Skip to main content

Generating function for q-Eulerian polynomials and their decomposition and applications

Abstract

The aim of this paper is to define a generating function for q-Eulerian polynomials and numbers attached to any character χ of the finite cyclic group G. We derive many functional equations, q-difference equations and partial deferential equations related to these generating functions. By using these equations, we find many properties of q-Eulerian polynomials and numbers. Using the generating element of the finite cyclic group G and the generating element of the subgroups of G, we show that the generating function with a conductor f can be written as a sum of the generating function with conductors which are less than f.

MSC:05A40, 11B83, 11B68, 11S80.

1 Introduction

The theory of the family of Eulerian polynomials and numbers (Frobenius-Euler polynomials and numbers) has become a very important part of analytic number theory and other sciences, for example, engineering, computer, geometric design and mathematical physics. Euler numbers are related to the Brouwer fixed point theorem and vector fields. Therefore, q-Eulerian type numbers may be related to Brouwer fixed point theorem and vector fields [1].

Recently, many different special functions have been used to define and investigate q-Eulerian numbers and polynomials, see details [139]. Therefore, we construct and investigate various properties of q-Eulerian numbers and polynomials, which are related to the many known polynomials and numbers such as Frobenius-Euler polynomials and numbers, Apostol-Euler polynomials and numbers, Euler polynomials and numbers.

Recently in [24], the authors defined a relationship between algebra and analysis. In detail, they made a new approximation between the subgroup and monoid presentation and special generating functions (such as Stirling numbers, Array polynomials etc.). In this paper, since our priority aim is to define special numbers and polynomials, it is worth depicting these references as well. Then in this paper, applying any group character χ of the finite cyclic group G to a special generating function (which has been defined in [5]), we give a generalization of q-Eulerian polynomials and numbers (q-Apostol-type Frobenius-Euler polynomials and numbers) and investigate their properties and some useful functional equations. Using a generating element of the subgroups of G and a generating element of G, we also decompose our generating function attached to the characters of G, and so we obtain a new decomposition of q-Eulerian numbers and polynomials attached to the characters of a subgroup of G and the Dirichlet character of G. This decomposition enables us to compute q-Apostol-type Frobenius-Euler polynomials and numbers more easily.

Throughout this paper, we assume that qC, the set of complex numbers, with |q|<1

[x]=[x:q]={ 1 q x 1 q if  q 1 , x if  q = 1 .

We use the following standard notions.

N={1,2,}, N 0 ={0,1,2,}=N{0} and also, as usual, denotes the set of real numbers, R + denotes the set of positive real numbers and denotes the set of complex numbers.

1.1 Characters of a group G

We recall the definition and some properties of the character of an arbitrary group (G,) (see [6]).

A non-zero complex-valued function χ defined on G is called a character of G if for all a,bG,

χ(ab)=χ(a)χ(b).

In particular, if G is a finite group with the identity element e, then χ(e)=1 and χ(a) is a root of unity. In [[6], Theorem 6.8], it is proved that a finite abelian group G of order n has exactly n distinct characters.

Let G be the group of reduced residue classes module positive integer f. Corresponding to each character χ of G, the Dirichlet character χ D is defined as follows:

χ D (n)={ χ ( n ) if  gcd ( n , f ) = 1 , 0 if  gcd ( n , f ) > 1 .

Hence it is easily observed that

χ(nf+a)=χ(a)

for all n,aN. In this note, f is called the conductor of the character of a group G of reduced residue classes module a positive integer f.

1.2 q-Eulerian polynomials and numbers

In [5], Simsek defined and studied some properties of q-Apostol type Frobenius-Euler polynomials and numbers.

Definition 1.1 Let a,b R + (ab) and uC{1}.

  1. (i)

    The q-Apostol type Frobenius-Euler numbers

    H n (u;a,b;λ;q)(λ,qC)

    are defined by means of the following generating function:

    F λ , q (t;u,a,b)= ( 1 a t u ) n = 0 ( λ u ) n b [ n ] t = n = 0 H n (u;a,b;λ;q) t n n ! .
  2. (ii)

    The q-Apostol type Frobenius-Euler polynomials

    H n (x;u;a,b;λ;q)(λC)

    are defined by means of the following generating function:

    F λ , q (x,t;u,a,b)= ( 1 a t u ) n = 0 ( λ u ) n b [ n + x ] t = n = 0 H n (x;u;a,b;λ;q) t n n ! ,
    (1)

    where

    | λ u b t |<1.

