Skip to main content

Tripled coincidence point results for generalized contractions in ordered generalized metric spaces

Abstract

In this paper, we establish some tripled coincidence point results for a mixed g-monotone mapping F : X3X satisfying (ψ, ϕ)-contractions in ordered generalized metric spaces. Also, an application and some examples are given to support our results.

Introduction and preliminaries

Banach contraction principle is one of the core subject that has been studied. It has so many different generalizations with different approaches. One of the remarkable generalizations, known as Φ-contraction, was given by Boyd and Wong [1] in 1969. In 1997, Alber and Guerre-Delabriere [2], introduced the notion of a weak ϕ-contraction which generalizes Boyd and Wong results, so Banach's result. Very recently, inspired from the notion of weak ϕ-contractions, a new concept of ( ψ, ϕ)-contractions was introduced (see e.g. [37]).

Mustafa and Sims [8] introduced the notion of generalized metric spaces or simply G-metric spaces as a generalization of the concept of a metric space. Based on the concept of G-metric space, Mustafa et al. [911] proved several fixed point theorems for mapping satisfying different contractive condition. The study of common fixed point was initiated by Abbas and Rhoades [12]. The first result for contractive mappings in ordered G-metric spaces was obtained by Saadati et al. [13]. Bhashkar and Lakshmikantham [14] introduced the concept of a coupled fixed point of a mapping F : X × XX and proved some coupled fixed point theorems in ordered metric spaces. Some authors obtained some interesting coupled fixed point theorems in G-metric spaces (see e.g. [1518]). For more results on G-metric spaces, one can refer to the papers [913, 1528].

Throughout the paper, * is the set of positive integers. In 2004, Mustafa and Sims [8] introduced the concept of G-metric spaces as follows:

Definition 1. (see [8]). Let X be a non-empty set, G : X × X × X+ be a function satisfying the following properties

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y X with xy,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z X with yz,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X, and the pair (X, G) is called a G-metric space.

Every G-metric on X defines a metric d G on X by

d G ( x , y ) = G ( x , y , y ) + G ( y , x , x ) , for all x , y X .
(1)

Example 2. Let (X, d) be a metric space. The function G : X × X × X → [0, +∞), defined by

G ( x , y , z ) = max { d ( x , y ) , d ( y , z ) , d ( z , x ) } ,

or

G ( x , y , z ) = d ( x , y ) + d ( y , z ) + d ( z , x ) ,

for all x, y, z X, is a G-metric on X.

Definition 3. (see [8]). Let (X, G) be a G-metric space, and let {x n } be a sequence of points of X, therefore, we say that {x n } is G-convergent to x X if lim n , m + G ( x , x n , x m ) = 0 , that is, for any ε > 0, there exists N such that G(x, x n , x m ) < ε, for all n, mN. We call x the limit of the sequence and write x n x or lim n + x n =x.

Proposition 4. (see [8]). Let (X,G) be a G-metric space. The following are equivalent:

  1. (1)

    {x n } is G-convergent to x,

  2. (2)

    G(x n , x n , x) → 0 as n → +∞,

  3. (3)

    G(x n , x, x) → 0 as n → +∞,

  4. (4)

    G(x n , x m , x) → 0 as n, m → +∞.

Definition 5. (see [8]). Let (X, G) be a G-metric space. A sequence {x n } is is called a G-Cauchy sequence if, for any ε > 0, there is N such that G(x n , x m , x l ) < ε for all m, n, lN, i.e., G(x n , x m , x l ) → 0 as n, m, l → ∞.

Proposition 6. (see [8]). Let (X, G) be a G-metric space. Then the following are equivalent:

  1. (1)

    the sequence {x n } is G-Cauchy,

  2. (2)

    for any ε > 0, there exists N such that G(x n , x m , x m ) < ε, for all m, nN.

Definition 7. (see [8]). A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Definition 8. Let (X, G) be a G-metric space. A mapping F : X × X × XX is said to be continuous if for any three G-convergent sequences {x n }, {y n } and {z n } converging to x, y and z respectively, {F(x n , y n , z n )} is G-convergent to F(x, y, z).

Following the paper of Berinde and Borcut [29], Aydi, Karapınar and Postolache [30] introduced the following definitions:

Definition 9. (see [30]). Let (X, ≤) be a partially ordered set and F : X × X × XX, g : XX. The mapping F is said to has the mixed g-monotone property if for any x, y, z X

x 1 , x 2 X , g x 1 g x 2 F ( x 1 , y , z ) F ( x 2 , y , z ) , y 1 , y 2 X , g y 1 g y 2 F ( x , y 1 , z ) F ( x , y 2 , z ) , z 1 , z 2 X , g z 1 g z 2 F ( x , y , z 1 ) F ( x , y , z 2 ) .
(2)

Definition 10. (see [30]). Let F : X × X × XX and g : XX. An element (x, y, z) is called a tripled coincidence point of F and g if

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

The point (gx, gy, gz) is called a point of coincidence of F and g.

Definition 11. (see [30]). Let F : X × X × XX and g : XX. An element (x, y, z) is called a tripled common fixed point of F and g if

F ( x , y , z ) = g x = x , F ( y , x , y ) = g y = y , F ( z , y , x ) = g z = z .

Definition 12. (see [30]). Let X be a non-empty set. Let F: X × X × XX and g: XX are such that

g ( F ( x , y , z ) ) = F ( g x , g y , g z )

whenever x, y, z X, then F and g are said to be commutative.

Khan et al. [31] introduced the concept of altering distance function as follows:

Definition 13. (altering distance function, [31]) The function ψ : [0, + ∞) → [0, + ∞) is called an altering distance function if the following properties are satisfied:

  1. (1)

    ψ is continuous and non-decreasing,

  2. (2)

    ψ(t) = 0 if and only if t = 0.

Let Ψ be the set of altering distances. Again, we denote by Φ the set of functions ϕ : [0, +∞) → [0, +∞) such that

  1. (i)

    ϕ is lower-continuous and non-decreasing,

  2. (ii)

    ϕ(t) = 0 if and only if t = 0.

The notion of a fixed point of N-order was first introduced by Samet and Vetro [32]. Later, Berinde and Borcut [29] proved some tripled fixed point results (N = 3) in partially ordered metric spaces (see also [3336]). In this paper, we establish tripled coincidence point results for mappings F : X3X and g : XX involving nonlinear contractions in the setting of ordered G-metric spaces. Also, we present an application and some examples in support of our results.

Main results

Before stating our results, we give the following useful lemma.

Lemma 14. Consider three non-negative real sequences {a n }, {b n } and {c n }. Suppose there exists α ≥ 0 such that

lim n + max { a n , b n } = 0 a n d lim n + max { a n , b n , c n } = α .

Then, lim sup n + c n = α .

Proof. First, we have c n ≤ max{a n , b n , c n }, then

lim sup n + c n α .
(3)

For all n , we have

0 max { a n , b n , c n } - c n max { a n , b n } + c n - c n = max { a n , b n } ,

which implies that lim sup n + ( max { a n , b n , c n } - c n ) 0 . Having in mind that

lim sup n + ( max { a n , b n , c n } - c n ) lim sup n + max { a n , b n , c n } - lim sup n + c n = α - lim sup n + c n ,

so it follows that

lim sup n + c n α .
(4)

By (3) and (4), we get that lim sup n + c n = α . □

The aim of this paper is to prove the following theorem.

