Skip to main content

Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces

Abstract

In this manuscript, we prove some quadruple coincidence and common fixed point theorems for F : X4X and g : XX satisfying generalized contractions in partially ordered metric spaces. Our results unify, generalize and complement various known results from the current literature. Also, an application to matrix equations is given.

2000 Mathematics subject Classifications: 46T99; 54H25; 47H10; 54E50.

1 Introduction and preliminaries

Existence of fixed points in partially ordered metric spaces was first investigated by Turinici [1], where he extended the Banach contraction principle in partially ordered sets. In 2004, Ran and Reurings [2] presented some applications of Turinici's theorem to matrix equations. Following these initial articles, some remarkable results were reported see, e.g., [313].

Gnana Bhashkar and Lakshmikantham in [14] introduced the concept of a coupled fixed point of a mapping F : X × XX and investigated some coupled fixed point theorems in partially ordered complete metric spaces. Later, Lakshmikantham and Ćirić [15] proved coupled coincidence and coupled common fixed point theorems for nonlinear mappings F : X × XX and g : XX in partially ordered complete metric spaces. Various results on coupled fixed point have been obtained, since then see, e.g., [6, 9, 1633]. Recently, Berinde and Borcut [34] introduced the concept of tripled fixed point in ordered sets.

For simplicity, we denote X × X X × X k  times by Xk where k . Let us recall some basic definitions.

Definition 1.1 (See [34]) Let (X, ≤) be a partially ordered set and F: X3 → X. The mapping F is said to has the mixed monotone property if for any x, y, z X

x 1 , x 2 X , x 1 x 2 F ( x 1 , y , z ) F ( x 2 , y , z ) , y 1 , y 2 X , y 1 y 2 F ( x , y 1 , z ) F ( x , y 2 , z ) , z 1 , z 2 X , z 1 z 2 F ( x , y , z 1 ) F ( x , y , z 2 ) .

Definition 1.2 Let F : X3 → X. An element (x, y, z) is called a tripled fixed point of F if

F ( x , y , z ) = x , F ( y , x , y ) = y a n d F ( z , y , x ) = z .

Also, Berinde and Borcut [34] proved the following theorem:

Theorem 1.1 Let (X,, d) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let F : X3 → X having the mixed monotone property. Suppose there exist j, r, l ≥ 0 with j + r + l < 1 such that

d ( F ( x , y , z ) , F ( u , v , w ) ) jd ( x , u ) +rd ( y , v ) +ld ( z , w ) ,
(1)

for any x, y, z X for which × ≤ u, v ≤ y and z ≤ w. Suppose either F is continuous or X has the following properties:

1. if a non-decreasing sequence x n → x, then x n ≤ x for all n,

2. if a non-increasing sequence y n → y, then y ≤ y n for all n.

If there exist x0, y0, z0 X such that x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, z0) and z0F (z0, y0, x0), then there exist x, y, z X such that

F ( x , y , z ) =x,F ( y , x , y ) =yandF ( z , y , x ) =z,

that is, F has a tripled fixed point.

Recently, Aydi et al. [35] introduced the following concepts.

Definition 1.3 Let (X, ) be a partially ordered set. Let F : X3 → X and g : X → X. The mapping F is said to has the mixed g-monotone property if for any x, y, z X

x 1 , x 2 X , g x 1 g x 2 F ( x 1 , y , z ) F ( x 2 , y , z ) , y 1 , y 2 X , g y 1 g y 2 F ( x , y 1 , z ) F ( x , y 2 , z ) , z 1 , z 2 X , g z 1 g z 2 F ( x , y , z 1 ) F ( x , y , z 2 ) .

Definition 1.4 Let F : X3 → X and g : X → X. An element (x, y, z) is called a tripled coincidence point of F and g if

F ( x , y , z ) =gx,F ( y , x , y ) =gy,andF ( z , y , x ) =gz.

(gx, gy, gz) is said a tripled point of coincidence of F and g.

Definition 1.5 Let F : X3 → X and g : X → X. An element (x, y, z) is called a tripled common fixed point of F and g if

F ( x , y , z ) =gx=x,F ( y , x , y ) =gy=y,andF ( z , y , x ) =gz=z.

Definition 1.6 Let X be a non-empty set. Then we say that the mappings F : X3 → X and

g : X → X are commutative if for all x, y, z X

g ( F ( x , y , z ) ) =F ( g x , g y , g z ) .

The notion of fixed point of order N ≥ 3 was first introduced by Samet and Vetro [36]. Very recently, Karapinar used the concept of quadruple fixed point and proved some fixed point theorems on the topic [37]. Following this study, quadruple fixed point is developed and some related fixed point theorems are obtained in [3841].

Definition 1.7 [38] Let X be a nonempty set and F : X4 → X be a given mapping. An element (x, y, z, w) X × X × X × X is called a quadruple fixed point of F if

F ( x , y , z , w ) =x,F ( y , z , w , x ) =y,F ( z , w , x , y ) =z,andF ( w , x , y , z ) =w.

Let (X, d) be a metric space. The mapping d ̄ : X 4 X, given by

d ̄ ( ( x , y , z , w ) , ( u , v , h , l ) ) =d ( x , y ) +d ( y , v ) +d ( z , h ) +d ( w , l ) ,

defines a metric on X4, which will be denoted for convenience by d.

Definition 1.8 [38] Let (X, ) be a partially ordered set and F : X4 → X be a mapping. We say that F has the mixed monotone property if F (x, y, z, w) is monotone non-decreasing in x and z and is monotone non-increasing in y and w; that is, for any x, y, z, w X,

x 1 , x 2 X , x 1 x 2 i m p l i e s F ( x 1 , y , z , w ) F ( x 2 , y , z , w ) , y 1 , y 2 X , y 1 y 2 i m p l i e s F ( x , y 2 , z , w ) F ( x , y 1 , z , w ) , z 1 , z 2 X , z 1 z 2 i m p l i e s F ( x , y , z 1 , w ) F ( x , y , z 2 , w ) ,

and

w 1 , w 2 X, w 1 w 2 impliesF ( x , y , z , w 2 ) F ( x , y , z , w 1 ) .

In this article, we establish some quadruple coincidence and common fixed point theorems for F : X4 → X and g : X → X satisfying nonlinear contractions in partially ordered metric spaces. Also, some interesting corollaries are derived and an application to matrix equations is given.

2 Main results

We start this section with the following definitions.

Definition 2.1 Let (X, ≤) be a partially ordered set. Let F : X4 → X and g : X → X. The mapping F is said to has the mixed g-monotone property if for any x, y, z, w X

x 1 , x 2 X , g x 1 g x 2 F ( x 1 , y , z , w ) F ( x 2 , y , z , w ) , y 1 , y 2 X , g y 1 g y 2 F ( x , y 1 , z , w ) F ( x , y 2 , z , w ) , z 1 , z 2 X , g z 1 g z 2 F ( x , y , z 1 , w ) F ( x , y , z 2 , w ) a n d w 1 , w 2 X , g w 1 g w 2 F ( x , y , z , w 1 ) F ( x , y , z , w 2 ) .

Definition 2.2 Let F : X4X and g : X → X. An element (x, y, z, w) is called a quadruple coincidence point of F and g if

F ( x , y , z , w ) =gx,F ( y , z , w , x ) =gy,F ( z , w , x , y ) =gz,andF ( w , x , y , z ) =gw.

(gx, gy, gz, gw) is said a quadruple point of coincidence of F and g.