2 q-Eulerian polynomials and numbers attached to any character

In this section, we define q-Eulerian polynomials and numbers attached to any character of the finite cyclic group G. Our new generating functions are related to nonnegative real parameters.

Definition 2.1 Let a,b R + (ab and a1), uC{1}, λ,qC (|q|<1). Let χ be a character of a finite cyclic group G with the conductor f.

  1. (i)

    The q-Eulerian numbers attached to the character χ

    H n ,χ(u;a,b;λ;q)

    are defined by means of the following generating function:

    F λ , q , χ (t,u,a,b)= ( 1 a [ f ] t u f ) m = 0 ( λ u ) m b [ m ] t χ(m)= n = 0 H n , χ (u;a,b;λ;q) t n n ! .
    (2)
  2. (ii)

    The q-Eulerian polynomials attached to the character χ

    H n , χ (x;u;a,b;λ;q)

    are defined by means of the following generating function:

    F λ , q , χ (t,x,u,a,b)= ( 1 a [ f ] t u f ) m = 0 ( λ u ) m b [ m + x ] t χ(m)= n = 0 H n , χ (x;u;a,b;λ;q) t n n ! ,
    (3)

    where

    | λ u b t |<1.

It is observed that

H n , χ (0;u;a,b;λ;q)= H n , χ (u;a,b;λ;q).

Upon setting t=0 in (3), we compute a q-Eulerian number H 0 , χ (u,a,b,λ,q) attached to the character χ as follows:

H 0 , χ (u,a,b,λ,q)= ( u 1 f ( u f 1 ) u λ χ ( 1 ) ) .

By using the conductor f of the character χ and combining with F λ , q (t,x,u,a,b), we modify Equation (2) and Equation (3), respectively, as follows:

F λ , q , χ (t,u,a,b)= i = 0 f 1 ( λ χ ( 1 ) u ) i F λ f , q f ( t [ f ] , i f , u f , a , b )
(4)

and

F λ , q , χ (t,x,u,a,b)= i = 1 f ( λ χ ( 1 ) u ) i F λ f , q f ( [ f ] t , i + x f , u f , a , b ) .
(5)

Therefore, we provide the following relationships between q-Eulerian numbers and q-Eulerian numbers attached to the character χ.

Theorem 2.2 Let n N 0 . Then we have

  1. (i)
    H n , χ (u;a,b;λ,u)= [ f ] n i = 0 f 1 ( λ u ) i χ(i) H n ( i f , u f , a , b ; λ f , q f ) ,
  2. (ii)
    H n , χ (u;a,b;λ,u)= [ f ] n i = 0 f 1 χ(i) ( λ u ) i H n ( x + i f , u f , a , b ; λ f , q f ) .

Proof By using (4), we deduce that

n = 0 H n , χ (u;a,b;λ,u) t n n ! = i = 0 f 1 χ(i) ( λ u ) i n = 0 [ f ] n H n ( i f , u f , a , b ; λ f , q f ) t n n ! ,

which, by comparing the coefficient t n n ! on the both sides of the above equations, yields the first assertion of Theorem 2.2.

The second assertion (ii) is proved with the same argument. □

By Theorem 2.2, we also compute a q-Eulerian number attached to the character χ as follows:

H 0 , χ (u,a,b,λ,q)= i = 0 f 1 χ(i) ( λ u ) i H 0 ( i f , u f , a , b ; λ f , q f ) .

Now, we turn our attention to the following generation function defined in [1] since we need this generating function frequently to give some functional equations for a q-Eulerian number and polynomials attached to the character χ.

Let a1. The number Y n (u,a) is defined by means of the following generating function:

G(t,u,a)= 1 a t u = n = 0 Y n (u,a) t n n ! .