Theorem 15. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space such that (X, G) is G-complete. Let F : X3X and g : XX. Assume there exist ψ Ψ and ϕ Φ such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

ψ ( G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) ) ψ ( m a x { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) - ϕ ( m a x { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) .
(5)

Assume that F and g satisfy the following conditions:

  1. (1)

    F(X3) g(X),

  2. (2)

    F has the mixed g-monotone property,

  3. (3)

    F is continuous,

  4. (4)

    g is continuous and commutes with F.

Suppose there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Proof. Suppose x0, y0, z0 X are such that gx0F(x0, y0, z0), gy0F(y0, x0, y0), and gz0F(z0, y0, x0). Since F(X3) g(X), we can choose gx1 = F(x0, y0, z0), gy1 = F(y0, x0, y0) and gz1 = F(z0, y0, x0). Then gx0gx1, gy0gy1 and gz0gz1. Similarly, define gx2 = F(x1, y1, z1), gy2 = F(y1, x1, y1) and gz2 = F(z1, y1, x1). Since F has the mixed g-monotone property, we have gx0gx1gx2, gy2gy1gy0 and gz0gz1gz2. Continuing this process, we can construct three sequences {x n }, {y n } and {z n } in X such that

g x n = F ( x n - 1 , y n - 1 , z n - 1 ) g x n + 1 = F ( x n , y n , z n ) , g y n + 1 = F ( y n , x n , y n ) g y n = F ( y n - 1 , x n - 1 , y n - 1 ) ,

and

g z n = F ( z n - 1 , y n - 1 , x n - 1 ) g z n + 1 = F ( z n , y n , x n ) .

If, for some integer n0, we have ( g x n 0 + 1 , g y n 0 + 1 , g z n 0 + 1 ) = ( g x n 0 , g y n 0 , g z n 0 ) , then F ( x n 0 , y n 0 , z n 0 ) = g x n 0 , F ( y n 0 , x n 0 , y n 0 ) = g y n 0 , and F ( z n 0 , y n 0 , x n 0 ) =g z n 0 ; i.e., ( x n 0 , y n 0 , z n 0 ) is a tripled coincidence point of F and g. Thus we shall assume that (gx n +1, gy n +1, gz n +1) ≠ (gx n , gy n , gz n ) for all n ; i.e., we assume that either gx n +1gx n or gy n +1gy n or gz n +1gz n . For any n *, we have from (5)

ψ ( G ( g x n + 1 , g x n , g x n ) ) : = ψ ( G ( F ( x n , y n , z n ) , F ( x n 1 , y n 1 , z n 1 ) , F ( x n 1 , y n 1 , z n 1 ) ) ) ψ ( max { G ( g x n , g x n 1 , g x n 1 ) , G ( g y n , g y n 1 , g y n 1 ) , G ( g z n 1 , g z n 1 ) } ) ϕ ( max { G ( g x n , g x n 1 , g x n 1 ) , G ( g y n , g y n 1 , g y n 1 ) , G ( g z n , g z n 1 , g z n 1 ) } ) ψ ( max { G ( g x n , g x n 1 , g x n 1 ) , G ( g y n , g y n 1 ) g y n 1 ) , G ( g z n , g z n 1 , g z n 1 ) } ) ,
(6)
ψ ( G ( g y n , g y n , g y n + 1 ) ) : = ψ ( G ( F ( y n 1 , x n 1 , y n 1 ) , F ( y n 1 , x n 1 , y n 1 ) , F ( y n , x n , y n ) ) ) ψ ( max { G ( g y n 1 , g y n 1 , g y n ) , G ( g x n 1 , g x n 1 , g x n ) } ϕ ( max { G ( g y n 1 , g y n 1 , g y n ) , G ( g x n 1 , g x n 1 , g x n ) } ) ψ ( max { G ( g y n , g y n 1 , g y n 1 ) , G ( g x n , g x n 1 , g x n 1 ) , G ( g z n , g z n 1 , g z n 1 ) } ) ,
(7)

and

ψ ( G ( g z n + 1 , g z n , g z n ) ) : = ψ ( G ( F ( z n , y n , x n ) , F ( z n - 1 , y n - 1 , x n - 1 ) , F ( z n - 1 , y n - 1 , x n - 1 ) ) ) ψ ( max { G ( g z n , g z n - 1 , g z n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g x n , g x n - 1 , g x n - 1 ) } ) - ϕ ( max { G ( F ( z n , y n , x n ) , F ( z n - 1 , y n - 1 , x n - 1 ) , F ( z n - 1 , y n - 1 , x n - 1 ) ) } ) ψ ( max { G ( g z n , g z n - 1 , g z n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g x n , g x n - 1 , g x n - 1 ) } ) .
(8)

Since ψ:[0,+∞) → [0, +∞) is a non-decreasing function, for a, b, c [0,+∞), we have ψ(max{a, b, c}) = max{ψ(a), ψ(b), ψ(c)}. Then, from (6), (7), and (8), it follows that

ψ ( max { G ( g x n + 1 , g x n , g x n ) , G ( g y n , g y n , g y n + 1 ) , G ( g z n + 1 , g z n , g z n ) } ) = max ( { ψ ( G ( g x n + 1 , g x n , g x n ) ) , ψ ( G ( g y n , g y n , g y n + 1 ) ) , ψ ( G ( g z n + 1 , g z n , g z n ) ) } ) ψ ( max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g z n , g z n - 1 , g z n - 1 ) } ) .

The fact that ψ is non-decreasing yields that

max { G ( g x n + 1 , g x n , g x n ) , G ( g y n , g y n , g y n + 1 ) , G ( g z n + 1 , g z n , g z n ) } max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g z n , g z n - 1 , g z n - 1 ) } .
(9)

Thus, {max{G(gx n +1, gx n , gx n ),G(gy n , gy n , gy n +1),G(gz n +1, gz n , gz n )}} is a positive non-increasing sequence. Hence there exists r ≥ 0 such that

lim n + max { G ( g x n + 1 , g x n , g x n ) , G ( g y n , g y n , g y n + 1 ) , G ( g z n + 1 , g z n , g z n ) } = r .
(10)

Having in mind that ϕ is non-decreasing, then

ϕ ( max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g z n , g z n - 1 , g z n - 1 ) } ) ϕ ( max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) } ) ,
(11)

so from (6)-(8), we get that

ψ ( max { G ( g x n + 1 , g x n , g x n ) , G ( g y n , g y n , g y n + 1 ) , G ( g z n + 1 , g z n , g z n ) } ) = max ( { ψ ( G ( g x n + 1 , g x n , g x n ) ) , ψ ( G ( g y n , g y n , g y n + 1 ) ) , ψ ( G ( g z n + 1 , g z n , g z n ) ) } ) ψ ( max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) , G ( g z n , g z n - 1 , g z n - 1 ) } ) - ϕ ( max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n , g y n - 1 , g y n - 1 ) } ) .
(12)

On the other hand,

0 max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n - 1 , g y n - 1 , g y n ) } max { G ( g x n , g x n - 1 , g x n - 1 ) , G ( g y n - 1 , g y n - 1 , g y n ) , G ( g z n , g z n - 1 , g z n - 1 ) } ,
(13)

so by (10), the real sequence {max{G(gx n , gx n -1, gx n -1),G(gy n -1, gy n -1, gy n )}} is bounded. Thus, there exists a real number r1 with 0 ≤ r1r and subsequences {x n ( k )} of {x n } and {y n ( k )} of {y n } such that

lim k + max { G ( g x n ( k ) + 1 , g x n ( k ) , g x n ( k ) ) , G ( g y n ( k ) , g y n ( k ) , g y n ( k ) + 1 ) } = r 1 .
(14)

We rewrite (12)