Definition 2.3 Let F : X4X and g : X → X. An element (x, y, z, w) is called a quadruple common fixed point of F and g if

F ( x , y , z , w ) = g x = x , F ( y , z , w , x ) = g y = y , F ( z , w , x , y ) = g z = z , a n d F ( w , x , y , z ) = g w = w .

Definition 2.4 Let X be a non-empty set. Then we say that the mappings F : X4X and g : X → × are commutative if for all x, y, z, w X

g ( F ( x , y , z , w ) ) = F ( g x , g y , g z , g w ) .

Let Φ be the set of all functions ϕ : [0, ∞) [0, ∞) such that:

  1. 1.

    ϕ(t) < t for all t (0,+∞).

  2. 2.

    lim r t + ϕ ( r ) <t for all t (0,+∞).

For simplicity, we define the following.

M ( x , y , z , w , u , v , h , l ) =min d ( F ( x , y , z , w ) , g x ) , d ( F ( x , y , z , w ) , g u ) , d ( F ( u , v , h , l ) , g u ) .
(2)

Now, we state the first main result of this article.

Theorem 2.1 Let (X, ) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Suppose F : X4 → X and g : X → X are such that F is continuous and has the mixed g-monotone property. Assume also that there exist ϕ Φ and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , , h , l ) ) ϕ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l ) } ) + L M ( x , y , z , w , u , v , h , l )
(3)

for any x, y, z, w, u, v, h, l X for which gxgu, gvgy, gzgh and glgw. Suppose F (X4) g(X), g is continuous and commutes with F. If there exist x0, y0, z0, w0 X such that

g x 0 F ( x 0 , y 0 , z 0 , w 0 ) , g y 0 F ( y 0 , z 0 , w 0 , x 0 ) , g z 0 F ( z 0 , w 0 , x 0 , y 0 ) , a n d g w 0 F ( w 0 , x 0 , y 0 , z 0 ) ,

then there exist x, y, z, w X such that

F ( x , y , z , w ) =gx,F ( y , z , w , x ) =gy,F ( z , w , x , y ) =gzandF ( w , x , y , z ) =gw

that is, F and g have a quadruple coincidence point.

Proof. Let x0, y0, z0, w0 X such that

g x 0 F ( x 0 , y 0 , z 0 , w 0 ) , g y 0 F ( y 0 , z 0 , w 0 , x 0 ) , g z 0 F ( z 0 , w 0 , x 0 , y 0 )  and  g w 0 F ( w 0 , x 0 , y 0 , z 0 ) .

Since F (X4) g(X), then we can choose x1, y1, z1, w1 X such that

g x 1 = F ( x 0 , y 0 , z 0 , w 0 ) , g y 1 = F ( y 0 , z 0 , w 0 , x 0 ) , g z 1 = F ( z 0 , w 0 , x 0 , y 0 ) and g w 1 = F ( w 0 , x 0 , y 0 , z 0 ) .
(4)

Taking into account F (X4) g(X), by continuing this process, we can construct sequences {x n }, {y n }, {z n }, and {w n } in X such that

g x n + 1 = F ( x n , y n , z n , w n ) , g y n + 1 = F ( y n , z n , w n , x n ) , g z n + 1 = F ( z n , w n , x n , y n ) , and g w n + 1 = F ( w n , x n , y n , z n ) .
(5)

We shall show that

g x n g x n + 1 ,g y n + 1 g y n ,g z n g z n + 1 ,  and  g w n + 1 g w n  for  n=0,1,2,
(6)

For this purpose, we use the mathematical induction. Since, gx0 ≤ F (x0, y0, z0, w0), gy0 ≥ F (y0, z0, w0, x0), gz0 ≤ F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then by (4), we get

g x 0 g x 1 ,g y 1 g y 0 ,g z 0 g z 1 ,  and  g w 1 g w 0

that is, (6) holds for n = 0.

We presume that (6) holds for some n > 0. As F has the mixed g-monotone property and gx n ≤ gxn+1, gyn+1gy n , gz n ≤ gzn+1and gwn+1gw n , we obtain

g x n + 1 = F ( x n , y n , z n , w n ) F ( x n + 1 , y n , z n , w n ) F ( x n + 1 , y n , z n + 1 , w n ) F ( x n + 1 , y n + 1 , z n + 1 , w n ) F ( x n + 1 , y n + 1 , z n + 1 , w n + 1 ) = g x n + 2 ,
g y n + 2 = F ( y n + 1 , z n + 1 , w n + 1 , x n + 1 ) F ( y n + 1 , z n , x n + 1 , w n + 1 ) F ( y n , z n , x n + 1 , w n + 1 ) F ( y n , z n , x n , w n + 1 ) F ( y n , z n , x n , w n ) = g y n + 1 ,
g z n + 1 = F ( z n , y n , x n , w n ) F ( z n + 1 , y n , x n , w n ) F ( z n + 1 , y n + 1 , x n , w n ) F ( z n + 1 , y n + 1 , x n + 1 , w n ) F ( z n + 1 , y n + 1 , x n + 1 , w n + 1 ) = g z n + 2 ,

and

g w n + 2 = F ( w n + 1 , x n + 1 , y n + 1 , z n + 1 ) F ( w n + 1 , x n , y n + 1 , z n + 1 ) F ( w n , x n , y n + 1 , z n + 1 ) F ( w n , x n , y n , z n + 1 ) F ( w n , x n , y n , z n ) = g w n + 1 .

Thus, (6) holds for any n . Assume for some n ,

g x n = g x n + 1 , g y n = g y n + 1 , g z n = g z n + 1 , and g w n = g w n + 1

then, by (5), (x n , y n , z n , w n ) is a quadruple coincidence point of F and g. From now on, assume for any n that at least

g x n g x n + 1 or g y n g y n + 1 or g z n g z n + 1  or  g w n g w n + 1 .
(7)

By (2) and (5), it is easy that

M ( x n - 1 , y n - 1 , z n - 1 , w n - 1 , x n , y n , z n , w n ) = M ( y n , z n , w n , x n , y n - 1 , z n - 1 , w n - 1 , x n - 1 ) = M ( z n - 1 , y n - 1 , x n - 1 , z n , y n , x n ) = M ( w n , x n , y n , z n , w n - 1 , x n - 1 , y n - 1 , z n - 1 ) = 0 for all n 1 .
(8)

Due to (3) and (8), we have

d ( g x n , g x n + 1 ) = d ( F ( x n - 1 , y n - 1 , z n - 1 , w n - 1 ) , F ( x n , y n , z n , w n ) ) ϕ ( max { d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) } ) + L M ( x n - 1 , y n - 1 , z n - 1 , w n - 1 , x n , y n , z n , w n ) = ϕ ( max { d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) } ) ,
(9)
d ( g y n , g y n + 1 ) = d ( F ( y n , z n , w n , x n ) , y n - 1 , F ( y n - 1 , z n - 1 , w n - 1 , x n - 1 ) ) ϕ ( max { d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) } ) , + L M ( y n , z n , w n , w n , y n - 1 , z n - 1 , w n - 1 , x n - 1 ) = ϕ ( max { d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) } ) ,
(10)
d ( g z n , g z n + 1 ) = d ( F ( z n - 1 , w n - 1 , x n - 1 , y n - 1 ) , F ( z n , w n , x n , y n ) ) ϕ ( max { , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) } ) + L M ( z n - 1 , w n - 1 , x n - 1 , y n - 1 , z n , w n , x n , y n ) = ϕ ( max { d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) } )
(11)

and

d ( g w n , g w n + 1 ) = d ( F ( w n , x n , y n , z n ) , F ( w n - 1 , x n - 1 , y n - 1 , z n - 1 ) ) ϕ ( max { d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) } ) , + L M ( w n , x n , y n , z n , w n - 1 , x n - 1 , y n - 1 , z n - 1 ) = ϕ ( max { d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) } ) .
(12)