The polynomials Y n (x;u,a) are defined by means of the following generating function:

G(t,x,u,a)=G(t,u,a) a x t = n = 0 Y n (x;u,a) t n n ! .
(6)

Since we need this generating function frequently in this paper, we use the notation

D ( k ) = a [ f ] t u f a [ f ] q k t u f = G ( [ f ] q k t , 1 q k , u f , a ) u f G ( [ f ] q k t , u f , a ) = n = 0 [ f ] n q k n ( Y n ( 1 q k , u f , a ) u f Y n ( u f , a ) ) t n n ! ,

and so it follows that D n (k)= [ f ] n q n ( Y n ( 1 q , u f ,a) Y n ( u f ,a)).

By using the following well-known identity:

[n+x]=[x]+ q x [n]

in (3), we verify the following functional equation:

F λ , q , χ (t,x+y,u,a,b)= b [ y ] t D(y) F λ , q , χ ( q y t , x , u , a , b ) .
(7)

Hence we have the following theorem.

Theorem 2.3 Let n N 0 . Then we have

H n , χ ( x + y ; u ; a , b ; λ ; q ) = i = 0 m j = 0 i ( m i ) ( i j ) ( [ y ] ln b ) i j D j ( y ) q ( m i ) y × H ( m i ) i , χ ( x , u ; a , b ; λ ; q ) .

Proof By applying the Cauchy product to (7), we deduce that

F λ , q , χ (t,x+y,u,a,b)= n = 0 j = 0 n ( n j ) ( [ y ] ln b ) n j D j (y) t n n ! F λ , q , χ ( t q y , x , u , a , b ) .

Let K(n)= j = 0 n ( n j ) ( [ y ] ln b ) n j D j (y). Then it follows that

F λ , q , χ ( t , x + y , u , a , b ) = m = 0 i = 0 m ( m i ) K ( i ) q ( m i ) y H m i , χ ( x , u ; a , b ; λ ; q ) t m m ! = m = 0 i = 0 m j = 0 i ( m i ) ( i j ) ( [ y ] ln b ) i j D j ( y ) q ( m i ) y × H ( m i ) i , χ ( x , u ; a , b ; λ ; q ) t m m ! .

By comparing the coefficient of t m m ! on both sides of the above equation, we obtain our desired result. □

Upon setting x=0 in (7), we get the following functional equation:

F λ , q , χ ( t , y , u , a , b ) = b [ y ] t D ( y ) F λ , q , χ ( q y t , 0 , u , a , b ) = b [ y ] t D ( y ) F λ , q , χ ( q y t , u , a , b ) .

By substituting x=0 in Theorem 2.3, the following theorem is easily proved.

Theorem 2.4 Let n N 0 . Then we have

H n , χ (y;u;a,b;λ;q)= i = 0 m j = 0 n i ( m i ) ( i j ) ( [ y ] ln b ) i j D j (y) q ( n i ) y H ( m i ) i , χ (u;a,b;λ;q).

So that we obtain a q-difference equation for q-Eulerian polynomials attached to the character χ, we study the following equations:

F λ , q , χ ( t , x , u , a , b ) = ( 1 a [ f ] t u f ) + λ χ ( 1 ) u F λ , q , χ ( t , x + 1 , u , a , b ) = ( 1 a [ f ] t u f ) + λ χ ( 1 ) b t u D ( 1 ) F λ , q , χ ( q t , x , u , a , b ) ,

which, in light of the Cauchy product of the three series b t , F λ , q , χ (qt,x,u,a,b) and

D(1)=G ( q [ f ] t , 1 q , u f , a ) u f G ( q [ f ] t , u f , a ) ,

yield the following theorem.

Theorem 2.5 Let n N 0 . Then we have

H 0 , χ (x;u;a,b;λ;q)=1 ( [ f ] ln a ) n u f + λ χ ( 1 ) u C 0 H 0 , χ (x;u;a,b;λ;q)

and

H n , χ (x;u;a,b;λ;q)= ( [ f ] ln a ) n u f + λ χ ( 1 ) u i = 0 n ( n i ) C n i q i H i , χ (x;u;a,b;λ;q),

where

C n = i = 0 n ( n i ) ( ln b ) n i [ f ] i q i ( Y i ( 1 q , u f , a ) u f Y i ( 0 , u , a ) ) .