ψ ( max { G ( g x n ( k ) + 1 , g x n ( k ) , g x n ( k ) ) , G ( g y n ( k ) , g y n ( k ) , g y n ( k ) + 1 ) , G ( g z n ( k ) + 1 , g z n ( k ) , g z n ( k ) } ) ψ ( max { G ( g x n ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) , G ( g y n ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) , G ( g z n ( k ) , g z n ( k ) 1 , g z n ( k ) 1 ) } ) ϕ ( max { G ( g x n ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) , G ( g y n ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) } ) .
(15)

Letting k → +∞ in (15), having in mind (10), (14), the continuity of ψ and the lower semi-continuity of ϕ, we obtain

ψ ( r ) = lim sup k + ψ ( max { G ( g x n ( k ) + 1 , g x n ( k ) , g x n ( k ) ) , G ( g y n ( k ) , g y n ( k ) , g y n ( k ) + 1 ) , G ( g z n ( k ) + 1 , g z n ( k ) , g z n ( k ) ) } ) lim sup k + ψ ( max { G ( g x n ( k ) , g x n ( k ) - 1 , g x n ( k ) - 1 ) , G ( g y n ( k ) , g y n ( k ) - 1 , g y n ( k ) - 1 ) , G ( g z n ( k ) , g z n ( k ) - 1 , g z n ( k ) - 1 ) } ) - lim inf k + ϕ ( max { G ( g x n ( k ) , g x n ( k ) - 1 , g x n ( k ) - 1 ) , G ( g y n ( k ) , g y n ( k ) - 1 , g y n ( k ) - 1 ) } ) ψ ( r ) - ϕ ( r 1 ) ,

which implies that ϕ(r1) = 0, and using a property of ϕ, we find r1 = 0. Thanks to Lemma 14 together with (10) and (14), it yields that

r = : lim k + max { G ( g x n ( k ) , g x n ( k ) - 1 , g x n ( k ) - 1 ) , G ( g y n ( k ) , g y n ( k ) - 1 , g y n ( k ) - 1 ) , G ( g z n ( k ) , g z n ( k ) - 1 , g z n ( k ) - 1 ) } = lim sup k + G ( g z n ( k ) , g z n ( k ) - 1 , g z n ( k ) - 1 ) .
(16)

For any k , we rewrite (8) as

ψ ( G ( g z n ( k ) + 1 , g z n ( k ) , g z n ( k ) ) ) ψ ( max { G ( g z n ( k ) , g z n ( k ) - 1 , g z n ( k ) - 1 ) , G ( g y n ( k ) , g y n ( k ) - 1 , g y n ( k ) - 1 ) , G ( g x n ( k ) , g x n ( k ) - 1 , g x n ( k ) - 1 ) } ) - ϕ ( max { G ( g z n ( k ) , g z n ( k ) - 1 , g z n ( k ) - 1 ) , G ( g y n ( k ) , g y n ( k ) - 1 , g y n ( k ) - 1 ) , G ( g x n ( k ) , g x n ( k ) - 1 , g x n ( k ) - 1 ) } ) .
(17)

Again, letting k → +∞ in (17), having in mind (10), (16) and by the properties of ψ, ϕ, we obtain

ψ ( r ) = lim sup k + ψ ( G ( g z n ( k ) + 1 , g z n ( k ) , g z n ( k ) ) ) lim sup k + ψ ( max { g z n ( k ) , g z n ( k ) 1 , g z n ( k ) 1 ) , G ( g y n ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) , G ( g x n ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) } ) lim inf k + ϕ ( max { G ( g z n ( k ) , g z n ( k ) 1 , g z n ( k ) 1 ) , G ( g y n ( k ) , g y n ( k ) 1 , g y n ( k ) 1 ) , G ( g x n ( k ) , g x n ( k ) 1 , g x n ( k ) 1 ) } ) ψ ( r ) ϕ ( r ) ,

which gives that ϕ(r) = 0, so r = 0, i.e., by (10),

lim n + max { G ( g x n + 1 , g x n , g x n ) , G ( g y n , g y n , g y n + 1 ) , G ( g z n + 1 , g z n , g z n ) } = 0 .
(18)

Our next step is to show that {gx n }, {gy n } and {gz n } are G-Cauchy sequences.

Assume the contrary, i.e., {gx n }, {gy n } or {gz n } is not a G-Cauchy sequence, i.e.,

lim n , m + G ( g x m , g x n g x n ) 0 , or lim n , m + G ( g y m , g y n , g y n ) 0 ,

or lim n , m + G ( g z m , g z n , g z n ) 0 . This means that there exists ε > 0 for which we can find subsequences of integers {m k } and {n k } with n k > m k > k such that

max { G ( g x m k , g x n k , g x n k ) , G ( g y m k , g y n k , g y n k ) , G ( g z m k , g z n k , g z n k ) } ε .
(19)

Further, corresponding to m k we can choose n k in such a way that it is the smallest integer with n k > m k and satisfying (19). Then

max { G ( g x m k , g x n k - 1 , g x n k - 1 ) , G ( g y m k , g y n k - 1 , g y n k - 1 ) , G ( g z m k , g z n k - 1 , g z n k - 1 ) } < ε .
(20)

By (G5) and (20), we have

G ( g x m k , g x n k , g x n k ) G ( g x m k , g x n k - 1 , g x n k - 1 ) + G ( g x n k - 1 , g x n k , g x n k ) < ε + G ( g x n k - 1 , g x n k , g x n k ) .

Thus, by (18) we obtain

lim k + G ( g x m k , g x n k , g x n k ) lim k + G ( g x m k , g x n k - 1 , g x n k - 1 ) ε .
(21)

Similarly, we have

lim k + G ( g y m k , g y n k , g y n k ) lim k + G ( g y m k , g y n k - 1 , g y n k - 1 ) ε .
(22)
lim k + G ( g z m k , g z n k , g z n k ) lim k + G ( g z m k , g z n k - 1 , g z n k - 1 ) ε .
(23)

Again by (G 5) and (20), we have

G ( g x m k , g x n k , g x n k ) G ( g x m k , g x m k - 1 , g x m k - 1 ) + G ( g x m k - 1 , g x n k - 1 , g x n k - 1 ) + G ( g x n k - 1 , g x n k , g x n k ) G ( g x m k , g x m k - 1 , g x m k - 1 ) + G ( g x m k - 1 , g x m k , g x m k ) + G ( g x m k , g x n k - 1 , g x n k - 1 ) + G ( g x n k - 1 , g x n k , g x n k ) < G ( g x m k , g x m k - 1 , g x m k - 1 ) + G ( g x m k - 1 , g x m k , g x m k ) + ε + G ( g x n k - 1 , g x n k , g x n k ) .