Having in mind that ϕ (t) < t for all t > 0, so from (9)-(12) we obtain that

0 < max { d ( g x n , g x n + 1 ) , d ( g y n , g y n + 1 ) , d ( g z n , g z n + 1 ) , d ( g w n , g w n + 1 ) } ϕ ( max { d ( g z n - 1 , g z n ) , d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g w n - 1 , g w n ) } ) < max { d ( g z n - 1 , g z n ) , d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g w n - 1 , g w n ) } .
(13)

It follows that

max d ( g x n , g x n + 1 ) , d ( g y n , g y n + 1 , d ( g z n , g z n + 1 ) , d ( g w n , g w n + 1 ) < max d ( g z n - 1 , g z n ) , d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g w n - 1 , g w n ) .
(14)

Thus, {max{d(gx n , gxn+1), d(gy n , gyn+1), d(gz n , gzn+1), d(gw n , gwn+1)}} is a positive decreasing sequence. Hence, there exists r ≥ 0 such that

lim n + max { d ( g x n , g x n + 1 ) , d ( g y n , g y n + 1 ) , d ( g z n , g z n + 1 ) , d ( g w n , g w n + 1 ) } =r.

Suppose that r > 0. Letting n → +∞ in (13), we obtain that

0<r lim n + ϕ max d ( g z n - 1 , g z n ) , d ( g y n - 1 , g y n ) , d ( g x n - 1 , g x n ) , d ( g w n - 1 , g w n ) = lim t r + ϕ ( t ) <r.
(15)

It is a contradiction. We deduce that

lim n + max { d ( g x n , g x n + 1 ) , d ( g y n , g y n + 1 ) , d ( g z n , g z n + 1 ) , d ( g w n , g w n + 1 ) } =0.
(16)

We shall show that {gx n }, {gy n }, {gz n }, and {gw n } are Cauchy sequences in the metric space (X, d). Assume the contrary, that is, one of the sequence {gx n }, {gy n }, {gz n } or {gw n } is not a Cauchy, that is,

lim n , m + d ( g x m , g x n ) 0 or lim n , m + d ( g y m , g y n ) 0

or

lim n , m + d ( g z m , g z n ) 0  or  lim n , m + d ( g w m , g w n ) 0 .

This means that there exists ε > 0, for which we can find subsequences of integers (m k ) and (n k ) with n k > m k > k such that

max { d ( g x m k , g x n k ) , d ( g y m k , g y n k ) , d ( g z m k , g z n k ) , d ( g w m k , g w n k ) } ε.
(17)

Further, corresponding to m k we can choose n k in such a way that it is the smallest integer with n k > m k and satisfying (17). Then

max { d ( g x m k , g x n k - 1 ) , d ( g y m k , g y n k - 1 ) , d ( g z m k , g z n k - 1 ) , d ( g w m k , g w n k - 1 ) } <ε.
(18)

By triangular inequality and (18), we have

d ( g x m k , g x n k ) d ( g x m k , g x n k - 1 ) + d ( g x n k - 1 , g x n k ) < ε + d ( g x n k - 1 , g x n k ) .

Thus, by (16) we obtain

lim k + d ( g x m k , g x n k ) lim k + d ( g x m k , g x n k - 1 ) ε.
(19)

Similarly, we have

lim k + d ( g y m k , g y n k ) lim k + d ( g y m k , g y n k - 1 ) ε,
(20)
lim k + d ( g z m k , g z n k ) lim k + d ( g z m k , g z n k - 1 ) ε,
(21)

and

lim k + d ( g w m k , g w n k ) lim k + d ( g w m k , g w n k - 1 ) ε.
(22)

Again by (18), we have

d ( g x m k , g x n k ) d ( g x m k , g x m k - 1 ) + d ( g x m k - 1 , g x n k - 1 ) + d ( g x n k - 1 , g x n k ) d ( g x m k , g x m k - 1 ) + d ( g x m k - 1 , g x m k ) + d ( g x m k , g x n k - 1 ) + d ( g x n k - 1 , g x n k ) < d ( g x m k , g x m k - 1 ) + d ( g x m k - 1 , g x m k ) + ε + d ( g x n k - 1 , g x n k ) .

Letting k → + ∞ and using (16), we get

lim k + d ( g x m k , g x n k ) lim k + d ( g x m k - 1 , g x n k - 1 ) ε,
(23)
lim k + d ( g y m k , g y n k ) lim k + d ( g y m k - 1 , g y n k - 1 ) ε,
(24)
lim k + d ( g z m k , g z n k ) lim k + d ( g z m k - 1 , g z n k - 1 ) ε
(25)

and

lim k + d ( g w m k , g w n k ) lim k + d ( g w m k - 1 , g w n k - 1 ) ε.
(26)

Using (17) and (23)-(26), we have

lim k + max { d ( g x m k , g x n k ) , d ( g y m k , g y n k ) , d ( g z m k , g z n k ) , d ( g w m k , g w n k ) } = lim k + max { d ( g x m k - 1 , g x n k - 1 ) , d ( g y m k - 1 , g y n k - 1 ) , d ( g z m k - 1 , g z n k - 1 ) , d ( g w m k - 1 , g w n k - 1 ) } = ε .
(27)

By (16), it is easy to see that

lim k + M ( x m k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x n k - 1 , y n k - 1 , z n k - 1 , w n k - 1 ) = lim k + M ( y n k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x m k - 1 ) = lim k + M ( z m k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 ) = lim k + M ( w n k - 1 , x n k - 1 , y m k - 1 , z n k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z m k - 1 ) = 0 .
(28)

Now, using inequality (3), we obtain

d ( g x m k , g x n k ) = d ( F ( x m k - 1 , y m k - 1 , z m k - 1 , w m k - 1 ) , F ( x n k - 1 , y n k - 1 , z n k - 1 , w n k - 1 ) ) ϕ ( max { d ( x m k - 1 , x n k - 1 ) , d ( y m k - 1 , y n k - 1 ) , d ( z m k - 1 , z n k - 1 ) , d ( w m k - 1 , w n k - 1 ) } ) + L M ( x m k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x n k - 1 , y n k - 1 , z n k - 1 , w n k - 1 ) ,
(29)
d ( g y n k , g y m k ) = d ( F ( y n k - 1 , z n k - 1 , w n k - 1 , x n k - 1 ) , F ( y m k - 1 , z m k - 1 , w m k - 1 , x m k - 1 ) ) ϕ ( max { d ( y m k - 1 , y n k - 1 ) , d ( z m k - 1 , z n k - 1 ) , d ( w m k - 1 , w n k - 1 , d ( x m k - 1 , x n k - 1 ) } ) + L M ( y n k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x m k - 1 ) ,
(30)
d ( g z m k , g z n k ) = d ( F ( z m k - 1 , w m k - 1 , x m k - 1 , y m k - 1 ) , F ( z n k - 1 , w n k - 1 , x n k - 1 , y n k - 1 ) ) ϕ ( max { d ( z m k - 1 , z n k - 1 ) , d ( w m k - 1 , w n k - 1 , d ( x m k - 1 , x n k - 1 ) , d ( y m k - 1 , y n k - 1 ) } ) + L M ( z m k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 )
(31)

and

d ( g w n k , g w m k ) = d ( F ( w n k - 1 , x n k - 1 , y n k - 1 , z n k - 1 ) , F ( w m k - 1 , x m k - 1 , y m k - 1 , z m k - 1 ) ) ϕ ( max { d ( w m k - 1 , w n k - 1 , d ( x m k - 1 , x n k - 1 ) , d ( y m k - 1 , y n k - 1 ) , d ( z m k - 1 , z n k - 1 ) } ) + L M ( w n k - 1 , x n k - 1 , y n k - 1 , z n k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z m k - 1 ) .
(32)