Now, we turn our attention to studying the derivative of the polynomials

t F λ , q , χ ( x , t , u , a , b ) = [ f ] a [ f ] t ln a u f n = 0 ( λ u ) n χ ( n ) b [ n + x ] t + ( 1 a [ f ] t u f ) n = 0 ( λ u ) n χ ( n ) [ n + x ] b [ n + x ] t ln b .
(8)

By

i = 0 y n [n]= 1 ( 1 y ) ( 1 q ) y ( 1 q y ) ( 1 q )

and substituting t=0 in (8), we get that

H 1 , χ ( x ; u ; a , b ; λ ; q ) = [ f ] ln a u f u f 1 λ χ ( 1 ) + ( u f 1 u f ) ( u u λ χ ( 1 ) ) [ x ] ln b + ( u f 1 u f ( 1 q ) ) q x ( u u λ χ ( 1 ) + u u q λ χ ( 1 ) ) .

Hence, using the induction method, we arrive at the following result.

Theorem 2.6 Let n N 0 . Then we have

H n , χ (x;u;a,b;λ;q) t n n ! = n t n F λ , q , χ (x,t,u,a,b) | t = 0 .

Now we give a generalization of the Raabe formula by the following theorem.

Theorem 2.7 Let c,n N 0 . Then we have

H n , χ ( x ; u ; a , b ; λ ; q ) = n = 0 c 1 j = 0 n ( n j ) λ χ ( 1 ) u R j ( c ) [ c ] n j × H n j , χ c ( x + l c ; u c ; a , b ; λ c ; q c ) ,

where

R j (c)= [ c f c ] j ( Y n ( [ f ] [ c f c ] ; u f , a ) u f Y n ( u f , a ) )

and

χ c (x)=χ(cx).

Proof

We start the proof with defining the character

χ c (x)=χ(cx)

with the conductor f c = f gcd ( f , c ) . On the other hand, we derive that

( u f a [ f ] t u f ) = u f a [ f ] t u f a [ f c ] q c [ c ] t u f a [ f c ] q c [ c ] t u f = R ( c ) u f a [ f c ] q c [ c ] t u f ,

where

R(c)= a [ f ] t u f a [ c f c ] t u f .

Then by using (6), it follows that

R ( c ) = G ( [ c f c ] t , [ f ] [ c f c ] , u f , a ) u f G ( [ c f c ] t , 0 , u f , a ) = n = 0 [ c f c ] n ( Y n ( [ f ] [ c f c ] ; u f , a ) u f Y n ( u f , a ) ) t n n ! = n = 0 R n ( c ) t n n ! .

Now, we are ready to prove our result.

n = 0 H n , χ ( x ; u ; a , b ; λ ; q ) t n n ! = ( 1 a [ f ] t u f ) m = 0 l = 0 c 1 ( λ u ) l + m c b [ l + m c + x ] t χ ( l + m c ) = ( 1 a [ f ] t u f ) l = 0 c 1 ( λ χ ( 1 ) u ) l m = 0 ( λ c u c ) b [ m + l + x c ] q c [ c ] t χ ( c m ) = l = 0 c 1 ( λ χ ( 1 ) u ) l n = 0 R n ( c ) t n n ! n = 0 [ c ] n H n , χ c ( x + l c ; u c ; a , b ; λ c ; q c ) t n n ! = n = 0 l = 0 c 1 ( λ χ ( 1 ) u ) l j = 0 n ( n j ) R j ( c ) [ c ] n j H n j , χ c ( x + l c ; u c ; a , b ; λ c ; q c ) t n n ! .

Hence, comparing the coefficient of t n n ! on both sides yields the assertion of this theorem. □

3 Decomposition of the generating function

In this section, using the generating element of the finite cyclic group G and the generating element of the subgroups of G, we show that the generating function with a conductor f can be written as a sum of the generating function with conductors which are less than f.

In this section, we use the following notations otherwise stated:

  1. (i)

    x N 0 ={0,x,2x,3x,4x,},

  2. (ii)

    p i denotes the integer such that gcd( p i , p j )=1 for all i,j{1,,n},

  3. (iii)

    S= i = 1 n ( p i N 0 ),

  4. (iv)

    S 0 ={ p 1 ,, p n },

  5. (v)

    S i ={lcd(a,b):a,b S i 1 }.