Letting k → +∞ and using (18), we get

lim k + G ( g x m k , g x n k , g x n k ) lim k + G ( g x m k - 1 , g x n k - 1 , g x n k - 1 ) ε ,
(24)
lim k + G ( g y m k , g y n k , g y n k ) lim k + G ( g y m k - 1 , g y n k - 1 , g y n k - 1 ) ε ,
(25)
lim k + G ( g z m k , g z n k , g z n k ) lim k + G ( g z m k - 1 , g z n k - 1 , g z n k - 1 ) ε .
(26)

Using (19) and (24)-(26), we have

lim k + max { G ( g x m k , g x n k , g x n k ) , G ( g y m k , g y n k , g y n k ) , G ( g z m k , g z n k , g z n k ) } = lim k + max { G ( g x m k 1 , g x n k 1 , g x n k 1 ) , G ( g y m k 1 , g y n k 1 , g y n k 1 ) , G ( g z m k 1 , g z n k 1 , g z n k 1 ) = ε .
(27)

Now, using inequality (5) we obtain

ψ ( G ( g x m k , g x n k , g x n k ) ) = ψ ( G ( F ( x m k - 1 , y m k - 1 , z m k - 1 ) , F ( x n k - 1 , y n k - 1 , z n k - 1 ) , F ( x n k - 1 , y n k - 1 , z n k - 1 ) ) ) ψ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) , G ( z m k - 1 , z n k - 1 , z n k - 1 ) } ) - ϕ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) , G ( z m k - 1 , z n k - 1 , z n k - 1 ) } )
(28)
ψ ( G ( g y m k , g y n k , g y n k ) ) = ψ ( G ( F ( y m k - 1 , x m k - 1 , y m k - 1 ) , F ( y n k - 1 , x n k - 1 , y n k - 1 ) , F ( y n k - 1 , x n k - 1 , y n k - 1 ) ) ) ψ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) } ) - ϕ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) } )
(29)

and

ψ ( G ( g z m k , g z n k , g z n k ) ) = ψ ( G ( F ( z m k - 1 , y m k - 1 , x m k - 1 ) , F ( z n k - 1 , y n k - 1 , x n k - 1 ) , F ( z n k - 1 , y n k - 1 , x n k - 1 ) ) ) ψ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) , G ( z m k - 1 , z n k - 1 , z n k - 1 ) } ) - ϕ ( max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) , G ( z m k - 1 , z n k - 1 , z n k - 1 ) } )
(30)

We deduce from (28)-(30) that

ψ ( max { G ( g x m k , g x n k , g x n k ) , G ( g y m k , g y n k , g y n k ) , G ( g z m k , g z n k , g z n k ) } = max { ψ ( G ( g x m k , g x n k , g x n k ) ) , ψ ( G ( g y m k , g y n k , g y n k ) ) , ψ ( G ( g z m k , g z n k , g z n k ) ) } ψ ( max { G ( x m k 1 , x n k 1 , x n k 1 ) , G ( y m k 1 , y n k 1 , y n k 1 ) , G ( z m k 1 , z n k 1 , z n k 1 ) } ) ϕ ( max { G ( x m k 1 , x n k 1 , x n k 1 ) , G ( y m k 1 , y n k 1 , y n k 1 ) } ) .
(31)

On the other hand, since

max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) } max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) , G ( z m k - 1 , z n k - 1 , z n k - 1 ) } ,
(32)

then from (27),

lim sup k + max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) } ε .

Therefore, the real sequence { max { G ( x m k 1 , x n k 1 , x n k 1 ) , G ( y m k 1 , y n k 1 , y n k 1 ) } } is bounded. Thus, up to a subsequence (still denoted the same), there exists ε1 with 0 ≤ ε1ε such that

lim k + max { G ( x m k - 1 , x n k - 1 , x n k - 1 ) , G ( y m k - 1 , y n k - 1 , y n k - 1 ) } = ε 1 .
(33)

Inserting this in (31) and using (27), (33) together with the properties of ψ, ϕ, we get that

ψ ( ε ) = lim sup k + ψ ( max { G ( g x m k , g x n k , g x n k ) , G ( g y m k , g y n k , g y n k ) , G ( g z m k , g z n k , g z n k ) } lim sup k + ψ ( max { G ( x m k 1 , x n k 1 , x n k 1 ) , G ( y m k 1 , y n k 1 , y n k 1 ) , G ( z m k 1 , z n k 1 , z n k 1 ) } ) lim inf k + ϕ ( max { G ( x m k 1 , x n k 1 , x n k 1 ) , G ( y m k 1 , y n k 1 , y n k 1 ) } ) ψ ( ε ) ϕ ( ε 1 ) ,

which leads to ϕ(ε1) = 0, so ε1 = 0. By this and (27), due to Lemma 14, we obtain

lim sup k + G ( z m k - 1 , z n k - 1 , z n k - 1 ) = ε .

Combining this to (19) and (26), we find

lim sup k + G ( z m k , z n k , z n k ) = ε .

Letting k → ∞ in (30) and using (27), we deduce

ψ ( ε ) ψ ( ε ) - ϕ ( ε ) ,

i.e., ε = 0, it is a contradiction. We conclude that {gx n }, {gy n } and {gz n } are G-Cauchy sequences in the G-metric space (X, G), which is G-complete. Then, there are x, y, z X such that {gx n }, {gy n } and {gz n } are respectively G-convergent to x, y and z, i.e., from Proposition 4, we have

lim n + G ( g x n , g x n , x ) = lim n + G ( g x n , x , x ) = 0 ,
(34)
lim n + G ( g y n , g y n , y ) = lim n + G ( g y n , y , y ) = 0 ,
(35)
lim n + G ( g z n , g z n , z ) = lim n + G ( g z n , z , z ) = 0 .
(36)

From (34)-(36) and the continuity of g, we get thanks to Proposition 8

lim n + G ( g ( g x n ) , g ( g x n ) , g x ) = lim n + G ( g ( g x n ) , g x , g x ) = 0 ,
(37)
lim n + G ( g ( g y n ) , g ( g y n ) , g y ) = lim n + G ( g ( g y n ) , g y , g y ) = 0 ,
(38)
lim n + G ( g ( g z n ) , g ( g z n ) , g z ) = lim n + G ( g ( g z n ) , g z , g z ) = 0 .
(39)

Since gx n +1 = F(x n , y n , z n ), gy n +1 = F(y n , x n , y n ) and gz n +1 = F(z n , y n , x n ), so the commutativity of F and g yields that

g ( g x n + 1 ) = g ( F ( x n , y n , z n ) ) = F ( g x n , g y n , g z n ) ,
(40)
g ( g y n + 1 ) = g ( F ( y n , x n , y n ) ) = F ( g y n , g x n , g y n ) ,
(41)
g ( g z n + 1 ) = g ( F ( z n , y n , x n ) ) = F ( g z n , g y n , g x n ) .
(42)

Now we show that F(x, y, z) = gx, F(y, x, y) = gy and F(z, y, x) = gz.

The mapping F is continuous, so since the sequences {gx n }, {gy n } and {gz n } are, respectively, G-convergent to x, y and z, hence using Definition 8, the sequence {F(gx n , gy n , gz n )} is G-convergent to F(x, y, z). Therefore, from (40), {g(gx n +1)} is G-convergent to F(x, y, z). By uniqueness of the limit, from (37) we have F(x, y, z) = gx.

Similarly, one finds F(y, x, y) = gy and F(z, y, x) = gz, and this makes end to the proof. □

Corollary 16. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space such that (X, G) is G-complete. Let F : X3X and g : XX. Assume there exists k [0,1) such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) k max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } .

Assume that F and g satisfy the following conditions:

  1. (1)

    F(X3) g(X),

  2. (2)

    F has the mixed g-monotone property,

  3. (3)

    F is continuous,

  4. (4)

    g is continuous and commutes with F.

Suppose there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy 0 F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Proof. If follows by taking ψ(t) = t and ϕ(t) = (1 - k)t for all t ≥ 0. □

Corollary 17. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space such that (X, G) is G-complete. Let F : X3X and g : XX. Assume there exists k [0,1) such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) k 3 ( G ( g x , g a , g u ) + G ( g y , g b , g v ) + G ( g z , g c , g w ) ) .

Assume that F and g satisfy the following conditions:

  1. (1)

    F(X3) g(X),

  2. (2)

    F has the mixed g-monotone property,

  3. (3)

    F is continuous,

  4. (4)

    g is continuous and commutes with F.

Suppose there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Proof. It suffices to remark that

k 3 ( G ( g x , g a , g u ) + G ( g y , g b , g v ) + G ( g z , g c , g w ) ) k max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } .
(43)

In the next theorem, we omit the continuity hypothesis of F. We need the following definition.