From (29)-(32), we deduce that

max { d ( g x m k , g x n k ) , d ( g y m k , g y n k ) , d ( g z m k , g z n k ) , d ( g w m k , g w n k ) } ϕ ( max { d ( x m k - 1 , x n k - 1 ) , d ( y m k - 1 , y n k - 1 ) , d ( z m k - 1 , z n k - 1 ) , d ( g w m k , g w n k ) } ) + L M ( x m k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x n k - 1 , y n k - 1 , z n k - 1 , w n k - 1 ) + L M ( y n k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 , z m k - 1 , w m k - 1 , x m k - 1 ) + L M ( z m k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z n k - 1 , w n k - 1 , x n k - 1 , y m k - 1 ) + L M ( w n k - 1 , x n k - 1 , y n k - 1 , z n k - 1 , w m k - 1 , x m k - 1 , y m k - 1 , z m k - 1 ) .
(33)

Letting k → +∞ in (33) and having in mind (27) and (28), we get that

0<ε lim t ε + ϕ ( t ) <ε,

it is a contradiction. Thus, {gx n }, {gy n }, {gz n }, and {gw n } are Cauchy sequences in (X, d).

Since (X, d) is complete, there exist x, y, z, w X such that

lim n + g x n =x, lim n + g y n =y, lim n + g y n =y, and lim n + g w n =w.
(34)

From (34) and the continuity of g, we have

lim n + g ( g x n ) = g x , lim n + g ( g y n ) = g y , lim n + g ( g z n ) = g z , and lim n + g ( g w n ) = g w .
(35)

From (5) and the commutativity of F and g, we have

g ( g x n + 1 ) =g ( F ( x n , y n , z n , w n ) ) =F ( g x n , g y n , g z n , g w n ) ,
(36)
g ( g y n + 1 ) =g ( F ( y n , z n , w n , x n ) ) =F ( g y n , g z n , g w n , g x n ) ,
(37)
g ( g z n + 1 ) = g ( F ( z n , w n , x n , y n ) ) = F ( g z n , g w n , g x n , y n ) ,
(38)

and

g ( g w n + 1 ) =g ( F ( w n , x n , y n , z n ) ) =F ( g w n , g x n , y n , g z n ) .
(39)

Now we shall show that gx = F (x, y, z, w), gy = F (y, z, w, x), gz = F (z, w, x, y), and gw = F (w, x, y, z).

By letting n → +∞ in (36) - (39), by (34), (35) and the continuity of F , we obtain

g x = lim n + g ( g x n + 1 ) = lim n + F ( g x n , g y n , g z n , g w n ) = F ( lim n + g x n , lim n + g y n , lim n + g z n , lim n + g w n ) = F ( x , y , z , w ) ,
(40)
g y = lim n + g ( g y n + 1 ) = lim n + F ( g y n , g z n , g w n , g x n ) = F ( lim n + g y n , lim n + g z n , lim n + g w n , lim n + g w n ) = F ( y , z , w , x ) ,
(41)
g z = lim n + g ( g z n + 1 ) = lim n + F ( g z n , g w n , g x n , g y n ) = F ( lim n + g z n , lim n + g w n , lim n + g x n , lim n + g y n ) = F ( z , w , x , y ) ,
(42)

and

g w = lim n + g ( g w n + 1 ) = lim n + F ( g w n , g x n , g y n , g z n ) = F ( lim n + g w n , lim n + g x n , lim n + g y n , lim n + g z n ) = F ( w , x , y , z ) .
(43)

We have proved that F and g have a quadruple coincidence point. This completes the proof of Theorem 2.1.

In the following theorem, we omit the continuity hypothesis of F. We need the following definition.

Definition 2.5 Let (X, ≤) be a partially ordered metric set and d be a metric on X. We say that (X, d, ≤) is regular if the following conditions hold:

(i) if non-decreasing sequence a n a, then a n a for all n,

(ii) if non-increasing sequence b n b, then bb n for all n.

Theorem 2.2 Let (X, ≤) be a partially ordered set and d be a metric on X such that (X, d, ≤) is regular. Suppose F : X4X and g : XX are such that F has the mixed g-monotone property. Assume that there exist ϕ Φ and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , , h , l ) ) ϕ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l ) } ) + L M ( x , y , z , w , u , v , h , l )

for any x, y, z, w, u, v, h, l X for which gxgu, gvgy, gzgh, and glgw. Also, suppose F (X4) g(X) and (g(X), d) is a complete metric space. If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0) and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) =gx,F ( y , z , w , x ) =gy,F ( z , w , x , y ) =gzandF ( w , x , y , z ) =gw

that is, F and g have a quadruple coincidence point.

Proof. Proceeding exactly as in Theorem 2.1, we have that {gx n }, {gy n }, {gz n }, and {gw n } are Cauchy sequences in the complete metric space (g(X), d). Then, there exist x, y, z, w X such that

g x n gx,g y n gy,g z n gz, and g w n gw.
(44)

Since {gx n }, {gz n } are non-decreasing and {gy n }, {gw n } are non-increasing, then since (X, d, ≤) is regular we have

g x n gx,g y n gy,g z n gz,g w n gw

for all n. If gx n = gx, gy n = gy, gz n = gz, and gw n = gw for some n ≥ 0, then gx = gx n gxn+1gx = gx n , gygyn+1gy n = gy, gz = gz n gzn+1gz = gz n , and gwgwn+1gw n = gw, which implies that

g x n =g x n + 1 =F ( x n , y n , z n , w n ) ,g y n =g y n + 1 =F ( y n , z n , w n , x n ) ,

and

g z n =g z n + 1 =F ( z n , w n , x n , y n ) ,g w n =g w n + 1 =F ( w n , w n , y n , z n ) ,

that is, (x n , y n , z n , w n ) is a quadruple coincidence point of F and g. Then, we suppose that (gx n , gy n , gz n , gw n ) ≠ (gx, gy, gz, gw) for all n ≥ 0. By (3), consider now

d ( g x , F ( x , y , z , w ) ) d ( g x , g x n + 1 ) + d ( g x n + 1 , F ( x , y , z , w ) ) = d ( g x , g x n + 1 ) + d ( F ( x n , y n , z n , w n ) , F ( x , y , z , w ) ) d ( g x , g x n + 1 ) + ϕ max d ( g x n , g x ) , d ( g y n , g y ) , d ( g z n , g z ) , d ( g w n , g w ) + L M ( x n , y n , z n , w n , x , y , z , w ) < d ( g x , g x n + 1 ) + max { d ( g x n , g x ) , d ( g y n , g y ) , d ( g z n , g z ) , d ( g w n , g w ) } + L M ( x n , y n , z n , w n , x , y , z , w ) .
(45)

Taking n → ∞ and using (44), the quantity M(x n , y n , z n , w n , x, y, z, w) tends to 0 and so the right-hand side of (45) tends to 0, hence we get that d(gx, F (x, y, z, w)) = 0. Thus, gx = F (x, y, z, w). Analogously, one finds

F ( x , y , z , w ) =gy,F ( z , w , x , y ) =gz, and F ( w , x , y , z ) =gw.