We start to recall the fact that

x N 0 y N 0 =lcd(x,y) N 0

for positive integers x and y. In particular, we get that

x k N 0 y t N 0 =xy N 0

whenever x and y are distinct prime numbers.

Theorem 3.1 With the above notations, we get

i S F(i)= j = 0 n 1 ( 1 ) j t S j i t N 0 F(i).

Proof We start to recall the fact that for sets A, B,

i A B F(i)= i A F(i)+ i B F(i) i A B F(i).

Then by using De-Morgan’s law of sets, we get the following equality:

i ( p 1 N 0 ) ( i = 2 n ( p i N 0 ) ) F ( i ) = i ( p 1 N 0 ) F ( i ) + i ( i = 2 n ( p i N 0 ) ) F ( i ) i ( p 1 N 0 ) ( i = 2 n ( p i N 0 ) ) F ( i ) = i ( p 1 N 0 ) F ( i ) + i ( i = 2 n ( p i N 0 ) ) F ( i ) i ( i = 2 n lcd ( p 1 , p i ) N 0 ) F ( i ) .

Now we use induction on n.

If n=2, then S 0 ={ p 1 , p 2 } and S 1 ={lcd( p 1 , p 2 )}. We have

i ( i = 1 2 ( p i N 0 ) ) F ( i ) = i ( p 1 N 0 ) F ( i ) + i ( p 2 N 0 ) F ( i ) i lcd ( p 1 , p 2 ) N 0 F ( i ) = j = 0 1 ( 1 ) j t S j i t N 0 F ( i ) .

We construct the following sets:

S = i = 1 n ( p i N 0 ) , S = i = 2 n ( p i N 0 )

and

S=( p 1 N 0 ) S .

By using De-Morgan’s law of sets, we verify the following equalities:

S = ( p 1 N 0 ) S = i = 2 n ( lcd ( p 1 , p i ) N 0 ) , S 0 = S 0 { p 1 } , S 1 = { lcd ( a , b ) : a , b S 0 } = S 1 S 0 , S 2 = { lcd ( a , b ) : a , b S 1 } = S 2 S 1 , S i = { lcd ( a , b ) : a , b S i 1 } = S i S i 1

and for all i1, it is clear that S i S i 1 =.

Now assume that it is true for the set with n1 elements. Hence, the hypothesis for the sets S and S is true, and we get that

i S F(i)= j = 0 n 2 ( 1 ) j t S j i t N 0 F(i)

and

i S F(i)= j = 0 n 2 ( 1 ) j t S j i t N 0 F(i).

Hence it follows

i S F ( i ) = i p 1 N 0 F ( i ) + i S F ( i ) i S F ( i ) = i p 1 N 0 F ( i ) + j = 0 n 2 ( 1 ) j t S j i t N 0 F ( i ) j = 0 n 2 ( 1 ) j t S j i t N 0 F ( i ) = t S 0 i t N 0 F ( i ) t S 1 S 0 i t N 0 F ( i ) + j = 2 n 2 ( 1 ) j t S j S j 1 i t N 0 F ( i ) = j = 0 n 1 ( 1 ) j t S j i t N 0 F ( i ) .

 □

Example 3.2 Let p 1 , p 2 , p 3 be distinct prime integers. Then we have

i ( i = 1 3 ( p i N 0 ) ) F ( i ) = i ( p 1 N 0 ) F ( i ) + i ( p 2 N 0 ) F ( i ) + i ( p 3 N 0 ) F ( i ) i ( p 2 p 3 N 0 ) F ( i ) i ( p 1 p 2 N 0 ) F ( i ) i ( p 1 p 3 N 0 ) F ( i ) + i ( p 1 p 2 p 3 N 0 ) F ( i ) .

Lemma 3.3 Let p i be a prime number for all i and

C= { l N 0 : gcd ( f , l ) = 1 } .

Then N 0 =C( i = 1 n ( p i N 0 )) and C( i = 1 n ( p i N 0 )) is an empty set.

Proof By using the fact (l,f)=1 if and only if (l, i = 1 n p i )=1 if and only if (l, p i )=1 for all i{1,,n} for n N 0 , we get that

C = { l N 0 : gcd ( f , l ) = 1 } = { l N 0 :  for all  i { 1 , , n } , gcd ( p i , l ) = 1 } .