Definition 18. Let (X, ) be a partially ordered set and G be a G-metric on X. We say that (X, G, ≤) is regular if the following conditions hold:

  1. (i)

    if a non-decreasing sequence {x n } is such that x n x, then x n x for all n,

  2. (ii)

    if a non-increasing sequence {y n } is such that y n y, then yy n for all n.

Theorem 19. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space. Let F : X3X and g: XX. Assume there exist ψ Ψ and ϕ Φ such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

ψ ( G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) ) ψ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) - ϕ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) .
(44)

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the mixed g-monotone property and F(X × X × X) g(X). Also, assume there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz 0 F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Proof. Proceeding exactly as in Theorem 15, we have that {gx n }, {gy n } and {gz n } are G-Cauchy sequences in the G-complete G-metric space (g(X), G). Then, there exist x, y, z X such that gx n gx, gy n gy and gz n gz. Since {gx n } and {gz n } are non-decreasing and {gy n } is non-increasing, using the regularity of (X, G, ≤), we have gx n gx, gz n gz and gygy n for all n ≥ 0. Using (5), we get

ψ ( G ( F ( x , y , z ) , g x n + 1 , g x n + 1 ) = ψ ( G ( F ( x , y , z ) , F ( x n , y n , z n ) , F ( x n , y n , z n ) ) ) ψ ( max { G ( g x , g x n , g x n ) , G ( g y , g y n , g y n ) , G ( g z , g z n , g z n ) } ) ϕ ( max { G ( g x , g x n , g x n ) , G ( g y , g y n , g y n ) , G ( g z , g z n , g z n ) } ) .
(45)

Letting n → +∞ in the above inequality, we obtain that

ψ ( G ( F ( x , y , z ) , g x , g x ) ) ψ ( 0 ) - ϕ ( 0 ) = 0 ,

which implies that G(F(x, y, z), gx, gx) = 0, i.e., gx = F(x, y, z).

Similarly, one can show that gy = F(y, x, y) and gz = F(z, y, x). Thus we proved that (x, y, z) is a tripled coincidence point of F and g. □

Similarly, we can state the following corollary.

Corollary 20. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space. Let F : X3X and g: XX. Assume there exists k [0, 1) such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) k max { G ( g x , g a , g y ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } .

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the mixed g-monotone property and F(X × X × X) g(X). Also, assume there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy 0F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Corollary 21. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space. Assume that (X, G, ≤) is regular. Let F : X3X and g : XX. Assume there exists k [0, 1) such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgc > gw, we have

G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) k 3 ( G ( g x , g a , g u ) + G ( g y , g b , g v ) + G ( g z , g c , g w ) ) .

Suppose that (g(X),G) is G-complete, F has the mixed g-monotone property and F(X × X × X) g(X). Also, assume there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz0 < F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Remark 22. Other corollaries could be derived from Theorems 15 and 19 by taking g = Id x .

Now, form previous obtained results, we will deduce some tripled coincidence point results for mappings satisfying a contraction of integral type in G-metric space. Let us introduce first some notations.

We denote by Γ the set of functions α: [0, +∞) → [0, +∞) satisfying the following conditions:

  1. (i)

    α is a Lebesgue integrable mapping on each compact subset of [0, +∞),

  2. (ii)

    for all ε > 0, we have

    0 ε α ( s ) d s > 0 .

Let N * be fixed. Let {α i }1 ≤ i N be a family of N functions that belong to Γ. For all t ≥ 0, we denote (I i )i =1,..., N as follows:

I 1 ( t ) = 0 t α 1 ( s ) d s , I 2 ( t ) = 0 I 1 ( t ) α 2 ( s ) d s = 0 0 t α 1 ( s ) d s α 2 ( s ) d s , I N ( t ) = 0 I N - 1 ( t ) α N ( s ) d s .

We have the following result.

Theorem 23. Let (X, ≤) be a partially ordered set and (X, G) be a G-metric space such that (X, G) is G-complete. Let F : X3X and g : XX. Assume there exist ψ Ψ and ϕ Φ such that for x, y, z, a, b, c, u, v, w X, wth gxgagu, gygbgv and gzgcgw, we have

I N ( ψ ( G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) ) ) I N ( ψ ( m a x { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) ) - I N ( ϕ ( m a x { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) ) .
(46)

Assume that F and g satisfy the following conditions:

  1. (1)

    F(X3) g(X),

  2. (2)

    F has the mixed g-monotone property,

  3. (3)

    F is continuous,

  4. (4)

    g is continuous and commutes with F.

Suppose there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Proof. Take

ϕ ̃ = I N φ and ψ ̃ = I N ψ .

It is easy to show that ψ ̃ Ψ and ϕ ̃ Φ. From (46), we have

ψ ˜ ( G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) ψ ˜ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) ϕ ˜ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) .
(47)

Now, applying Theorem 15, we obtain the desired result. □

Similarly, we have

Theorem 24. Let (X, ≤) be partially ordered set and (X, G) be a G-metric space. Let F : X3X and g: XX. Assume there exist ψ Ψ and ϕ Φ such that for x, y, z, a, b, c, u, v, w X, with gxgagu, gygbgv and gzgcgw, we have

I N ( ψ ( G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) ) ) ) I N ( ψ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) ) - I N ( ϕ ( max { G ( g x , g a , g u ) , G ( g y , g b , g v ) , G ( g z , g c , g w ) } ) ) .

Assume that (X, G, ≤) is regular. Suppose that (g(X),G) is G-complete, F has the mixed g-monotone property and F(X × X × X) g(X). Also, assume there exist x0, y0, z0 X such that gx0F(x0, y0, z0), gy0F(y0, x0, y0) and gz0F(z0, y0, x0), then F and g have a tripled coincidence point in X, i.e., there exist x, y, z X such that

F ( x , y , z ) = g x , F ( y , x , y ) = g y , F ( z , y , x ) = g z .

Application to integral equations

In this section, we study the existence of solutions to nonlinear integral equations using the results proved in section "Main results".

Consider the integral equations in the following system

x ( t ) = p ( t ) + 0 T S ( t , s ) [ f ( s , x ( s ) ) + k ( s , y ( s ) ) + h ( s , z ( s ) ) ] d s y ( t ) = p ( t ) + 0 T S ( t , s ) [ f ( s , y ( s ) ) + k ( s , x ( s ) ) + h ( s , y ( s ) ) ] d s z ( t ) = p ( t ) + 0 T S ( t , s ) [ f ( s , z ( s ) ) + k ( s , y ( s ) ) + h ( s , x ( s ) ) ] d s .
(48)

We will analyze the system (48) under the following assumptions:

  1. (i)

    f, k, h: [0, T] × are continuous,

  2. (ii)

    p : [0, T] → is continuous,

  3. (iii)

    S: [0, T] × → [0, ∞) is continuous,

  4. (iv)

    there exists q > 0 such that for all x, y , yx,

    0 f ( s , y ) - f ( s , x ) q ( y - x ) 0 k ( s , x ) - k ( s , y ) q ( y - x ) 0 h ( s , y ) - h ( s , x ) q ( y - x ) .
  5. (v)

    We suppose that

    3 q sup t [ 0 , T ] 0 T S ( t , s ) d s < 1 .
  6. (vi)

    There exist continuous functions α, β, γ : [0, T] → such that

    α ( t ) p ( t ) + 0 T S ( t , s ) [ f ( s , α ( s ) ) + k ( s , β ( s ) ) + h ( s , γ ( s ) ) ] d s β ( t ) p ( t ) + 0 T S ( t , s ) [ f ( s , β ( s ) ) + k ( s , α ( s ) ) + h ( s , β ( s ) ) ] d s γ ( t ) p ( t ) + 0 T S ( t , s ) [ f ( s , γ ( s ) ) + k ( s , β ( s ) ) + h ( s , α ( s ) ) ] d s .