Thus, we proved that F and g have a quartet coincidence point. This completes the proof of Theorem 2.2.

Corollary 2.1 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Suppose F : X4X and g : XX are such that F is continuous and has the mixed g-monotone property. Assume also that there exist ϕ Φ a non-decreasing function and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , h , l ) ) ϕ d ( g x , g u ) + d ( g y , g v ) + d ( g z , g h ) + d ( g w , g l ) 4 + L M ( x , y , z , w , u , v , h , l ) ,

for any x, y, z, w, u, v, h, l, X for which gxgu, gvgy, gzgw, and glgw. Suppose F (X4) g(X), g is continuous and commutes with F .

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) =gx,F ( y , z , w , x ) =gy,F ( z , w , x , y ) =gz,andF ( w , x , y , z ) =gw.

Proof. It suffices to remark that

d ( g x , g u ) + d ( g y , g v ) + d ( g z , p h ) , d ( g w , g l ) 4 max d ( g x , g u ) , d ( g u , g v ) , d ( g z , g h ) , d ( g w , g l ) .

Then, we apply Theorem 2.1, since ϕ is assumed to be non-decreasing.

Similarly, as an easy consequence of Theorem 2.2 we have the following corollary.

Corollary 2.2 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d, ≤) is regular. Suppose F : X4X and g : XX are such that F has the mixed g-monotone property. Assume also that there exist ϕ Φ a non-decreasing function and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , h , l ) ) ϕ d ( g x , g u ) + d ( g y , g v ) + d ( g z , g h ) + d ( g w , g l ) 4 + L M ( x , y , z , w , u , v , h , l ) ,

for any x, y, z, w, u, v, h, l X for which gxgu, gvgy, gzgw, and glgw. Also, suppose F (X4) g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) =gx,F ( y , z , w , x ) =gy,F ( z , w , x , y ) =gz,andF ( w , x , y , z ) =gw.

Corollary 2.3 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Suppose F : X4X and g : XX are such that F is continuous and has the mixed g-monotone property. Assume that there exist k [0, 1) and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , , h , l ) ) k max d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l )  +  L M ( x , y , z , w , u , v , h , l ),

for any x, y, z, w, u, v, h, l X for which:gxgu, gvgy, gzgw, and glgw. Suppose F (X4) g(X), g is continuous and commutes with F.

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0 ≥ F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) = g x , f ( y , z , w , x ) = g y , f ( z , w , x , y ) = g z , a n d F ( w , x , y , z ) = g w .

Proof. It suffices to take ϕ (t) = kt in Theorem 2.1.

Corollary 2.4 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d, ≤) is regular. Suppose F : X4X and g : XX are such that F has the mixed g-monotone property. Assume that there exist k [0, 1) and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , , h , l ) ) k max d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l )  +  L M ( x , y , z , w , u , v , h , l ),

for any x, y, z, w, u, v, h, l X for which gxgu, gvgy, gzgw, and glgw. Suppose F (X4) g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) = g x , F ( y , z , w , x ) = g y , F ( z , w , x , y ) = g z , a n d F ( w , x , y , z ) = g w .

Proof. It suffices to take ϕ (t) = kt in Theorem 2.2.

Corollary 2.5 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Suppose F : X4X and g : XX are such that F is continuous and has the mixed g-monotone property. Assume that there exist k [0, 1) and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , h , l ) ) k 4 d ( g x , g u ) + d ( g y , g v ) + d ( g z , g h ) + d ( g w , g l ) + L M ( x , y , z , w , u , v , h , l ) ,

for any x, y, z, w, X for which :gxgu, gvgy, gzgw, and glgw. Also, suppose F (X4) g(X) and (g(X), g is continuous and commutes with F.

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F x , y , z , w = g x , F y , z , w , x = g y , F z , w , x , y = g z , a n d F w , x , y , z = g w .

Proof. It suffices to take ϕ (t) = kt in Corollary 2.1.

Corollary 2.6 Let (X, ≤) be a partially ordered set and suppose there is a metric d on X such that (X, d, ≤) is regular. Suppose F : X4X and g : XX are such that F has the mixed g-monotone property. Assume that there exist k [0, 1) and L ≥ 0 such that

d ( F ( x , y , z , w ) , F ( u , v , h , l ) ) k 4 d ( g x , g u ) + d ( g y , g v ) + d ( g z , g h ) + d ( g w , g l ) + L M ( x , y , z , w , u , v , h , l ) ,

for any x, y, z, w, X for which gxgu, gvgy, gzgw, and glgw. Suppose F (X4) g(X) and (g(X), d) is a complete metric space.

If there exist x0, y0, z0, w0 X such that gx0F (x0, y0, z0, w0), gy0F (y0, z0, w0, x0), gz0F (z0, w0, x0, y0), and gw0F (w0, x0, y0, z0), then there exist x, y, z, w X such that

F ( x , y , z , w ) = g x , F ( y , z , w , r ) = g y , F ( z , w , x , y ) = g z ,and F ( w , x , y , z ) = g w .

Proof. It suffices to take ϕ (t) = kt in Corollary 2.2.

Remark 1Corollary 2.4 of Karapinar [39] is a particular case of Corollary 2.5 by taking L = 0 and g = I X the identity on X.

  • Corollary 2.4 of Karapinar[39]is a particular case of Corollary 2.6 by taking L = 0 and g = I X .

  • Theorem 2.6 of Berinde and Karapinar[40]is a particular case of Corollary 2.1 by taking L = 0.

  • Theorem 2.6 of Berinde and Karapinar[40]is a particular case of Corollary 2.1 by taking L = 0.

Now, we shall prove the existence and uniqueness of quadruple common fixed point. For a product X4 of a partial ordered set (X, ≤), we define a partial ordering in the following way: For all (x, y, z, w), (u, v, r, h) X4

( x , y , z , w ) ( u , v , r , h ) x u , y v , z r and  w l
(46)

We say that (x, y, z, w) and (u, v, r, l) are comparable if

( x , y , z , w ) ( u , v , r , l ) or ( u , v , r , l ) ( x , y , z , w ) .

Also, we say that (x, y, z, w) is equal to (u, v, r, l) if and only if x = u, y = v, z = r and w = l.

Theorem 2.3 In addition to hypotheses of Theorem 2.1, suppose that for all (x, y, z, w), (u, v, r, l) X4, there exists(a, b, c, d) X4 such that

( F ( a , b , c , d ) , F ( b , c , d , a ) , F ( c , d , a , b ) , F ( d , a , b , c ) )

is comparable to

( F ( x , y , z , w ) , F ( y , z , w , x ) , F ( z , w , x , y ) , F ( w , x , y , z ) ) a n d ( F ( u , v , r , l ) , F ( v , r , l , u ) , F ( r , l , u , v ) , F ( l , u , v , r ) ) .

Then, F and g have a unique quadruple common fixed point (x, y, z, w) such that

x = g x = F ( x , y , z , w ) , y = g y = F ( y , z , w , x ) , z = g z = F ( z , w , x , y ) , a n d w = g w = F ( w , x , y , z ) .