Let x i = 1 n ( p i N 0 ). Then we get that gcd(x, p i )=1 for all i and so xC.

If xC, then there is i{1,,n} such that gcd(x, p i ) is p i . Therefore

N 0 =C ( i = 1 n ( p i N 0 ) ) .

Let xC( i = 1 n ( p i N 0 )). Then there is i{1,,n} such that x p i N 0 . This means that gcd(x, p i )= p i and so xC, a contradiction. Thus the proof is completed. □

By using the Lemma 3.3, we have one of the main results in this section.

Theorem 3.4 With the above notations, we get that

i N 0 F(i)= i C F(i)+ i ( j = 1 n ( p j N 0 ) ) F(i).

As stated before, to decompose the generating function of q-Eulerian polynomials attached to the character χ, now we need to compute the following relation:

n ( d Z ) ( λ u ) n b [ n ] t χ(n),

where

f d = f d N 0 .

Also, we define the character χ g with the conductor h such as

χ g (i):=χ(gi),

where g,h N 0 and gcd(g,h)=1. Then

n ( d Z ) ( λ u ) n b [ n ] t χ ( n ) = n N 0 ( λ u ) d n b [ d n ] t χ ( d n ) = n N 0 i = 0 f d 1 ( λ u ) d ( f d n + i ) b [ d ( f d n + i ) ] t χ ( d ( f d n + i ) ) = n N 0 i = 0 f d 1 ( λ d u d ) f d n + i b t [ d ] [ f d n + i ] q d χ d ( i ) = i N 0 ( λ d u d ) i b t [ d ] [ i ] q d χ d ( i ) .

Hence, we combine the above equation with the generating function

( 1 a [ f ] t u f ) n ( d Z ) ( λ u ) n b [ n ] t χ ( n ) = ( 1 a [ d f d ] t u d f ) i N 0 ( λ u ) i b [ i ] q d t χ d ( i ) = ( 1 a [ d ] [ f d ] q d t ( u d ) f d ) i N 0 ( λ u ) i b d [ i ] q d t χ d ( i ) = F λ d , q d , χ d ( t , u d , a [ d ] , b [ d ] ) .

Now we are ready to state the main result without the proof in this section.

Theorem 3.5 Let f= i = 1 n p i t t , where p i is a prime integer. Then

F λ , q , χ (t,u,a,b)= j = 0 n 1 ( 1 ) j t S j i t Z F λ i , q i , χ i ( t , u i , a [ i ] , b [ i ] ) + F λ , q , χ D (t,u,a,b),

where χ D is a Dirichlet character corresponding to the character χ.

Example 3.6 Let f= p 1 t 1 p 2 t 2 p 3 t 3 , where p i is a prime integer. Then

F λ , q , χ ( t , u , a , b ) = F λ , q , χ D ( t , u , a , b ) + i = 1 3 F λ p i , q p i , χ p i ( t , u p i , a [ p i ] , b [ p i ] [ f p i ] q p i ) + F λ p 1 p 2 p 3 , q p 1 p 2 p 3 , χ p 1 p 2 p 3 ( t , u p 1 p 2 p 3 , a [ p 1 p 2 p 3 ] , b [ p 1 p 2 p 3 ] [ f p 1 p 2 p 3 ] q p 1 p 2 p 3 ) i = 1 3 F λ p 1 p i , q p 1 p i , χ p 1 p i ( t , u p 1 p i , a [ p 1 p i ] , b [ p 1 p i ] [ f p 1 p i ] q p 1 p i ) F λ p 2 p 3 , q p 2 p 3 , χ p 2 p 3 ( t , u p 2 p 3 , a [ p 2 p 3 ] , b [ p 2 p 3 ] [ f p 2 p 3 ] q p 2 p 3 ) .

