \lim_{n\rightarrow \infty } \bigl[G(x_{n+1},x_{n},x_{n}) \bigr]^{k}\cdot n=0. $$
(14)

Now, let us observe that from (14) there exists \(n_{1}\geqslant 1\) such that

$$ \bigl[G(x_{n+1},x_{n},x_{n})\bigr]^{k} \cdot n\leqslant 1\quad\mbox{for all}\quad n \geqslant n_{1}. $$

Consequently, we have

$$ G(x_{n+1},x_{n},x_{n})\leqslant \frac{1}{n^{1/k}} \quad\mbox{for all}\quad n \geqslant n_{1}. $$

Since the series \(\sum_{i=1}^{\infty }\frac{1}{i^{1/k}}\) converges, for any \(\varepsilon >0\), there exists \(n_{2}\geqslant 1\) such that \(\sum_{i=n_{2}}^{\infty }\frac{1}{i^{1/k}}<\varepsilon \). In order to show that \(\{x_{n}\}\) is a Cauchy sequence, we consider \(m>n>\max \{n_{1},n_{2}\}\). From [2], Lemma 3.1.2(4), we get

$$\begin{aligned} G(x_{m},x_{n},x_{n})&\leqslant \sum _{j=n}^{m-1}G(x_{j+1},x_{j},x _{j})\leqslant \sum_{j=n}^{\infty }G(x_{j+1},x_{j},x_{j}) \\ &\leqslant \sum_{j=n}^{\infty }\frac{1}{j^{1/k}}\leqslant \sum_{j=n_{2}}^{\infty }\frac{1}{j^{1/k}}< \varepsilon . \end{aligned}$$

Therefore by [2], Lemma 3.2.2 and axiom \((G_{4})\), \(\{x_{n}\}\) is a Cauchy in a G-metric space \((X,G)\). From the completeness of \((X,G)\), there exists \(u\in X\) such that \(\{x_{n}\} \rightarrow u\). As T is surjective, there exists \(w\in X\) such that \(u=Tw\). From (8) with \(x=x_{n+1}\) and \(y=w\), we have, for all \(n\geqslant 1\),

$$\begin{aligned} F\bigl(G(x_{n},x_{n-1},u)\bigr)&=F\bigl(G\bigl(Tx_{n+1},T^{2}x_{n+1},Tw \bigr)\bigr) \\ &\geqslant F\bigl(G(x_{n+1},Tx_{n+1},w)\bigr)+t=F \bigl(G(x_{n+1},x_{n},w)\bigr)+t, \end{aligned}$$

and hence

$$ F\bigl(G(x_{n},x_{n-1},u)\bigr) > F\bigl(G(x_{n+1},x_{n},w) \bigr). $$
(15)

By (F1) from (15), we have

$$ G(x_{n},x_{n-1},u) > G(x_{n+1},x_{n},w) \quad\mbox{for all}\quad n\geqslant 1. $$
(16)

Using the fact that the function G is continuous on each variable ([2], Theorem 3.2.2), taking the limit as \(n\rightarrow \infty \) in the above inequality, we get

$$ G(u,u,w)=\lim_{n\rightarrow \infty }G(x_{n},x_{n-1},u)=0, $$

that is, \(u=w\). Then u is a fixed point of T because \(u=Tw=Tu\).

To prove uniqueness, suppose that \(u,v\in X\) are two fixed points. If \(Tu=u\neq v=Tv\), then \(G(u,u,v)>0\). So, by (8),

$$\begin{aligned} F\bigl(G(u,u,v)\bigr)&=F\bigl(G\bigl(Tu,T^{2}u,Tv\bigr)\bigr) \\ &\geqslant F\bigl(G(u, Tu,v)\bigr)+t=F\bigl(G(u,u,v)\bigr)+t, \end{aligned}$$

which is a contradiction, because \(t>0\). Hence, \(u=v\). □

Taking \(F_{1}\in \mathcal{F}\), see Example 1.5, we obtain the following.

Corollary 3.8

[2], Theorem 9.1.2

Let \((X,G)\) be a complete G-metric space and \(T:X\rightarrow X\) be a surjective mapping. Suppose that there exists \(\lambda >1\) such that

$$ G\bigl(Tx,T^{2}x,Ty\bigr)\geqslant \lambda G(x,Tx,y)\quad\textit{for all}\quad x,y \in X. $$

Then T has a unique fixed point.

Next result does not guarantee the uniqueness of the fixed point.

Theorem 3.9

Let \((X,G)\) be a complete G-metric space, and let \(T:X\rightarrow X\) be a surjective mapping. Suppose that there exist \(F\in \mathcal{F}\) and \(t>0\) such that for all \(x,y\in X\),

$$ G\bigl(x,Tx,T^{2}x\bigr)>0\quad \Rightarrow \quad F\bigl(G \bigl(Tx,Ty,T^{2}y\bigr)\bigr)\geqslant F\bigl(G\bigl(x,Tx,T ^{2}x\bigr)\bigr)+t. $$
(17)

Then T has a fixed point.

Proof

Let \(x_{0}\in X\) be arbitrary. Since T is surjective, there exists \(x_{1}\in X\) such that \(x_{0}=Tx_{1}\). By continuing this process, we can find a sequence \(\{x_{n}=Tx_{n+1}\}\) for all \(n\geqslant 0\). If there exists \(n_{0}\geqslant 0\) such that \(x_{n_{0}}=x_{n_{0}+1}\), then \(x_{n_{0}+1}\) is a fixed point of T.