Proof. The set of quadruple coincidence points of F and g is not empty due to Theorem 2.1. Assume, now, (x, y, z, w) and (u, v, r, l) are two quadruple coincidence points of F and g, that is,

F ( x , y , z , w ) = g x , F ( u , v , r , l ) = g u , F ( y , z , w , x ) = g y , F ( v , r , l , u ) = g v , F ( z , w , x , y ) = g z , F ( r , l , u , v ) = g r , F ( w , x , y , z ) = g w , F ( l , u , v , r ) = g l .
(47)

We shall show that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal. By assumption, there exists (a, b, c, d) X4 such that (F (a, b, c, d), F (b, c, d, a), F (c, d, a, b), F (d, a, b, c)) is comparable to (F (x, y, z, w), F (y, z, w, x), F (z, w, x, y), F (w, x, y, z)) and (F (u, v, r, l), F (v, r, l, u), F (r, l, u, v), F (l, u, v, r)).

Define sequences {ga n }, {gb n }, {gc n }, and {gd n } such that

a0 = a, b0 = b, c0 = c, d0 = d and for any n ≥ 1

g a n = F ( a n - - 1 , b n - 1 , c n - 1 , d n - 1 ) , g b n = F ( b n - 1 , c n - 1 , d n - 1 , a n - 1 ) , g c n = F ( c n - 1 , d n - 1 , a n - 1 , b n - 1 ) , g d n = F ( d n - 1 , a n - 1 , b n - 1 , c n - 1 ) ,
(48)

for all n. Further, set x0 = x, y0 = y, z0 = z, w0 = w and u0 = u, v0 = v, r0 = r, l0 = l and on the same way define the sequences {gx n }, {gy n }, {gz n }, {gw n } and {gu n }, {gv n }, {gr n }, {gl n }. Then, it is easy that

g x n = F ( x , y , z , w ) , g u n = F ( u , v , r , l ) , g y n = F ( y , z , w , x ) , g v n = F ( v , r , l , u ) , g z n = F ( z , w , x , y ) , g r n = F ( r , l , u , v ) , g w n = F ( w , x , y , z ) , g l n = F ( l , u , v , r )
(49)

for all n ≥ 1. Since

( F ( x , y , z , w ), F ( y , z , w , x ), F ( z , w , x , y ), F ( w , x , y , z )) = ( g x 1 , g y 1 , g z 1 , g w 1 ) = ( g x , g y , g z , g w )

is comparable to

( F ( a , b , c , d ) , F ( b , c , d , a ) , F ( c , d , a , b ) , F ( d , a , b , c ) ) = ( g a 1 , g b 1 , g c 1 , g d 1 ) ,

then it is easy to show (gx, gy, gz, gw) ≥ (ga1, gb1, gc1, gd1). Recursively, we get that

( g a n , g b n , g c n , g d n ) ( g x , g y , g z , g w ) for all  n.
(50)

From (2) and (47), it is obvious that

M ( a n , b n , c n , d n , x , y , z , w ) = M ( y , z , w , x , b n , c n , d n , a n )) = M ( c n , d n , a n , b n , z , w , x , y ) = M ( w , x , y , z , d n , a n , b n , c n ) = 0 .
(51)

By (50), (51), and (3), we have

d ( g a n + 1 , g x ) = d ( F ( a n , b n , c n , d n ) , F ( x , y , z , w ) ) ϕ ( max { d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) } ) , + L M ( a n , b n , c n , d n , x , y , z , w ) = ϕ ( max { d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) } ) ,
(52)
d ( g y , g b n + 1 ) = d ( F ( y , z , w , x ) , F ( b n , c n , d n , a n ) ) ϕ ( max { d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) , d ( g d n , g w ) } ) + L M ( y , z , w , x , b n , c n , d n , a n ) = ϕ ( max { d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) , d ( g d n , g w ) } ) ,
(53)
d ( g c n + 1 , g z ) = d ( F ( c n , d n , a n , b n ) , F ( z , w , x , y ) ) ϕ ( max { d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) , d ( g d n , g w ) } ) + L M ( c n , d n , a n , b n , z , w , x , y ) = ϕ ( max { d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) , d ( g d n , g w ) } )
(54)

and

d ( g w , g d n + 1 ) = d ( F ( w , x , y , z ) , F ( d n , a n , b n , c n ) ) ϕ ( max { d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) , d ( g d n , g w ) } ) + L M ( w , x , y , z , d n , a n , b n , c n ) = ϕ ( max { d ( g d n , g w ) , d ( g a n , g x ) , d ( g b n , g y ) , d ( g c n , g z ) } ) .
(55)

From (52)-(55), it follows that

max d ( g z , g c n + 1 ) , d ( g y , g b n + 1 ) , d ( g x , g a n + 1 ) , d ( g w , g d n + 1 ) ϕ max d ( g z , g c n ) , d ( g y , g b n ) , d ( g x , g a n ) , d ( g w , g d n ) .
(56)

Therefore, for each n ≥ 1,

max d ( g z , g c n ) , d ( g y , g b n ) , d ( g x , g a n ) , d ( g w , g d n ) ϕ n max d ( g z , g c 0 ) , d ( g y , g b 0 ) , d ( g x , g a 0 ) , d ( g w , g d 0 ) .
(57)

It is known that ϕ(t) < t and lim r t + ϕ ( r ) <t imply lim n ϕ n ( t ) = 0 for each t > 0. Thus, from (57)

lim n max { d ( g z , g c n ) , d ( g y , g b n ) , d ( g x , g a n ) , d ( g w , g d n ) } = 0 .

This yields that

lim n d ( g x , g a n ) = 0 , lim n d ( g y , g b n ) = 0 , lim n d ( g z , g c n ) = 0 and lim n d ( g w , g d n ) = 0 .
(58)

Analogously, we may show that

lim n d ( g u , g a n ) = 0 , lim n d ( g v , g b n ) = 0 , lim n d ( g r , g c n ) = 0  and  lim n d ( g l , g d n ) = 0 .
(59)

Combining (58) and (59) yields that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal.

Since gx = F(x, y, z, w), gy = F(y, z, w, x), gz = F(z, w, x. y), and gz = F(z, w, x, y), by commutativity of F and g we have

g x = g ( g x ) = g ( F ( x , y , z , w ) ) = F ( g x , g y , g z , g w ) , g y = g ( g y ) = g ( F ( y , z , w , x ) ) = F ( g y , g z , g w , g x ) , g z = g ( g z ) = g ( F ( z , w , x , y ) ) = F ( g z , g w , g x , g y )

and

g w =g ( g w ) =g ( F ( w , x , y , z ) ) =F ( g w , g x , g y , g z )

where gx = x', gy = y', gz = z', and gw = w'. Thus, (x', y', z', w') is a quadruple coincidence point of F and g. Consequently, (gx', gy', gz', gz') and (gx, gy, gz, gw) are equal. We deduce

g x = g x = x , g y = g y = y and g z = g z = z , g w = g w = w .

Therefore, (x', y', z', w') is a quadruple common fixed of F and g. Its uniqueness follows easily from (3).

Example 2.1 Let X = be endowed with the usual ordering and the usual metric, which is complete.

Let g: XX and F: X4X be defined by

g ( x ) = 3 4 x,F x , y , z , w = x - y + z - w 8 ,for allx,y,z,wX

Take ϕ : [0, ∞) [0, ∞) be given by ϕ ( t ) = 2 3 t for all t [0, ∞).