We consider the space X = C([0,T],) of continuous functions defined on [0,T] endowed with the (G-complete) G-metric given by

G ( u , v , w ) = max t [ 0 , T ] u ( t ) - v ( t ) + max t [ 0 , T ] u ( t ) - w ( t ) + max t [ 0 , T ] v ( t ) - w ( t ) for all u , v , w X .

We endow X with the partial ordered ≤ given by: x, y X, xy x(t) ≤ y(t) for all t [0, T].

On the other hand, we may adjust as in [37] to prove that (X, G, ≤) is regular.

Our result is the following.

Theorem 25. Under assumptions (i)-(vi), the system (48) has a solution in X3 = (C([0, T], ))3.

Proof. We consider the operators F : X3X and g : XX defined by

F ( x 1 , x 2 , x 3 ) ( t ) = p ( t ) + 0 T S ( t , s ) [ f ( s , x 1 ( s ) ) + k ( s , x 2 ( s ) ) + h ( s , x 3 ( s ) ) ] d s , g ( x ) = x t [ 0 , T ] ,

for all x1, x2, x3, x X.

First, we will prove that F has the mixed monotone property (since g is the identity on X).

In fact, for x1y1 and t [0, T], we have

F ( y 1 , x 2 , x 3 ) ( t ) F ( x 1 , x 2 , x 3 ) ( t ) = T 0 S ( t , s ) [ f ( s , y 1 ( s ) ) f ( s , x 1 ( s ) ) ] d s .

Taking into account that x1(t) ≤ y1(t) for all t [0, T], so by (iv), f(s, y1 (s)) ≥ f(s, x1 (s)). Then F(y1, x2, x3)(t) ≥ F(x1, x2, x3)(t) for all t [0,T],i.e.,

F ( x 1 , x 2 , x 3 ) F ( y 1 , x 2 , x 3 ) .

Similarly, for x2y2 and t [0, T], we have

F ( x 1 , x 2 , x 3 ) ( t ) - F ( x 1 , y 2 , x 3 ) ( t ) = 0 T S ( t , s ) [ k ( s , x 2 ( s ) ) - k ( s , y 2 ( s ) ) ] d s .

Having x2(t) ≤ y2(t), so by (iv), k(s, x2(s)) ≥ k(s, y2(s)). Then F(x1, x2, x3)(t) ≥ F(x1, y2, x3)(t) for all t [0,T], i.e.,

F ( x 1 , x 2 , x 3 ) F ( x 1 , y 2 , x 3 ) .

Now, for x3y3 and t [0, T], we have

F ( x 1 , x 2 , x 3 ) ( t ) - F ( x 1 , y 2 , x 3 ) ( t ) = 0 T S ( t , s ) [ k ( s , x 2 ( s ) ) - k ( s , y 2 ( s ) ) ] d s .

Taking into account that x3(t) ≤ y3(t) for all t [0, T], so by (iv), h(s, x3(s)) ≥ h(s, y3(s)). Then F(x1, x2, x3)(t) ≥ F(x1, x2, y3)(t) for all t [0, T], i.e.,

F ( x 1 , x 2 , x 3 ) F ( x 1 , x 2 , y 3 ) .

Therefore, F has the mixed monotone property.

In what follows we estimate the quantity G(F(x, y, z), F(a, b, c), F(u, v, w)) for all x, y, z, a, b, c, u, v, w X, with xau, ybv and zcw. Since F has the mixed monotone property, we have

F ( u , v , w ) F ( a , b , c ) F ( x , y , z ) .

We obtain

G ( F ( x , y , z ) , F ( a , b , c ) , F ( u , v , w ) = max t [ 0 , T ] | F ( x , y , z ) ( t ) F ( a , b , c ) ( t ) | + max t [ 0 , T ] | F ( x , y , z ) ( t ) F ( u , v , z ) ( t ) | + max t [ 0 , T ] | F ( u , v , w ) ( t ) F ( a , b , c ) ( t ) | = max t [ 0 , T ] ( F ( x , y , z ) ( t ) F ( a , b , c ) ( t ) ) + max t [ 0 , T ] ( F ( x , y , z ) ( t ) F ( u , v , z ) ( t ) ) + max t [ 0 , T ] ( F ( a , b , c ) ( t ) F ( u , v , w ) ( t ) ) .

Note that for all t [0, T], from (iv), we have

F ( x , y , z ) ( t ) - F ( a , b , c ) = 0 T S ( t , s ) [ f ( s , x ( s ) ) - f ( s , a ( s ) ) ] d s + 0 T S ( t , s ) [ k ( s , y ( s ) ) - k ( s , b ( s ) ) ] d s + 0 T S ( t , s ) [ h ( s , z ( s ) ) - h ( s , c ( s ) ) ] q max s [ 0 , T ] x ( s ) - a ( s ) + max s [ 0 , T ] y ( s ) - b ( s ) + max s [ 0 , T ] z ( s ) - c ( s ) 0 T S ( t , s ) d s .

Thus,

max t [ 0 , T ] ( F ( x , y , z ) ( t ) - F ( a , b , c ) ( t ) ) q max s [ 0 , T ] x ( s ) - a ( s ) + max s [ 0 , T ] y ( s ) - b ( s ) + max s [ 0 , T ] z ( s ) - c ( s ) sup t [ 0 , T ] 0 T S ( t , s ) d s .
(49)

Repeating this idea, we may get using definition of the the G-metric G

max t [ 0 , T ] ( F ( x , y , z ) ( t ) F ( a , b , c ) ( t ) + max t [ 0 , T ] ( F ( x , y , z ) ( t ) F ( u , v , z ) ( t ) ) + max t [ 0 , T ] ( F ( a , b , c ) ( t ) F ( u , v , w ) ( t ) q [ G ( x , a , u ) + G ( y , b , v ) + G ( z , c , w ) ] ( sup t [ 0 , T ] 0 T S ( t , s ) d s ) 3 q ( sup t [ 0 , T ] 0 T S ( t , s ) d s ) max { G ( x , a , u ) , G ( y , b , v ) , G ( z , c , w ) } .

From (v), we have 3 q ( sup t [ 0 , T ] 0 T S ( t , s ) d s ) < 1 . This proves that the operator F satisfies the contractive condition appearing in Corollary 20.

Let α, β, γ be the functions appearing in assumption (vi), then by (vi), we get

α F ( α , β , γ ) , β F ( β , α , β ) , γ F ( γ , β , α ) .

Applying Corollary 20, we deduce the existence of x1, x2, x3 X such that

x 1 = F ( x 1 , x 2 , x 3 ) , x 2 = F ( x 2 , x 1 , x 2 ) , x 3 = F ( x 3 , x 2 , x 1 ) ,

i.e., (x1, x2, x3) is a solution of the system (48). □

Examples

In this section, we state two examples to support the usability of our results. Before we present our first example we worth to mention the following remark.

Remark 26. All our results still valid if (u, v, w) = (a, b, c).

Example 27. Let X = [0, 1] with usual order. Define G : X × X × XX by

G ( x , y , z ) = max x - y , x - z , y - z .

Define F: X × X × XX by

F ( x , y , z ) = 0 , y min { x , z } ; z - y 4 , x z y ; x - y 4 , z x y .

Also, define ψ, ϕ : [0, +∞) → [0, +∞) by ψ(t) = t and ϕ ( t ) = 1 2 t. Then:

  1. a.