References

  1. Simsek Y: Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Appl. 2013., 2013: Article ID 87. doi:10.1186/1687–1812–2013–87

    Google Scholar 

  2. Cangül IN, Cevik AS, Simsek Y: Analysis approach to finite monoids. Fixed Point Theory Appl. 2013., 2013: Article ID 15. doi:10.1186/1687–1812–2013–15

    Google Scholar 

  3. Cevik AS, Cangül IN, Simsek Y: A new approach to connect algebra with analysis: relationship and applications between presentations and generating functions. Bound. Value Probl. 2013., 2013: Article ID 51. doi:10.1186/1687–2770–2013–51

    Google Scholar 

  4. Cevik AS, Das KC, Simsek Y, Cangül IN: Some array polynomials over special monoids presentations. Fixed Point Theory Appl. 2013., 2013: Article ID 44. doi:10.1186/1687–1812–2013–44

    Google Scholar 

  5. Simsek Y: Generating functions for q -Apostol type Frobenius-Euler numbers and polynomials. Axioms 2012, 1: 395–403. doi:10.3390/axioms1030395 10.3390/axioms1030395

    Article  Google Scholar 

  6. Apostol TM: Introduction to Analytic Number Theory. Springer, New York; 1976.

    Google Scholar 

  7. Luo QM, Srivastava HM: Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2005, 10: 631–642.

    MathSciNet  Google Scholar 

  8. Luo QM, Srivastava HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 2005, 308: 290–302. 10.1016/j.jmaa.2005.01.020

    Article  MathSciNet  Google Scholar 

  9. Luo QM: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10(4):917–925.

    Google Scholar 

  10. Luo QM, Srivastava HM: Some relationships between Apostol-Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 2006, 51: 631–642. 10.1016/j.camwa.2005.04.018

    Article  MathSciNet  Google Scholar 

  11. Luo QM, Srivastava HM: q -extensions of some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials. Taiwan. J. Math. 2011, 15: 241–257.

    MathSciNet  Google Scholar 

  12. Luo QM: Some results for the q -Bernoulli and q -Euler polynomials. J. Math. Anal. Appl. 2010, 363: 7–18. 10.1016/j.jmaa.2009.07.042

    Article  MathSciNet  Google Scholar 

  13. Luo QM: An explicit relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials associated with λ -Stirling numbers of the second kind. Houst. J. Math. 2010, 36: 1159–1171.

    Google Scholar 

  14. Luo QM: Some formulas for the Apostol-Euler polynomials associated with Hurwitz zeta function at rational arguments. Appl. Anal. Discrete Math. 2009, 3: 336–346. 10.2298/AADM0902336L

    Article  MathSciNet  Google Scholar 

  15. Choi J, Anderson PJ, Srivastava HM: Carlitz’s q -Bernoulli and q -Euler numbers and polynomials and a class of generalized q -Hurwitz zeta functions. Appl. Math. Comput. 2009, 215: 1185–1208. 10.1016/j.amc.2009.06.060

    Article  MathSciNet  Google Scholar 

  16. Kim T, Jang CL, Park HK: A note on q -Euler and Genocchi numbers. Proc. Jpn. Acad. 2001, 77: 139–141. 10.3792/pjaa.77.139

    Article  Google Scholar 

  17. Simsek Y, Bayad A, Lokesha V: q -Bernstein polynomials related to q -Frobenius-Euler polynomials, l -functions, and q -Stirling numbers. Math. Methods Appl. Sci. 2012, 35: 877–884. 10.1002/mma.1580

    Article  MathSciNet  Google Scholar 

  18. Srivastava HM, Choi J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam; 2012.

    Google Scholar 

  19. Srivastava HM: Some generalizations and basic (or q -) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5: 390–444.

    MathSciNet  Google Scholar 

  20. Kim T: A note on some formulae for the q -Euler numbers and polynomials. Proc. Jangjeon Math. Soc. 2006, 9: 227–232. arXiv:math/0608649

    MathSciNet  Google Scholar 

  21. Kim T: The modified q -Euler numbers and polynomials. Adv. Stud. Contemp. Math. 2008, 16: 161–170. arXiv:math/0702523

    Google Scholar 

  22. Kim T: A note on the alternating sums of powers of consecutive q -integers. Adv. Stud. Contemp. Math. 2005, 11: 137–140. arXiv:math/0604227v1 [math.NT]