We will check that the contraction (3) is satisfied for all x, y, z, w, u, v, h, l X satisfying gx ≤ gu, gv ≤ gy, gz ≤ gh, and gl ≤ gw. In this case, we have

d ( F ( x , y , z , w ) , F ( u , v , h , l ) ) = u - x 8 + y - v 8 + h - z 8 + w - l 8 1 2 [ max { ( u - x ) , ( y - v ) , ( h - z ) , ( w - l ) } ] = 2 3 max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l ) } ϕ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g h ) , d ( g w , g l ) } ) + L M ( x , y , z , w , u , v , h , l ) ,

for arbitrary L ≥ 0.

It is obvious that the other hypotheses of Theorem 2.3 are satisfied. We deduce that (0, 0, 0, 0) is the unique quadruple common fixed point of F and g.

3 Application to matrix equations

In this section, we study the existence and uniqueness of solutions (X, Y, Z, T) to the system of matrix equations

X = Q + A 1 * X A 1 - B 1 * Y B 1 + A 2 * Z A 2 - B 2 * T B 2 Y = Q + A 1 * Y A 1 - B 1 * Z B 1 + A 2 * T A 2 - B 2 * X B 2 Z = Q + A 1 * Z A 1 - B 1 * T B 1 + A 2 * X A 2 - B 2 * Y B 2 T = Q + A 1 * T A 1 - B 1 * X B 1 + A 2 * Y A 2 - B 2 * Z B 2 ,
(60)

where A 1 , A 2 , B 1 , B 2 M ( n ) : the set of all n × n matrices, QP ( n ) : the set of all n × n positive definite matrices, and H ( n ) is the set of all n × n Hermitian matrices.

We endow H ( n ) with the partial order given by

M , N H ( n ) , M N N - M P ( n ) .

For a fixed PP ( n ) , we consider

||H| | 1 , P =tr ( P 1 2 H P 1 2 ) .

for all HH ( n ) , where tr is the trace operator. The space H ( n ) equipped with the metric induced by ||.| | 1 , P is a complete metric space for any positive definite matrix P (see [42]).

The following lemma will be useful for our application.

Lemma 3.1 Let A 0 and B 0 be n × n matrices. Then, we have

0tr ( A B ) =tr ( B A ) ||A||tr ( B ) ,

where ||.|| is the spectral norm.

Theorem 3.1 Suppose that there exists PP ( n ) such that

k = 4 max { | | P - 1 2 A 1 * P A 1 P - 1 2 | | , | | P - 1 2 A 2 * P A 2 P - 1 2 | | , | | P - 1 2 B 1 * P B 1 P - 1 2 | | , | | P - 1 2 B 2 * P B 2 P - 1 2 | | } < 1 .
(61)

Suppose also that

0 i = 1 2 A i * Q A i a n d Q i = 1 2 B i * Q B i .
(62)

Then, the system (60) has one and only one solution ( X 1 , X 2 , X 3 , X 4 ) ( H ( n ) ) 4 .

Proof. Consider the mappings F: ( H ( n ) ) 4 H ( n ) and g:H ( n ) H ( n ) defined by

F ( X 1 , X 2 , X 3 , X 4 ) =Q+ A 1 * X 1 A 1 - B 1 * X 2 B 1 + A 2 * X 3 A 2 - B 2 * X 4 B 2  and gX=X,

for all X, X i H ( n ) i =1, . . . , 4.

For all X i , Y i H ( n ) i = 1. . . , 4 with gX1 gY1, gY2 gX2, gX3 gY3 and gY4 gX4, by using Lemma 3.1, we have

| | F ( Y 1 , Y 2 , Y 3 , Y 4 ) - F ( X 1 , X 2 , X 3 , X 4 ) | | 1 , P = | | A 1 * ( Y 1 - X 1 ) A 1 - B 1 * ( Y 2 - X 2 ) B 1 + A 2 * ( Y 3 - X 3 ) A 2 - B 2 * ( Y 4 - X 4 ) B 2 | | 1 , P = t r P 1 2 A 1 * ( Y 1 - X 1 ) A 1 - B 1 * ( Y 2 - X 2 ) B 1 + A 2 * ( Y 3 - X 3 ) A 2 - B 2 * ( Y 4 - X 4 ) B 2 P 1 2 = t r [ A 1 P A 1 * ( Y 1 - X 1 ) ] + t r [ B 1 P B 1 * ( X 2 - Y 2 ) ] + t r [ A 2 P A 2 * ( Y 3 - X 3 ) ] + t r [ B 2 P B 2 * ( X 4 - Y 4 ) ] = t r [ A 1 P A 1 * P - 1 2 P 1 2 ( Y 1 - X 1 ) P 1 2 P - 1 2 ] + t r [ B 1 P B 1 * P - 1 2 P 1 2 ( X 2 - Y 2 ) P 1 2 P - 1 2 ] + t r [ A 2 P A 2 * P - 1 2 P 1 2 ( Y 3 - X 3 ) P 1 2 P - 1 2 ] + t r [ B 2 P B 2 * P - 1 2 P 1 2 ( X 4 - Y 4 ) P 1 2 P - 1 2 ] | | P - 1 2 A 1 P A 1 * P - 1 2 | | t r ( P 1 2 ( Y 1 - X 1 ) P 1 2 ) + | | P - 1 2 B 1 P B 1 * P - 1 2 | | t r ( P 1 2 ( X 2 - Y 2 ) P 1 2 ) + | | P - 1 2 A 2 P A 2 * P - 1 2 | | t r ( P 1 2 ( Y 3 - X 3 ) P 1 2 ) + | | P - 1 2 B 2 P B 2 * P - 1 2 | | t r ( P 1 2 ( X 4 - Y 4 ) P 1 2 ) = | | P - 1 2 A 1 P A 1 * P - 1 2 | | | | Y 1 - X 1 | | 1 , P + | | P - 1 2 B 1 P B 1 * P - 1 2 | | | | X 2 - Y 2 | | 1 , P + | | P - 1 2 A 2 P A 2 * P - 1 2 | | | | Y 3 - X 3 | | 1 , P + | | P - 1 2 B 2 P B 2 * P - 1 2 | | | | X 4 - Y 4 | | 1 , P k 4 | | g Y 1 - g X 1 | | 1 , P + | | g X 2 - g Y 2 | | 1 , P + | | g Y 3 - g X 3 | | 1 , P + | | g X 4 - g Y 4 | | 1 , P .

Thus, we proved that the contractive condition given in Corollary 2.5 is satisfied for all L ≥ 0. Moreover, from (62), we have letting gQ F (Q, 0, Q, 0) and g 0 F (0, Q, 0, Q). Applying Corollary 2.5, F and g have a coupled coincidence point (and so a quadrupled fixed point since g is the identity on H ( n ) ). Then, there exist X 1 , X 2 , X 3 , X 4 H ( n ) such that

F ( X 1 , X 2 , X 3 , X 4 ) = X 1 , F ( X 2 , X 3 , X 4 , X 1 ) = X 2 , F ( X 3 , X 4 , X 1 , X 2 ) = X 3  and  F ( X 4 , X 1 , X 2 , X 4 ) = X 4 .

On the other hand, for all X,YH ( n ) there is a greatest lower bound and a least upper bound, hence it is obvious that the hypotheses of Theorem 2.3 hold, so the uniqueness of that quadrupled fixed point of F, which is also the unique solution of the system (60).