    (X, G, ≤) is a G-complete regular G-metric space.

  2. b.

    For x, y, z, u, v, w X with xuu, yvv and zww, we have

    ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) ψ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) - ϕ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) .
  3. c.

    F has the mixed monotone property.

Proof. To prove (b), given x, y, z, u, v, w X with xu, yv and zw. Then:

Case 1: y > min{x, z} and v ≥ min{u, w}. Here, we have

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 0 ψ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) - ϕ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) .

Case 2: y ≥ min{x, z} and uwv. Here, we have yvwux and yvwz. Hence y = v = w = u = x or y = v = w = z. Therefore

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 0 ψ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) - ϕ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) .

Case 3: y ≥ min{x, z} and wuv. Here, we have yvuwz and yvux. Thus y = v = u = w = z or y = v = u = x. Therefore

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 0 ψ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) - ϕ ( max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } ) .

Case 4: xzy and v ≥ min{u, w}.

Suppose wv, then w - yv - y and hence

z - y = z - w + w - y z - w + v - y = G ( z , w , w ) + G ( y , v , y ) 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Then

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G z - y 4 , 0 , 0 = z - y 4 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Suppose v < w, then uv < w and hence uvwzx. So

z - y x - y = x - u + u - y ( x - u ) + ( v - y ) = G ( x , u , u ) + G ( v , y , y ) 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Therefore,

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G z - y 4 , 0 , 0 = z - y 4 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Case 5: zxy and v ≥ min{u, w}.

Suppose uv, then u - yv - y and hence

x - y = x - u + u - y ( x - u ) + ( v - y ) = G ( x , u , u ) + G ( v , y , y ) 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Therefore,

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G x - y 4 , 0 , 0 = 1 4 ( x - y ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Suppose v < u, then wv < u and hence wv <uxz. So

x - y z - y = z - w + w - y ( z - w ) + ( v - y ) = d ( z , w ) + d ( y , v ) 2 max { d ( x , u ) , d ( y , v ) , d ( z , w ) } .

Therefore,

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G x - y 4 , 0 , 0 = 1 4 ( x - y ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Case 6: xzy and uwv. Here, we have

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G z - y 4 , w - v 4 , w - v 4 = 1 4 ( z - w ) + ( v - y ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Case 7: xzy and wuv. Here, we have yvuwzx. Thus,

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G z - y 4 , u - v 4 , u - v 4 = 1 4 ( z - u ) + ( v - y ) = 1 4 ( z - u ) + ( v - y ) = 1 4 ( x - u ) + ( v - y ) = 1 4 ( G ( x , u , u ) + G ( y , v , v ) ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Case 8: zxy and uwv. Here, we have yvwuxz. Therefore, we have

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G x - y 4 , w - v 4 , w - v 4 = 1 4 x - y - w + v 1 4 x - w + v - y 1 4 ( z - w + v - y ) = 1 4 ( G ( z , w , w ) + G ( y , v , v ) ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

Case 9: zxy, wuv. Here, we have yvuwz. Therefore, we have

G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = G x - y 4 , u - v 4 , u - v 4 = 1 4 x - y - u + v 1 4 ( x - u + v - y ) = 1 4 ( G ( x , u , u ) + G ( y , v , v ) ) 2 4 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } = max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } - 1 2 max { G ( x , u , u ) , G ( y , v , v ) , G ( z , w , w ) } .

To prove (c), let x, y, z X. To show that F(x, y, z) is monotone non-decreasing in x, let x1, x2 X with x1x2. If y ≥ min{x1, z}, then F(x1, y, z) = 0 ≤ F(x2, y, z).

If y < min{x1, z}, then

F ( x 1 , y , z ) = min ( x 1 , z ) - y 3 min { x 2 , z } - y 3 = F ( x 2 , y , z ) .

Therefore, F(x, y, z) is monotone non-decreasing in x. Similarly, we may show that F(x, y, z) is monotone non-decreasing in z and monotone non-increasing in y. Thus, by Theorem 19 and Remark 26, F has a tripled fixed point. Here, (0, 0,0) is the unique tripled fixed point of F.

Now, we state our second example to support the usability of our results for non-symmetric G-metric spaces.

Example 28. Let X = {0, 1, 2, 3,...}. Define G : X × X × XX by

G ( x , y , z ) = x + y + z , if x , y , z are all distinct and di erent from zero; x + z , if x = y z and all are di erent from zero; y + z + 1 , if x = 0 , y z and y , z are di erent from zero; y + 2 , if x = 0 , z = y 0 ; z + 1 , if x = 0 , y = 0 , z 0 ; 0 , if x = y = x ,

F: X × X × XX by

F ( x , y , z ) = 0 , if x 3 z 3 ; 1 , if x 4 z 4 ,

and g: XX by gx = x2. Also, define ψ, ϕ: [0, +∞) → [0, +∞) by ψ(t) = t2 and ϕ(t) = t. Then

  1. a.

    (X, G, ≤) is a complete nonsymmetric G-metric space.

  2. b.

    For x, y, z, u, v, w X with gxgugu, gygvgv and gzgwgw, we have

    ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) ψ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) - ϕ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) .
  3. c.

    F has the mixed g-monotone property.

  4. d.

    F(X × X × X) gX.

  5. e.

    (X, G, ≤) is regular.

Proof. For (a) see Example 3.5 of Choudhury and Maity [17]. To prove (b), given x, y, z, u, v, w X with gxgu, gygv and gzgw. Then: □

Case 1: (x ≤ 3 z ≤ 3) (u ≤ 3 w ≤ 3). Here, we have F(x, y, z) = 0 and F(u, v, w) = 0. Thus

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 0 ψ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) - ϕ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) .

Case 2: (x ≤ 3 z ≤ 3) (u ≥ 4 w ≥ 4). Here, x < u or z < w which is impossible because gxgu and gzgw.

Case 3: (x ≥ 4 z ≥ 4) (u ≤ 3 w ≤ 3). Here, we have F(x, y, z) = 1 and F(u, v, w) = 0. Thus

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) = ψ ( G ( 1 , 0 , 0 ) ) = ψ ( 2 ) = 4.

Also,

G ( g x , g u , g u ) = G ( x 2 , u 2 , u 2 ) = x 2 + 1 , if u = 0 ; x 2 + u 2 , if u 0 .

In both cases, we have

3 G ( x 2 , u 2 , u 2 ) max { G ( x 2 , u 2 , u 2 ) , G ( y 2 , v 2 , v 2 ) , G ( z 2 , w 2 , w 2 ) } .

Using the fact that if a, b with ab, then a2 - ab2 - b, we deduce that

3 2 - 3 = 6 ( max { G ( x 2 , u 2 , u 2 ) , G ( y 2 , v 2 , v 2 ) , G ( z 2 , w 2 , w 2 ) } ) 2 - max { G ( x 2 , u 2 , u 2 ) , G ( y 2 , v 2 , v 2 ) , G ( z 2 , w 2 , w 2 ) } .

Therefore,

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 4 6 ψ ( max { G ( x 2 , u 2 , u 2 ) , G ( y 2 , v 2 , v 2 ) , G ( z 2 , w 2 , w 2 ) } ) - ϕ ( max { G ( x 2 , u 2 , u 2 ) , G ( y 2 , v 2 , v 2 ) , G ( z 2 , w 2 , w 2 ) } ) . = ψ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) - ϕ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) .