Now, assume that \(x_{n}\neq x_{n+1}\) for all \(n\geqslant 0\). From (17) with \(x=x_{n+1}\) and \(y=x_{n}\), we have \(G(x_{n+1},Tx_{n+1},T ^{2}x_{n+1})=G(x_{n+1},x_{n},x_{n-1})>0\) and

$$\begin{aligned} F\bigl(G(x_{n},x_{n-1},x_{n-2})\bigr)&=F\bigl(G \bigl(Tx_{n+1},Tx_{n},T^{2}x_{n}\bigr) \bigr) \\ &\geqslant F\bigl(G\bigl(x_{n+1},Tx_{n+1},T^{2}x_{n+1} \bigr)\bigr)+t=F\bigl(G(x_{n+1},x_{n},x _{n-1}) \bigr)+t, \end{aligned}$$

and hence

$$\begin{aligned} F\bigl(G(x_{n+1},x_{n},x_{n-1})\bigr)&\leqslant F \bigl(G(x_{n},x_{n-1},x_{n-2})\bigr)-t \\ &\leqslant F\bigl(G(x_{n-1},x_{n-2},x_{n-3})\bigr)-2t \\ &\leqslant \cdots \leqslant F\bigl(G(x_{2},x_{1},x_{0}) \bigr)-(n-1)t. \end{aligned}$$
(18)

From (18), we obtain

$$ \lim_{n\rightarrow \infty }F\bigl(G(x_{n+1},x_{n},x_{n-1}) \bigr) =- \infty , $$

which together with (F2) gives

$$ \lim_{n\rightarrow \infty }G(x_{n+1},x_{n},x_{n-1})=0. $$

Mimicking the proof of Theorem 3.7, we obtain

$$ \lim_{n\rightarrow \infty } \bigl[G(x_{n+1},x_{n},x_{n-1}) \bigr]^{k} \cdot (n-1)=0; $$

and consequently, there exists \(n_{1}\geqslant 1\) such that

$$ G(x_{n+1},x_{n},x_{n-1})\leqslant \frac{1}{(n-1)^{1/k}} \quad \mbox{for all}\quad n>n_{1}. $$

Since the series \(\sum_{i=1}^{\infty }\frac{1}{i^{1/k}}\) converges, for any \(\varepsilon >0\), there exists \(n_{2}\geqslant 1\) such that \(\sum_{i=n_{2}}^{\infty }\frac{1}{i^{1/k}}<\varepsilon \). In order to show that \(\{x_{n}\}\) is a Cauchy sequence, we consider \(m>n>\max \{n_{1},n_{2}\}\). From [2], Lemma 3.1.2(4) and axioms (\(G_{3}\)), \((G_{4})\), we get

$$\begin{aligned} G(x_{m},x_{n},x_{n})&\leqslant \sum _{j=n}^{m-1}G(x_{j+1},x_{j},x _{j})\leqslant \sum_{j=n}^{\infty }G(x_{j+1},x_{j},x_{j}) \\ &\leqslant \sum_{j=n}^{\infty }G(x_{j+1},x_{j},x_{j-1}) \leqslant \sum_{j=n}^{\infty }\frac{1}{j^{1/k}} \leqslant \sum_{j=n_{2}}^{\infty }\frac{1}{j^{1/k}}< \varepsilon . \end{aligned}$$

Therefore, by [2], Lemma 3.2.2, \(\{x_{n}\}\) is a Cauchy in a G-metric space \((X,G)\). From the completeness of \((X,G)\), there exists \(u\in X\) such that \(\{x_{n}\}\rightarrow u\). As T is surjective, there exists \(w\in X\) such that \(u=Tw\). From (17) with \(x=w\) and \(y=x_{n+1}\), we have

$$ F\bigl(G(u,x_{n},x_{n-1})\bigr)=F\bigl(G\bigl(Tw,Tx_{n+1},T^{2}x_{n+1} \bigr)\bigr)\geqslant F\bigl(G\bigl(w,Tw,T ^{2}w\bigr)\bigr)+t, $$

so

$$ F\bigl(G\bigl(w,Tw,T^{2}w\bigr)\bigr) \leqslant F\bigl(G(u,x_{n},x_{n-1}) \bigr)-t< F\bigl(G(u,x_{n},x_{n-1})\bigr). $$

Using (F1), we have

$$ G\bigl(w,Tw,T^{2}w\bigr) < G(u,x_{n},x_{n-1})\quad \mbox{for all}\quad n\geqslant 1. $$

Using the fact that the function G is continuous on each variable ([2], Theorem 3.2.2), taking the limit as \(n\rightarrow \infty \) in the above inequality, we get

$$ G\bigl(w,Tw,T^{2}w\bigr) =\lim_{n\rightarrow \infty } G(u,x_{n},x_{n-1})=0, $$

that is, \(w=Tw=T^{2}w\). Hence, \(u=Tu\). □

Taking \(F_{1}\in \mathcal{F}\), see Examples 1.5, we obtain the following.

Corollary 3.10

[2], Theorem 9.1.3

Let \((X,G)\) be a complete G-metric space and \(T:X\rightarrow X\) be a surjective mapping. Suppose that there exists \(\lambda >1\) such that

$$ G\bigl(Tx,Ty,T^{2}y\bigr)\geqslant \lambda G\bigl(x,Tx,T^{2}x \bigr)\quad\textit{for all}\quad x,y \in X. $$

Then T has, at least, a fixed point.

References

  1. Wardowski, D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, Article ID 94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, RP, Karapinar, E, O’Regan, D, Roldán-López-de-Hierro, AF: Fixed Point Theory in Metric Type Spaces. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  3. Samet, B, Vetro, C, Vetro, F: Remarks on G-metric spaces. Int. J. Anal. 2013, Article ID 917158 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Górnicki.

Additional information

Competing interests

The author declares that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Górnicki, J. Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl 2017, 9 (2016). https://doi.org/10.1186/s13663-017-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13663-017-0602-3

MSC

Keywords