References

  1. Turinici M: Abstract comparison principles and multivariable Gronwall-Bellman in-equalities. J Math Anal Appl 1986, 117: 100–127. 10.1016/0022-247X(86)90251-9

    Article  MATH  MathSciNet  Google Scholar 

  2. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc Am Math Soc 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MATH  MathSciNet  Google Scholar 

  3. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point in partially ordered G -metric spaces. Fixed Point Theory Appl 2012, 2012: 31. 10.1186/1687-1812-2012-31

    Article  Google Scholar 

  4. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl 2010., 2010: Article ID 621492

    Google Scholar 

  5. Aydi H: Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces. Int J Math Anal 2011, 5(13):631–642.

    MATH  MathSciNet  Google Scholar 

  6. Choudhury BS, Metiya N, Kundu A: Coupled coincidence point theorems in ordered metric spaces. Ann Univ Ferrara 2011, 57: 1–16. 10.1007/s11565-011-0117-5

    Article  MATH  MathSciNet  Google Scholar 

  7. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

    Article  MATH  MathSciNet  Google Scholar 

  8. Harjani J, Sadarangani K: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal 2009, 71: 3403–3410. 10.1016/j.na.2009.01.240

    Article  MATH  MathSciNet  Google Scholar 

  9. Luong NV, Thuan NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal 2011, 74: 983–992. 10.1016/j.na.2010.09.055

    Article  MATH  MathSciNet  Google Scholar 

  10. Nashine HK, Samet B: Fixed point results for mappings satisfying ( ψ , ϕ )-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    Article  MATH  MathSciNet  Google Scholar 

  11. Nashine HK, Shatanawi W: Coupled common fixed point theorems for a pair of commuting mappings in partially ordered complete metric spaces. Comput Math Appl 2011, 62: 1984–1993. 10.1016/j.camwa.2011.06.042

    Article  MATH  MathSciNet  Google Scholar 

  12. Nieto JJ, López RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MATH  MathSciNet  Google Scholar 

  13. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal 2010, 7(12):4508–4517.

    Article  MathSciNet  Google Scholar 

  14. Bhaskar TG, Lakshmikantham V: Fixed point theory in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MATH  MathSciNet  Google Scholar 

  15. Lakshmikantham V, Ćirić LjB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MATH  MathSciNet  Google Scholar 

  16. Abbas M, Khan MA, Radenović S: Common coupled fixed point theorem in cone metric space for w -compatible mappings. Appl Math Comput 2010, 217: 195–202. 10.1016/j.amc.2010.05.042

    Article  MATH  MathSciNet  Google Scholar 

  17. Aydi H: Some coupled fixed point results on partial metric spaces. Int J Math Math Sci 2011., 2011: Article ID 647091, 11

    Google Scholar 

  18. Aydi H, Samet B, Vetro C:Coupled fixed point results in cone metric spaces for w ̃ -compatible mappings. Fixed Point Theory Appl 2011, 2011: 27. 10.1186/1687-1812-2011-27

    Article  MathSciNet  Google Scholar 

  19. Aydi H, Karapinar E, Shatanawi W: Coupled fixed point results for ( ψ , ϕ )-weakly contractive condition in ordered partial metric spaces. Comput Math Appl 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    Article  MATH  MathSciNet  Google Scholar 

  20. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for ( ψ , ϕ )-weakly contractive mappings in ordered G -metric spaces. Comput Math Appl 2012, 63: 298–309. 10.1016/j.camwa.2011.11.022

    Article  MATH  MathSciNet  Google Scholar 

  21. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math Comput Model 2011, 54: 2443–2450. 10.1016/j.mcm.2011.05.059

    Article  MATH  Google Scholar 

  22. Aydi H, Abbas M, Postolache M: Coupled coincidence points for hybrid pair of mappings via mixed monotone property. J Adv Math Stud 2012, 5(1):118–126.

    MATH  MathSciNet  Google Scholar 

  23. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl 2012, 2012: 8. 10.1186/1687-1812-2012-8

    Article  MathSciNet  Google Scholar 

  24. Karapinar E: Couple fixed point on cone metric spaces. Gazi Univ J Sci 2011, 24(1):51–58.

    MathSciNet  Google Scholar 

  25. Karapinar E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput Math Appl 2010, 59(12):3656–3668. 10.1016/j.camwa.2010.03.062

    Article  MATH  MathSciNet  Google Scholar 

  26. Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput Math Appl 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040

    Article  MATH  MathSciNet  Google Scholar 

  27. Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl 2011, 2011: 81. 10.1186/1687-1812-2011-81

    Article  MathSciNet  Google Scholar 

  28. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math Comput Model 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042

    Article  MATH  MathSciNet  Google Scholar 

  29. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacettepe J Math Stat 2011, 40(3):441–447.

    MATH  MathSciNet  Google Scholar 

  30. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed point Theory Appl 2011, 2011: 80. 10.1186/1687-1812-2011-80

    Article  MathSciNet  Google Scholar 

  31. Shatanawi W, Samet B: On ( ψ , ϕ )-weakly contractive condition in partially ordered metric spaces. Comput Math Appl 2011, 62: 3204–3214. 10.1016/j.camwa.2011.08.033

    Article  MATH  MathSciNet  Google Scholar 

  32. Shatanawi W: Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces. Math Comput Model 2011, 54: 2816–2826. 10.1016/j.mcm.2011.06.069

    Article  MATH  MathSciNet  Google Scholar 

  33. Shatanawi W: Partially ordered cone metric spaces and coupled fixed point results. Comput Math Appl 2010, 60: 2508–2515. 10.1016/j.camwa.2010.08.074

    Article  MATH  MathSciNet  Google Scholar 

  34. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal 2011, 74(15):4889–4897. 10.1016/j.na.2011.03.032

    Article  MATH  MathSciNet  Google Scholar 

  35. Aydi H, Karapinar E, Postolache M: Tripled coincidence point theorems for weak φ -contractions in partially ordered metric spaces. Fixed Point Theory Appl 2012, 2012: 44. 10.1186/1687-1812-2012-44

    Article  MathSciNet  Google Scholar 

  36. Samet B, Vetro C: Coupled fixed point, f -invariant set and fixed point of N -order. Ann Funct Anal 2010, 1(2):46–56.

    Article  MATH  MathSciNet  Google Scholar 

  37. Karapinar E:Quartet fixed point for nonlinear contraction. [http://arxiv.org/abs/1106.5472]

  38. Karapinar E, Luong NV: Quadruple fixed point theorems for nonlinear contractions. Comput Math Appl doi:10.1016/j.camwa.2012.02.061

  39. Karapinar E: Quadruple fixed point theorems for weak ϕ -contractions. ISRN Mathematical Analysis 2011., 2011: Article ID 989423, 16

    Google Scholar 

  40. Karapinar E, Berinde V: Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces. Banach J Math Anal 2012, 6(1):74–89.

    Article  MATH  MathSciNet  Google Scholar 

  41. Karapinar E: A new quartet fixed point theorem for nonlinear contractions. JP J Fixed Point Theory Appl 2011, 6(2):119–135.

    MATH  MathSciNet  Google Scholar 

  42. Gohberg I, Goldberg S: Basic Operator Theory. Birkhäuser, Boston, MA; 1981.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zead Mustafa.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed in obtaining the new results presented in this article. All authors read and approve the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Mustafa, Z., Aydi, H. & Karapinar, E. Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces. Fixed Point Theory Appl 2012, 71 (2012). https://doi.org/10.1186/1687-1812-2012-71

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-71

Keywords