    Google Scholar 

  23. Carlitz L: q -Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 1954, 76: 332–350.

    Google Scholar 

  24. Choi J, Anderson PJ, Srivastava HM: Some q -extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n , and the multiple Hurwitz zeta function. Appl. Math. Comput. 2008, 199: 723–737. 10.1016/j.amc.2007.10.033

    Article  MathSciNet  Google Scholar 

  25. Kim T: On a q -analogue of the p -adic log gamma functions and related integrals. J. Number Theory 1999, 76: 320–329. 10.1006/jnth.1999.2373

    Article  MathSciNet  Google Scholar 

  26. Jang LC, Kim T: q -analogue of Euler-Barnes’ numbers and polynomials. Bull. Korean Math. Soc. 2005, 42: 491–499.

    Article  MathSciNet  Google Scholar 

  27. Kim T: On the q -extension of Euler and Genocchi numbers. J. Math. Anal. Appl. 2007, 326: 1458–1465. 10.1016/j.jmaa.2006.03.037

    Article  MathSciNet  Google Scholar 

  28. Kim T, Jang LC, Rim SH, Pak HK: On the twisted q -zeta functions and q -Bernoulli polynomials. Far East J. Appl. Math. 2003, 13: 13–21.

    MathSciNet  Google Scholar 

  29. Kim T, Rim SH: A new Changhee q -Euler numbers and polynomials associated with p -adic q -integral. Comput. Math. Appl. 2007, 54: 484–489. 10.1016/j.camwa.2006.12.028

    Article  MathSciNet  Google Scholar 

  30. Ozden H, Simsek Y: A new extension of q -Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 2008, 21: 934–939. 10.1016/j.aml.2007.10.005

    Article  MathSciNet  Google Scholar 

  31. Ozden H, Simsek Y, Srivastava HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 2010, 60: 2779–2787. 10.1016/j.camwa.2010.09.031

    Article  MathSciNet  Google Scholar 

  32. Schempp W: Euler-Frobenius polynomials. Internat. Schriftenreihe Numer. Math. 67. Numer. Methods Approx. Theory, vol. 7 (Oberwolfach, 1983) 1984, 131–138.

    Google Scholar 

  33. Shiratani K: On Euler numbers. Mem. Fac. Sci. Kyushu Univ. 1975, 27: 1–5.

    MathSciNet  Google Scholar 

  34. Simsek Y: Twisted (h,q) -Bernoulli numbers and polynomials related to twisted (h,q) -zeta function and L -function. J. Math. Anal. Appl. 2006, 324: 790–804. 10.1016/j.jmaa.2005.12.057

    Article  MathSciNet  Google Scholar 

  35. Simsek Y: q -analogue of the twisted l -series and q -twisted Euler numbers. J. Number Theory 2005, 110: 267–278. 10.1016/j.jnt.2004.07.003

    Article  MathSciNet  Google Scholar 

  36. Simsek Y: On p -adic twisted q - L -functions related to generalized twisted Bernoulli numbers. Russ. J. Math. Phys. 2006, 13: 327–339.

    Article  MathSciNet  Google Scholar 

  37. Simsek Y, Kim T, Park DW, Ro YS, Jang LC, Rim SH: An explicit formula for the multiple Frobenius-Euler numbers and polynomials. JP J. Algebra Number Theory Appl. 2004, 4: 519–529.

    MathSciNet  Google Scholar 

  38. Srivastava HM, Kim T, Simsek Y: q -Bernoulli numbers and polynomials associated with multiple q -zeta functions and basic L -series. Russ. J. Math. Phys. 2005, 12: 241–268.

    MathSciNet  Google Scholar 

  39. Tsumura H: A note on q -analogues of the Dirichlet series and q -Bernoulli numbers. J. Number Theory 1991, 39: 251–256. 10.1016/0022-314X(91)90048-G

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dedicated to Professor Hari M Srivastava.

All authors are partially supported by Research Project Offices Akdeniz Universities. The author would like to thank to all referees for their valuable comments and also for suggesting references [714].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Alkan.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors completed the paper together. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Alkan, M., Simsek, Y. Generating function for q-Eulerian polynomials and their decomposition and applications. Fixed Point Theory Appl 2013, 72 (2013). https://doi.org/10.1186/1687-1812-2013-72

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-72

Keywords