Case 4: (x ≥ 3 z ≥ 3) (u ≥ 3 w ≥ 3). Here, we have F(x, y, z) = 1 and F(u, v, w) = 1. Thus,

ψ ( G ( F ( x , y , z ) , F ( u , v , w ) , F ( u , v , w ) ) ) = 0 ψ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) - ϕ ( max { G ( g x , g u , g u ) , G ( g y , g v , g v ) , G ( g z , g w , g w ) } ) .

The proof of (c) and (d) are easy. To prove (e), let {x n } be a non-decreasing sequences in X such that {x n } G-converges to x. Then G(x n , x, x) → 0. By definition of G, we conclude that x n = x for all n except finitely many. Thus x n x for all n . Similarly, we show that if {y n } is a non-increasing sequence in X such that {y n } G-converges to y, then y n y for all n . Thus, (X, G, ≤) is regular.

By Theorem 19 and Remark 26, F and g have a tripled coincidence point in X. Here, (0, 0, 0) is the tripled coincidence point of F and g.

References

  1. Boyd DW, Wong SW: On nonlinear contractions. Proc Am Math Soc 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9

    Article  MathSciNet  Google Scholar 

  2. Alber , Ya I, Guerre-Delabriere S: Principle of weakly contractive maps in Hilbert space. In New Results in Operator Theory, Advances and Applications. Volume 98. Edited by: Gohberg, I, Lyubich, Yu. Birkhauser, Basel; 1997:7–22.

    Chapter  Google Scholar 

  3. Cherichi M, Samet B: Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations. Fixed Point Theory Appl 2012, 2012: 13. 10.1186/1687-1812-2012-13

    Article  MathSciNet  Google Scholar 

  4. Dhutta PN, Choudhury BS: A generalization of contraction principle in metric spaces. Fixed Point Theory Appl 2008. Article ID 406368

    Google Scholar 

  5. Dorić D: Common fixed point for generalized ( φ , ψ )-weak contractions. Appl Math Lett 2009, 22(12):1896–1900. 10.1016/j.aml.2009.08.001

    Article  MathSciNet  Google Scholar 

  6. Popescu O: Fixed points for ( ψ, ϕ )-weak contractions. Appl Math Lett 2011, 24: 1–4. 10.1016/j.aml.2010.06.024

    Article  MathSciNet  Google Scholar 

  7. Samet B, Vetro C, Vetro P: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014

    Article  MathSciNet  Google Scholar 

  8. Mustafa Z, Sims B: A new approach to generalized metric spaces. J Nonlinear Convex Anal 2006, 7(2):289–297.

    MathSciNet  Google Scholar 

  9. Mustafa Z: A new structure for generalized metric spaces with applications to fixed point theory. PhD thesis. The University of Newcastle, Callaghan, Australia; 2005.

    Google Scholar 

  10. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorem for mapping on complete G -metric spaces. Fixed Point Theory Appl 2008, 2008: 12. Article ID 189870

    Article  MathSciNet  Google Scholar 

  11. Mustafa Z, Sims B: Fixed point theorems for contractive mappings in complete G -metric spaces. Fixed Point Theory Appl 2009, 2009: 10. Article ID 917175

    Article  MathSciNet  Google Scholar 

  12. Abbas M, Rhoades BE: Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl Math Comput 2009, 215: 262–269. 10.1016/j.amc.2009.04.085

    Article  MathSciNet  Google Scholar 

  13. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G- metric spaces. Math Comput Model 2010, 52: 797–801. 10.1016/j.mcm.2010.05.009

    Article  MathSciNet  Google Scholar 

  14. Gnana Bhashkar T, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  15. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl Math Comput 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    Article  MathSciNet  Google Scholar 

  16. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math Comput Model 2011, 54: 2443–2450. 10.1016/j.mcm.2011.05.059

    Article  Google Scholar 

  17. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math Comput Model 2011, 54: 73–79. 10.1016/j.mcm.2011.01.036

    Article  MathSciNet  Google Scholar 

  18. Shatanawi W: Coupled fixed point theorems in generalized metric spaces. Hacet J Math Stat 2011, 40(3):441–447.

    MathSciNet  Google Scholar 

  19. Aydi H, Shatanawi W, Vetro C: On generalized weakly G -contraction mapping in G -metric spaces. Comput Math Appl 2011, 62: 4222–4229. 10.1016/j.camwa.2011.10.007

    Article  MathSciNet  Google Scholar 

  20. Aydi H, Shatanawi W, Postolache M: Coupled fixed point results for ( ψ, ϕ )-weakly contractive mappings in ordered G -metric spaces. Comput Math Appl 2012, 63: 298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  Google Scholar 

  21. Cho YJe, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl 2012, 2012: 8. 10.1186/1687-1812-2012-8

    Article  MathSciNet  Google Scholar 

  22. Gholizadeh L, Saadati R, Shatanawi W, Vaezpour SM: Contractive mapping in generalized, ordered metric spaces with application in integral equations. Math Probl Eng 2011: 14. Article ID 380784, doi:10.1155/2011/380784

  23. Mustafa Z, Khandaqji M, Shatanawi W: Fixed point results on complete G-metric spaces. Stud Sci Math Hungar 2011, 48: 304–319.

    Google Scholar 

  24. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Int J Math Math Sci 2009, 2009: 10. Article ID 283028

    Article  MathSciNet  Google Scholar 

  25. Rao KPR, Lakshmi KB, Mustafa Z: A unique common fixed point theorem for six maps in G -metric spaces. Int J Nonlinear Anal Appl 2011., 2(2): ISSN: 2008–6822 (electronic)

    Google Scholar 

  26. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl 2010, 2010: 9. Article ID 181650

    Article  MathSciNet  Google Scholar 

  27. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr Appl Anal 2011., 2011: Article ID 126205

    Google Scholar 

  28. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl 2011, 2011: 80. 10.1186/1687-1812-2011-80

    Article  MathSciNet  Google Scholar 

  29. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal 2011, 74: 4889–4897. 10.1016/j.na.2011.03.032

    Article  MathSciNet  Google Scholar 

  30. Aydi H, Karapınar E, Postolache M: Tripled coincidence point theorems for weak ϕ -contractions in partially ordered metric spaces. Fixed Point Theory Appl 2012, 2012: 44. 10.1186/1687-1812-2012-44

    Article  Google Scholar 

  31. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull Aust Math Soc 1984, 30: 1–9. 10.1017/S0004972700001659

    Article  MathSciNet  Google Scholar 

  32. Samet B, Vetro C: Coupled fixed point, f -invariant set and fixed point of N -order. Ann Funct Anal 2010, 1(2):46–56.

    Article  MathSciNet  Google Scholar 

  33. Abbas M, Aydi H, Karapınar E: Tripled fixed points of multi-valued nonlinear contraction mappings in partially ordered metric spaces. Abstr Appl Anal 2011., 2011: Article ID 8126904

    Google Scholar 

  34. Aydi H, Karapınar E, Shatanawi W: Tripled fixed point results in generalized metric spaces. J Appl Math 2012., 2012: Article ID 314279

    Google Scholar 

  35. Aydi H, Karapınar E: New Meir-Keeler type tripled fixed point theorems on ordered partial metric spaces. Math Probl Eng 2012., 2012: Article ID 409872

    Google Scholar 

  36. Karapınar E: Couple fixed point theorems For nonlinear contractions in cone metric spaces. Comput Math Appl 2010, 59: 3656–3668. 10.1016/j.camwa.2010.03.062

    Article  MathSciNet  Google Scholar 

  37. Nieto JJ, Rodriguez-Lόpez R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Order 2005, 22(3):223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the referees for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Karapınar.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Aydi, H., Karapınar, E. & Shatanawi, W. Tripled coincidence point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl 2012, 101 (2012). https://doi.org/10.1186/1687-1812-2012-101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-101

Keywords